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INTRODUCTION 

The association metabolic disturbances and androgen excess in 

women has been recognized since at least the 18th century [1,2]. In 

the 1940s, Vague [3] noted that women with male-pattern or an-

droid body fat distribution were at increased risk for diabetes and 

cardiovascular disease (CVD). Rare syndromes of insulin resistant 

diabetes, hyperandrogenism and acanthosis nigricans were for-

mally described in 1976 [4]. Evaluation of the cellular and molecu-

lar defects in insulin action in these syndromes resulted in the iden-

tification of mutations in the insulin receptor gene altering its num-

ber, binding or function [5,6]. In a subset of these disorders also as-

sociated with partial or total lipoatrophy, several Mendelian disor-

ders resulting from mutations in genes regulating adipocyte differ-

entiation or architecture were identified [6,7]. The common feature 

of these molecularly diverse disorders was hyperinsulinemia impli-

cating insulin in the pathogenesis of the reproductive disturbances 

[8]. The recognition that women with polycystic ovary syndrome 

(PCOS) had basal and glucose-stimulated hyperinsulinemia, inde-

pendent of obesity [9], and acanthosis nigricans [10,11] suggested 

insulin might also be important in the pathogenesis of this com-

mon syndrome of unknown etiology [8].

PCOS is one of the most prevalent endocrine disorders of repro-

ductive age women, affecting approximately 7% of this population 

[12-14] or to 4 million women ages 15-44 years in the US alone us-

ing 2010 Census population estimates. Worldwide PCOS prevalence 

rates are similar, except in Latinas where they may be even higher 

[8]. PCOS is diagnosed by its reproductive phenotype of hyperan-

drogenism, chronic anovulation, and polycystic ovaries (PCO) [8]. 

It is frequently associated with substantial insulin resistance, pan-

creatic β-cell dysfunction and obesity [8,15,16]. PCOS is a leading 

risk factor for metabolic syndrome (MetS) [17-20], a constellation of 
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Until the 1980s, polycystic ovary syndrome (PCOS) was considered to be a poorly defined reproductive disorder. During that de-
cade, it was recognized that PCOS was associated with profound insulin resistance and a substantially increased risk for type 2 dia-
betes mellitus in young women. Accordingly, the mechanisms linking the reproductive and metabolic features of the syndrome be-
came the subject of intense investigation. Insulin is now recognized as a reproductive as well as a metabolic hormone and insulin 
signaling in the central nervous system participates in normal reproductive function. These insights have been directly translated 
into a novel therapy for PCOS with insulin sensitizing drugs. Androgens also have reversible metabolic actions to decrease insulin 
sensitivity and increase visceral fat. Prenatal androgen administration to non-human primates, sheep and rodents produces repro-
ductive and metabolic features of PCOS suggesting that the disorder also has developmental origins. PCOS is highly heritable and 
male as well as female relatives have reproductive and metabolic phenotypes. A number of confirmed genetic susceptibility loci 
have now been mapped for PCOS and genes in well-known as well as novel biologic pathways have been implicated in disease 
pathogenesis. (Endocrinol Metab 27:180-190, 2012)
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CVD risk factors associated with visceral adiposity and insulin re-

sistance [21], and type 2 diabetes mellitus (T2D) in adolescent [18, 

22] as well as in adult women [23-25]. Women with PCOS appear to 

be at risk for a number of other conditions associated with insulin 

resistance, including gestational diabetes, preeclampsia, sleep ap-

nea and non-alcoholic fatty liver disease [26]. Women with epilepsy 

and bipolar disorder have an increased prevalence of PCOS, inde-

pendent of medications [27,28].

The metabolic sequelae of PCOS persist after menopause, partic-

ularly the increased T2D risk [29-31]. Moreover, several studies of 

postmenopausal women with features of PCOS suggest that they 

are indeed at increased risk for CVD [32,33], as would be expected 

from the increased prevalence of CVD risk factors including obe-

sity, dysglycemia, MetS, T2D, elevated low-density lipoprotein (LDL) 

levels, and endothelial dysfunction in PCOS [34]. PCOS is highly 

heritable [35,36] and male as well as female relatives, including in-

fants and children, have metabolic and reproductive phenotypes 

[35,37-40].

