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INTRODUCTION

The Wnt family of proteins plays essential roles conserved from 

flies to human in many developmental processes including cell fate 

specification, polarity, migration and proliferation. It has becoming 

increasingly clear that Wnt proteins activate multiple intracellular 

signaling cascades to achieve the diverse biological functions. One 

such cascade that has been most intensely studied to date involves 

the multi-functional protein β-catenin; this cascade is commonly 

known as the canonical Wnt pathway. In this pathway, extracellu-

lar Wnt proteins (19 members in mammals) engage both the low-

density lipoprotein receptor-related proteins (LRP-5 and LRP-6) [18, 

22,27,31] and the Frizzled family of membrane receptors (11 mem-

bers in mammals), resulting in stabilization of the cytosolic 

β-catenin through inhibition of GSK3β [13,32]. The stabilized 

β-catenin accumulates and transports into the nucleus where it in-

teracts with transcription factors including lymphoid enhancer-

binding factor-1 (Lef-1) and T cell factors (Tcf1-4), leading to tran-

scriptional activation of downstream target genes [7].

For nearly a decade, bone biologists have studied Wnt signaling 

intensely. This strong interest was kindled by the discovery that 

loss-of-function mutations in the Wnt co-receptor LRP-5 causes the 

hereditary human disease osteoporosis-pseudoglioma syndrome 

[8]. Further supporting the role of LRP5 in bone mass regulation, 

multiple gain-of-function mutations in LRP5 were found to cause a 

high-bone-mass syndrome in humans [3,16]. Moreover, loss-of-

function mutations in a secreted Wnt antagonist sclerostin (SOST) 

were discovered to cause rare high-bone-mass syndromes known 

as sclerosteosis and the van Buchem disease [1,2,4,25]. The role of 

Wnt signaling in bone formation, as revealed by the human genetic 

studies, was further demonstrated in mouse genetic models. Spe-

cifically, mice deficient in Lrp-5 (Lrp-5-/-) exhibit low bone mass 

postnatally due to reduced osteoblast proliferation and function 

[14]. Moreover, mouse embryos lacking β-catenin in the skeletal 

progenitors failed to form osteoblasts altogether [6,11,12,23]. Over-

all, genetic evidence from both human and mouse strongly support 

the notion that Wnt signaling positively regulates bone formation.

NONCANONICAL WNT SIGNALING AND OSTEOBLAST 
DIFFERENTIATION

In addition to the β-catenin-mediated pathway, Wnt signaling 

through β-catenin-independent mechanisms, collectively termed 

noncanonical pathways, also plays fundamental roles in the verte-

brate embryo [29]. Most notably, a β-catenin-independent pathway 

that involves the Rac1 and Cdc42 small GTPases, as well as the 

downstream kinase JNK, has been implicated in the directed mi-

gration and intercalation of cells towards the midline during gas-

trulation, a process known as the convergent extension (CE) move-

ment [5,9,10,20]. This pathway is often considered to be similar to 

the planar cell polarity (PCP) pathway extensively studied in Dro-

sophila. In addition, studies in Xenopus embryos have shown that 

Wnt proteins can activate heterotrimeric G-proteins and lead to 

calcium mobilization within the cell [15]. This process, often 

known as the “Ca++ pathway”, is sensitive to pertussis toxin and 

therefore most likely mediated through the Gi subfamily of α sub-

units. Although the vast majority of studies on non-canonical Wnt 

signaling have been on its role on cell polarity and directed move-

ment, recent evidence has revealed that β-catenin-independent 

mechanisms also play significant roles in osteoblast differentiation.

In an effort to uncover downstream effectors through which 

Wnt3a induces osteoblast differentiation, we serendipitously dis-

covered a PKCδ-dependent pathway that contributes to Wnt-in-

duced bone formation [28] (Fig. 1). By comparing the protein pro-

files of ST2 cells treated with Wnt3a versus untreated cells by pro-

teomics analyses, we found that the protein MARCKS (meris-
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toylated alanine-rich C kinase substrate), a prototypic PKC sub-