Despite more than 75 years of investigative effort, the etiology(s) 

of PCOS remain unknown [8]. However, major advances in under-

standing PCOS have been made in the last 25 years through inves-

tigation of the links between its reproductive and metabolic abnor-

malities. Most importantly, the insight that insulin resistance and 

the resultant hyperinsulinemia contribute to the reproductive phe-

notype of PCOS has led to a major new therapeutic modality with 

insulin-sensitizing agents [15]. However, insulin resistance does not 

account entirely for the reproductive features of the syndrome. The 

role of androgens in the pathogenesis of PCOS has been reexam-

ined in recent years since prenatal androgen exposure can create 

an almost complete phenocopy of PCOS in non-human primates 

[41]. The well-known familial aggregation of PCOS as well as twin 

studies indicate that there is also a genetic susceptibility to the dis-

order [35-37].

REPRODUCTIVE PHENOTYPE IN PCOS

The biochemical reproductive phenotype in PCOS is character-

ized by increased luteinizing hormone (LH) relative to follicle-stim-

ulating hormone (FSH) secretion and hyperandrogenism [42]. 

There is increased frequency of gonadotropin-releasing hormone 

(GnRH) secretion that selectively increases LH release, while simul-

taneously suppressing FSH secretion (Fig. 1) [42]. Pituitary sensitiv-

ity to GnRH is also increased, which appears to be estrogen-medi-

ated [42]. Increased LH levels stimulate increased ovarian theca cell 

androgen production [43]. PCOS theca cells secrete increased an-

drogens, both basally and in response to LH [44].

Acyclic FSH secretion results in arrested ovarian follicular devel-

opment so that granulosa cells do not develop sufficient aromatase 

capacity to completely aromatize androgens into estrogens [43]. 

Often, there is increased adrenal androgen production (Fig. 1) [45]. 

Androgens play an essential role in the pathogenesis of the in-

creased LH release by causing insensitivity to the normal feedback 

effects of estrogen and progesterone feedback to slow GnRH fre-

quency in PCOS (Fig. 1); normal feedback can be restored by an-

drogen receptor blockade [46]. Hyperinsulinemia secondary to in-

sulin resistance plays a pivotal role in amplifying both the steroido-

genic as well as the gonadotropin secretory abnormalities [8].

There are intrinsic abnormalities in PCO. In both ovulatory and 

anovulatory PCO, the proportion of early growing (primary) folli-

cles is significantly increased with a reciprocal decrease in the pro-

portion of primordial follicles compared to normal ovaries [47]. These 
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Fig. 1. Pathophysiology of the polycystic ovary syndrome (PCOS). The frequency 
of pulsatile gonadotropin-releasing hormone (GnRH) release is increased, 
which selectively increases LH secretion, while simultaneously suppressing fol-
licle-stimulating hormone (FSH) release. Luteinizing hormone (LH) stimulates 
ovarian theca cell testosterone (T) production. There are also constitutive in-
creases in the activity of multiple steroidogenic enzymes in polycystic ovaries 
contributing to increased androgen production. A similar defect is postulated to 
be present in the adrenal gland, which shares these steroidogenic enzymes, 
contributing to adrenal androgen excess that often occurs in PCOS (not shown). 
T is incompletely aromatized into estradiol by the adjacent granulosa cells be-
cause of relative FSH deficiency. Accordingly, increased circulating T levels are 
the result of increased LH-mediated T production, intrinsic increases in thecal T 
biosynthesis and decreased conversion of T into estradiol. T acts in the periph-
ery to produce signs of androgen excess, such as hirsutism, acne and alopecia. 
T and androstenedione can also be aromatized extragonadally to estradiol and 
estrone, respectively, resulting in unopposed estrogen action on the endometri-
um (not shown). T feeds back on the hypothalamus to decrease the sensitivity 
to the normal feedback effects of estradiol and progesterone to slow GnRH 
pulse frequency. Insulin resistance is commonly associated with PCOS. Used 
with permission Andrea Dunaif.
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differences are particularly striking in anovulatory PCO [47]. There 

is decreased atresia of follicles from PCO in culture compared to 

those from normal ovaries [47]. Theca cells from PCO have consti-

tutive increases in activity of multiple steroidogenic enzymes [44]; 

it is postulated that a similar defect contributes to adrenal andro-

gen excess in affected women [44,45].

INSULIN RESISTANCE IN PCOS

Women with PCOS have defects in both peripheral, which re-

flects primarily skeletal muscle, and hepatic insulin action, as well 

as pancreatic β-cell dysfunction [8,48]. These abnormalities are in-

dependent of obesity, although obesity substantially worsens these 

parameters [8,15,49]. However, in certain populations of women 

with PCOS, such as those from Scandinavia, obesity per se seems 

to account for insulin resistance [50,51]. This finding suggests that 

there may be ethnic variations in the mechanism of insulin resis-

tance in PCOS.

The molecular mechanisms of insulin resistance in PCOS differ 

from those in other common insulin resistant states, such as obe-

sity and T2D [8]. Despite the phenotypic similarity between PCOS 

and the type A syndrome of extreme insulin resistance and hyper-

androgenism [5,8], no mutations in the coding portion of insulin 

receptor gene have been found in PCOS [8]. Studies in isolated sub-

cutaneous adipocytes have shown no differences in insulin recep-

tor number or affinity compared to weight-comparable control 

women [49,52]. However, the presence of post-binding defect in in-

sulin signaling in adipocytes of women with PCOS was suggested 

by significantly decreased sensitivity to insulin-mediated glucose 

transport [49,52]. The abundance of GLUT4 glucose transporters 

was decreased in one [53] but not in another study [54] of isolated 

subcutaneous adipocytes from affected women. Additionally, an 

enhanced lipolytic effect of catecholamines was found in isolated 

visceral adipocytes in PCOS, which could contribute to insulin re-

sistance by increasing free fatty acids release directly into the por-

tal circulation [55]. The opposite abnormality, resistance to cate-

cholamine-induced lipolysis, was present in isolated subcutaneous 

abdominal adipocytes [56].

Constitutive increases in insulin receptor serine phosphorylation 

were found in receptors isolated from cultured skin fibroblasts and 

from skeletal muscle, a classic insulin target tissue, in PCOS [57]. The 

increase in insulin receptor serine phosphorylation was accompa-

nied by a decrease in insulin receptor tyrosine kinase activity that 

is essential for normal insulin signal transduction [8,57]. Studies us-

ing serine kinase inhibitors have suggested that a serine kinase ex-

trinsic to the receptor is responsible for the constitutive increase in 

insulin receptor serine phosphorylation [58]. Studies in vivo have 

demonstrated a post-receptor defect in IRS-1-mediated activation 

of phosphatidylinositol 3-kinase (PI3K) activity, an early step the 

insulin signaling cascade, in skeletal muscle biopsies in parallel 

with decreased insulin-mediated glucose uptake in PCOS [59]. This 

study supports a physiologically relevant role for defective insulin 

signaling in PCOS, since skeletal muscle is the major site of insulin-

mediated glucose uptake [60].

Defects in insulin signaling persist in myotubes cultures estab-

lished from skeletal muscle biopsies obtained in women with PCOS, 

including decreased IRS-1-associated PI3K activity [61], analogous 

to findings in skeletal muscle biopsies during in vivo euglycemic 

hyperinsulinemic clamp studies in affected women [59]. Decreased 

IRS-1-mediated PI3K activity is associated with increased phosphor-

ylation of IRS-1 on serine 312, a regulatory site that inhibits signal-

ing, in PCOS myotubes [61]. These observations suggest that in-

creased serine phosphorylation of IRS-1 may contribute to insulin 

resistance in the major target tissue for glucose uptake [59,61].

In two studies, however, PCOS myotubes cultures established 

from affected women with documented insulin resistance in vivo 

[61,62] were no longer insulin resistant. Indeed, Corbould et al. [61] 

found that PCOS myotubes have increased basal and insulin-stim-

ulated glucose transport. Increased abundance of the non-insulin 

regulated GLUT1 glucose transporter accounted for the increased 

rates of basal glucose uptake. In contrast, decreased insulin-stimu-

lated glucose transport persisted in another study of PCOS myo-

tubes [54] from insulin resistant affected women. The reason for 

the discrepancies between these studies in PCOS myotubes is un-

clear. Nevertheless, these observations suggest that both intrinsic 

abnormalities and extrinsic factors in the in vivo environment ac-

count for insulin resistance in PCOS myotubes [61].

The insulin resistance in skin fibroblasts [63] and skeletal muscle 

[64] in PCOS is selective, affecting metabolic, but not mitogenic sig-

naling pathways. Further, there appear to be tissue-specific differ-

ences in insulin sensitivity in PCOS. Insulin action to stimulate an-

drogen production is preserved in ovarian theca cells [43], while 

granulosa-lutein cells are resistant to insulin’s action on glucose 

metabolism [65]. These findings may explain the paradox of the 

persistent reproductive actions of insulin in the face of metabolic 

insulin resistance in PCOS [8].
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In skeletal muscle, there is intriguing evidence that activation of 

mitogenic insulin signaling pathways contributes to resistance to 

insulin’s metabolic actions in PCOS. Both in skeletal muscle biop-

sies acutely isolated from the in vivo environment [64,66] as well as 

in long-term cultures of myotubes established from these biopsies 

[64], there is constitutive activation of the mitogen-activated protein 

kinase (MAPK)-extracellular signal-regulated kinase (ERK) pathway 

in PCOS. Raf-1 abundance is increased and the activity of p21Ras 

is decreased suggesting that altered mitogenic signaling begins at 

the level of Raf-1. Pharmacologic inhibition of MEK1/2 reduces IRS-1 

Serine 312 phosphorylation and increases IRS-1 association with 

the p85 subunit of PI3K in both PCOS and control women. This 

observation suggests that MAPK-ERK pathway contributes to the 

normal feedback inhibition of metabolic insulin signaling through 

the serine phosphorylation of IRS-1. Furthermore, constitutive acti-

vation of this serine kinase mitogenic pathway may contribute to 

metabolic insulin resistance in PCOS [64].

Serine phosphorylation of a key regulatory enzyme of androgen 

biosynthesis, cytochrome P450c17, which catalyzes both 17α-hydro- 

xylase and C17,20 lyase activities, increased its C17,20 lyase activity 

[67]. This observation has led to the hypothesis that the same serine 

kinase contributes to insulin resistance through serine phosphory-

lation of the insulin receptor and, perhaps, IRS-1, as well as hyper-

androgenism through serine phosphorylation of P450c17 [8,68]. 

However, attempts to prove this hypothesis have been unsuccess-

ful to date [69]. Recently, the Rho-associated, coiled-coil containing 

protein kinase/Rho pathway was identified as a candidate pathway 

that can serine phosphorylate both P450c17 and the insulin recep-

tor (Fig. 2) [70].

RELATIONSHIP BETWEEN ANDROGENS AND INSULIN 

It has been long debated whether hyperandrogenemia causes 

insulin resistance or vice-versa. Studies in which insulin levels were 

lowered by diazoxide [71] or insulin sensitivity was improved by 

metformin [72] or the thiazolidinedione, troglitazone [73], showed 

that insulin can directly stimulate ovarian androgen production in 

PCOS. This action appears to be mediated by insulin acting through 

its cognate receptor [74] rather the spillover occupancy of IGF-1 re-

ceptors as previously thought [8]. However, this action is only seen 

at more physiologic insulin levels in the presence of LH suggesting 

that insulin acts more as a co-gonadotropin [43]. It has also been 

shown that insulin can stimulate adrenal androgen production by 

enhancing sensitivity to ACTH [75]. Insulin does not affect ovarian 

function in normal women [76] suggesting that pre-existing poly-

cystic ovarian changes, such as theca cell hyperplasia, are essential 

for insulin-mediated ovarian hyperandrogenism. In addition, low-

ering insulin levels ameliorates, but does not abolish, hyperan-

drogenism suggesting the coexistence of other contributing factors.

Insulin signaling in the brain is also important for the control of 

reproduction as well as body weight in animal models [8]. The se-

lective central nervous system insulin receptor female knockout 

mouse develops disrupted LH release, impaired folliculogenesis 

and obesity [77]. Furthermore, targeted disruption of insulin and 

leptin receptors in hypothalamic and pituitary pro-opiomelanocor-

tin neurons results in hyperandrogenemia, peripheral insulin resis-

tance and reduced fertility in female mice [78]. Conversely, global 

disruption of the pituitary insulin receptor [79] protects against in-

fertility and increases in LH release that occur in female mice with 

diet-induced obesity. These studies in female mice with diet-induced 

obesity [79,80] indicate that insulin signaling in the pituitary and 

ovary are preserved, despite resistance to insulin action in meta-

Fig. 2. Molecular mechanisms of insulin resistance in polycystic ovary syn-
drome (PCOS). The number and binding affinity of the insulin receptor is un-
changed in PCOS, but there is a post-binding defect in insulin signaling result-
ing in marked decreases in insulin sensitivity in classic target tissues, such as 
muscle and adipocytes. There is a more modest defect in the maximal respon-
siveness to insulin of glucose uptake. The signaling defect appears to be due to 
increased inhibitory serine phosphorylation of the insulin receptor and IRS-1 
secondary to intracellular serine kinases. This abnormality results in a selective 
decrease in insulin-mediated IRS-1-associated PI3K activation and resistance 
to insulin’s metabolic action to stimulate glucose uptake. However, mitogenic 
signaling is preserved and there is constitutive activation of kinases in this 
MAPK-ERK mitogenic pathway in PCOS. Furthermore, it appears that kinases in 
this pathway feedback to decrease metabolic signaling by causing inhibitory 
serine phosphorylation of IRS-1. This feedback is increased in PCOS because 
this mitogenic serine pathway is constitutively activated. Serine phosphoryla-
tion of P450c17 increases its activity and it has been postulated that the same 
kinase may inhibit insulin signaling and increase androgen production in PCOS. 
P, phosphate; S, serine; S-S, disulfide bond; Y, tyrosine. Used with permission 
Andrea Dunaif.
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bolic tissue. This finding is another example of tissue-specific dif-

ferences in insulin action that may contribute to the reproductive 

phenotype of PCOS. The observation that insulin sensitizing drugs 

can restore ovulation in women with PCOS [8,81] is consistent with 

a role for central nervous system insulin sensitivity in the control of 

human reproduction, although alterations in gonadal steroid feed-

back or peripheral insulin levels may also contribute to the ovula-

tion-inducing effects of insulin sensitizing drugs [81].

ANDROGENS IN THE PATHOGENESIS OF PCOS

Women with upper-body obesity, who have many features of 

MetS, often have increased androgen production [82,83]. Higher 

levels of endogenous androgens are associated with increased risk 

for MetS in women [84]. Androgens are independent predictors of 

MetS in PCOS [17,18]. It has been hypothesized that androgens are 

a common final path for these metabolic defects in PCOS and up-

per-body obesity [85].

Administration of testosterone to female-to-male transsexuals to 

achieve levels in the normal male range results in decreased insu-

lin-mediated glucose uptake [86] and increased visceral fat mass 

[87]. In normal postmenopausal women, administration of a weak 

synthetic androgen also increases visceral fat [88]. Consistent with 

these observations, blocking androgen action with a receptor antag-

onist in women with PCOS can improve insulin sensitivity, visceral 

adiposity, and dyslipidemia [89,90]. Additional factors contribute to 

insulin resistance, since suppression of androgens improves but 

does not completely restore normal insulin sensitivity in PCOS [91, 

92]. Nevertheless, these findings indicate that there are adverse and 

reversible metabolic actions of androgens in women.

The role of androgens in the pathogenesis of PCOS has received 

renewed attention over the past 15 years [35,41]. The landmark stud-

ies of Dumesic et al. [41] have shown that prenatal androgen expo-

sure can reproduce the reproductive and metabolic features of PCOS 

in non-human primates. Similar effects of prenatal androgens are 

seen in other species, such as sheep [41]. In humans, the putative 

source of androgens would be the fetal ovary or adrenal since the 

placenta is an effective barrier to maternal androgens excess [8]. 

Human experiments of nature support the hypothesis that fetal an-

drogen excess, secondary to congenital adrenal hyperplasia or an-

drogen-secreting neoplasms, can permanently alter LH secretion 

[45]. Androgen levels have not been elevated in cord blood from 

female offspring of women with PCOS in two studies [39,93], while 

a third study did find increased testosterone levels using a less spe-

cific hormone assay [94]. However, these findings do not preclude 

a role for intrauterine androgen excess earlier in gestation as the 

fetal ovary does express the enzymes required for androgen bio-

synthesis, P450c17, as early as the second trimester [95]. It is also 

possible that androgen exposure at later developmental windows 

during childhood and puberty programs features of PCOS. Elevated 

testosterone levels have been found in pubertal daughters of women 

with PCOS [40].

EVIDENCE FOR A GENETIC SUSCEPTIBILITY TO PCOS

Evidence for a genetic susceptibility to PCOS is provided by well-

documented familial clustering of PCOS, with to 40% of reproduc-

tive age sisters affected with hyperandrogenemia [35,37]. Twin stud-

ies have shown a correlation of 0.71 between monozygotic twins 

and 0.38 between dizygotic twins for PCOS [36] suggesting a major 

influence of genetic factors. Although some studies have suggested 

that there is an autosomal dominant mode of inheritance, these 

studies have been limited by a lack of prospective design, a failure 

to examine many first-degree relatives, and an unknown pheno-

type, except in reproductive age women [37]. PCOS is more likely 

a complex genetic disease with at least several major susceptibility 

genes [96].

Hyperandrogenemia is the major underlying reproductive phe-

notype in PCOS families and this finding has been replicated by 

other investigators [97,98]. There are two affected phenotypes in 

sisters of reproductive age: 1) classic PCOS with hyperandrogen-

emia and oligomenorrhea and 2) hyperandrogenemia with regular 

menses. Brothers of women with PCOS have elevations in the ad-

renal androgen, dehydroepiandrosterone sulfate [99], a marker of 

male androgen excess since testicular androgen production is tightly 

regulated by testosterone feedback on the hypothalamus [100]. This 

observation suggests that they have the same defect in androgen 

biosynthesis as their proband sisters with PCOS [99].

Affected sisters with either of the hyperandrogenemia pheno-

types have insulin resistance [101], other MetS risk factors and ele-

vated LDL levels [19]. Our studies indicate that mothers and broth-

ers also have elevated LDL levels and evidence for insulin resis-

tance [102]. Therefore, reproductive and metabolic abnormalities 

track together in PCOS families suggesting that they may reflect 

variation in the same gene or in closely linked genes, be causally 

related, or have a common pathogenesis. Since PCOS is a hetero-
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geneous disorder, there may be genetic mechanisms other than 

hyperandrogenemia and non-genetic (e.g., environmental) factors 

that result in the PCOS phenotype. However, some of the pheno-

typic heterogeneity of PCOS appears to reflect variable expression 

of the same gene since several reproductive phenotypes can occur 

within family members who would be expected to share the same 

genetic basis for the disorder [35].

GENETIC ANALYSES IN PCOS 

Most genetic analyses of PCOS have used candidate gene ap-

proaches. These are hypothesis-based studies where genes are se-

lected because of prior evidence implicating them in disease risk 

[103] and, as a consequence, are limited by known biology. Given 

the diverse reproductive and metabolic disruptions that are fea-

tures of PCOS, there is a wide range of biologic pathways from 

which to select candidate genes [104]. Mutational analyses of the 

insulin receptor gene were negative in PCOS, despite phenotypic 

similarity to the syndromes of hyperandrogenism and extreme in-

sulin resistance [8]. Linkage studies implicating the gene encoding 

cholesterol side change cleavage enzyme, CYP11a, and the insulin 

gene VNTR could not be replicated in larger studies [8,37]. Case-

control association studies of more than 150 candidate genes for 

PCOS have been limited by small sample size, phenotypic hetero-

geneity due to differences in diagnostic criteria, potential popula-

tion stratification, confounding associated disorders such as obe-

sity, limited examination of gene variants within each candidate 

gene, lack of replication and failure to control adequately for multi-

ple testing [8,37]. Thus, the vast majority of genes implicated as as-

sociated with PCOS in these studies require further validation.

We have used the transmission disequilibrium test (TDT), a type 

of family-based association testing to map PCOS susceptibility vari-

ants employing a candidate gene approach [104]. The TDT tests for 

association in the presence of linkage using parent-affected-child 

trios to examine transmitted and non-transmitted parental alleles 

obviating the need for multiplex families [105]. We found strong  

evidence by TDT that an allele of a dinucleotide repeat D19S884 

on chromosome 19p13.2 was linked and associated with the PCOS 

reproductive phenotype [37]. These findings were replicated in an 

independent sample of PCOS families and in a case-control study 

[8,37]. D19S884 is a microsatellite marker that had been selected for 

mapping the insulin receptor but it mapped to intron 55 of the fi-

brillin-3 (FBN3) gene located approximately1 Mb centromeric to 

the insulin receptor gene on chromosome 19p13.2 [96]. The FBN3 

PCOS susceptibility allele is also associated with evidence for insu-

lin resistance in women with PCOS and for pancreatic β-cell dys-

function in brothers, suggesting a sex difference in the associated 

metabolic phenotypes [96]. Fibrillin-3 shares sequence and struc-

tural similarity with fibrillin-1, which is mutated in Marfan syndrome 

[37,96]. Fibrillins are extracellular matrix molecules that modulate 

the bioavailability of members of the TGFβ signaling family. Mem-

bers of this family are important in regulating reproductive and 

metabolic pathways [8]. The expression of fibrillin-3 is decreased 

in PCO [106].

The human HapMap contains common haplotypes and single 

nucleotide polymorphisms (SNPs) that identify these haplotypes, 

so-called tag SNPs [107]. Genome-wide association studies (GWAS) 

map the genome by genotyping these tag SNPs [107]. Population 

stratification can be controlled for in GWAS by the by adjusting for 

axes of ancestry-specific variation [8]. GWAS permit an unbiased in-

terrogation of the entire genome for novel disease susceptibility loci 

and are, unlike candidate gene approaches, hypothesis generating 

[103]. The first PCOS GWAS [108] was in Han Chinese PCOS cases 

diagnosed by the Rotterdam criteria. There was strong evidence for 

association between PCOS and loci on chromosomes 2p16.3, 2p21 

and 9q33.3. A second study by the same investigators [109] reported 

findings on a total sample of 8,226 Han Chinese PCOS cases and 

7,578 controls confirmed the original three loci and identified eight 

new loci at 9q22.32, 11q22.1, 12q13.2, 12q14.3, 16q12.1, 19p13.3, 

20q13.2, and a second independent signal at 2p16.3.

These loci contain several high priority candidate genes for PCOS, 

such as the genes encoding the LH, FSH, and insulin receptors, as 

well as genes associated in previous GWAS with T2D, THADA and 

HMGA2 [8]. As expected, new potential candidate genes for PCOS 

were also identified in pathways regulating transcription, chroma-

tin structure, and cell growth, all plausible pathways for PCOS. 

Known genes located nearby the most significant SNP at 2p16.3 

are GTF2A1L and LHCGR. GTF2A1L (TFIIA-alpha and beta-like 

factor) is germ cell-specific and a highly expressed in adult testis. 

LHCGR encodes the receptor for LH and human chorionic gonado-

tropin. The second SNP at 2p16.3 maps to the FSHR gene, which 

encodes the FSH receptor, another highly plausible candidate gene 

for PCOS given its characteristic abnormalities of folliculogenesis. 

The most significant SNP at 2p21 is in the THADA gene originally 

identified in thyroid adenomas but associated with T2D in a Euro-

pean GWAS [108]. The SNP at 9q33.3 is located within the DENND1A 
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gene, which encodes a domain differentially expressed in normal 

and neoplastic cells (DENN) that can bind to and negatively regu-

late endoplasmic reticulum aminopeptidase-1.

The most significant SNP at 9q22.32 is located in an intron of the 

C9orf3 gene, which encodes C9orf3 protein, a member of M1 zinc 

aminopeptidase family. The SNP at 11q22.1 maps to an intron of 

the YAP1 gene, which encodes the YAP1 protein that is a transcrip-

tional regulator critical in the Hippo signaling pathway. The most 

significant signal at 12q13.2 maps to an intragenic region between 

the RAB5B and SUOX genes, a region implicated in type 1 diabetes 

susceptibility. The most significant SNP at 12q14.3 maps to an in-

tron of the HMGA2 gene, which encodes a transcription factor as-

sociated with a number of traits including T2D. The nearest gene 

to the signal at 16q12.1 is the TOX3 gene, which encodes the TOX3 

protein, a member of the high-mobility-group proteins involved in 

chromatin structure. At 19p13.3, the most significant SNP maps to 

an intron of the INSR gene, which encodes the insulin receptor, a 

long-standing high priority candidate gene for PCOS. The most sig-

nificant signal at 20q13.2 maps to an intragenic region between the 

SUMO1P1 and ZNF217 genes.

Two of the GWAS signals in Han Chinese PCOS were confirmed 

in large, well-designed studies in PCOS women of European origin 

that contained both discovery and replication cohorts [110,111]. The 

finding that the same genetic variants contribute to PCOS suscepti-

bility in Chinese and European populations suggests that these sus-

ceptibility variants were present in an ancestral population prior to 

migration out of Africa [8]. Both studies replicated the association 

between DENND1A and PCOS [110,111]. The first study [110] also 

replicated the association between THADA and PCOS. The second 

study [111] found a significant association between one DENND1A 

variant and testosterone levels suggesting that this trait most likely 

had a genetic basis, consistent with the findings of Legro et al. [35]. 

Furthermore, the classic PCOS phenotype of hyperandrogenism and 

irregular menses but not PCO was associated another DENND1A 

variant [111] suggesting that there is a genetic susceptibility to the 

NICHD but not to the Rotterdam PCOS phenotype.

SUMMARY AND CONCLUSIONS 

In summary, pathways linking metabolic cues with reproductive 

status are highly evolutionarily conserved being present in insects, 

flatworms, birds and mammals [8]. The recognition that the com-

mon reproductive disorder, PCOS, was associated with insulin re-

sistance focused attention on elucidating the mechanisms of this 

association in humans [8]. This research has led to the discovery 

that insulin is also a reproductive hormone and that insulin signal-

ing in the central nervous system is important for normal fertility. 

Moreover, androgens have adverse effects on insulin sensitivity and 

body fat distribution that contribute to the metabolic features of 

PCOS. Androgens may also play a role in the pathogenesis of PCOS 

through programming actions at critical developmental windows.

The reproductive and metabolic features of PCOS cluster in male 

as well as female relatives of affected women suggesting genetic 

susceptibility to these traits. Recent analyses using candidate gene 

as well as agnostic approaches have identified a number of con-

firmed disease susceptibility loci. These loci contain genes that are 

obvious high priority candidates, such as the receptors for LH, FSH, 

and insulin. Loci containing genes implicating new pathways in 

disease pathogenesis have also been mapped. In conclusion, the 

study of mechanisms linking reproduction and metabolism in PCOS 

has provided invaluable insight into novel actions of insulin and 

androgens, which has been translated into a new therapeutic ap-

proach with insulin sensitizing drugs. Furthermore, genetic analy-

ses have implicated additional biologic pathways that may mediate 

this association (Fig. 3).
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