strate, was robustly phosphorylated by Wnt3a signaling. Subse-

quent studies identified PKCδ as the critical PKC isoform that medi-

ates the Wnt-induced phosphorylation. More importantly, specific 

knockdown of PKCδ inhibited Wnt-induced osteoblast differentia-

tion, and PKCδ-null mouse embryos exhibited a notable delay in 

bone collar formation. We further investigated the upstream mech-

anism through which Wnt3a activates PKCδ and found that hetero-

trimeric G-proteins composed of the Gq subfamily of α subunits 

are important. Because this pathway is insensitive to pertussis 

toxin (which inhibits Gi but not Gq subfamily), it therefore repre-

sents a separate G-protein-mediated pathway distinct from the 

aforementioned Ca++ pathway. Adding to the physiological signifi-

cance of this mechanism, we found that Wnt7b, a ligand selectively 

expressed in osteogenic cells in vivo, indeed activates the PKCδ 

pathway but not the β-catenin pathway, and nonetheless induces 

osteoblast differentiation in cell cultures. Thus, this study has pro-

vided evidence that a PKCδ-dependent mechanism, contributes to 

the osteogenic function of Wnt proteins independent of β-catenin. 

The critical target for PKCδ however is currently unknown.

More recently, Takada et al. [26] discovered that non-canonical 

signaling by Wnt5a promotes osteoblast differentiation while in-

hibiting adipogenesis from ST2 cells (Fig. 1). In particular, the au-

thors showed that Wnt5a activates a kinase cascade CaMKII-TAK1-

NLK which leads to phosphorylation of a histone methyltransferase 

that suppress PPARγ-target gene activation through inhibitory his-

tone methylation of the promoters. Due to the suppression of the 

adipocyte fate, the authors argue that osteoblast differentiation is 

enhanced from the bi-potential mesenchymal progenitor. Because 

CaMKII (calcium/calmodulin-dependent protein kinase II) is acti-

vated by Ca++, the kinase cascade uncovered here could be a part 

of the Ca++ pathway as discussed above. This connection however 

was not directly demonstrated in this study. Overall, this study has 

revealed a mechanism through which Wnt proteins can alter gene 

transcription and hence cell fate decisions through a β-catenin-

independent mechanism.

RAC1-JNK2 SIGNALING AS A CRITICAL COMPONENT 
OF CANONCIAL WNT SIGNALING

Although nuclear localization of β-catenin is a prerequisite for 

canonical Wnt signaling, the underlying mechanism is poorly un-

Fig. 1.  A summary of two recent studies about non-canonical Wnt signaling in osteoblast differentiation. Tu et al. [28] demonstrated a PKCδ-mediated pathway 
that promotes the Runx2-Osterix (Osx) transition through a yet unknown mechanism. Takada et al. [26] showed that CaMKII-mediated activation of a histone meth-
yltransferase (SETDB1-SET domain bifurcated 1) represses PPARγ transactivation of adipogenic target genes, thereby secondarily enhancing osteoblast differentia-
tion. In both cases, the involvement of Frizzled family of receptors (Fz) has not been demonstrated (hence the question mark). In addition, Takada et al. did not pro-
vide evidence for the mechanism upstream of CaMKII. G: heterotrimeric G-proteins composed of α, β and γ subunits. P. T.: pertussis toxin. DAG: diacylglycerol.
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derstood. In a prevailing conventional view, β-catenin is stabilized 

in the cytoplasm to a threshold level that allows passive entry into 

the nucleus. A recent study from our group however challenges 

this view, and provides evidence that nuclear localization is a nec-

essary regulatory step. In particular, Rac1 and JNK2 activation ap-

pears to be required for β-catenin nuclear localization and signal-

ing [33].

Perhaps the most surprising aspect of this finding is that the 

Rac1-JNK signaling module, conventionally believed to function 

exclusively in a non-canonical Wnt pathway, performs a critical 

function in β-catenin signaling. While the role of Rac1-JNK in PCP 

and CE is well established, the new finding highlights the realiza-

tion that the same signaling molecules may perform different roles 

in the cell, depending on their specific interaction partners and 

whether they are activated in a particular protein complex. Indeed, 

we found that β-catenin is present in a protein complex with Rac1 

and JNK1/2 in the cytoplasm of ST2 cells, and Wnt3a selectively 

activates JNK2 in the complex. More importantly, Wnt7b, which 

does not activate β-catenin signaling even though it stabilizes the 

protein, does not activate JNK2 in the Rac1-JNK1/2-β-catenin pro-

tein complex, despite the fact that JNK2 activation can be detected 

in the whole cell lysate.

The role of Rac1 and JNK2 in β-catenin signaling has been con-

firmed by others in a colon adenoma model [21]. There, the authors 

found that loss of the tumor suppressor APC (adenomatous polyp-

osis coli), which robustly stabilizes β-catenin, is insufficient for 

causing β-catenin nuclear localization, whereas addition activation 

of KRAS is effective. The authors further showed that KRAS acti-

vated Rac1 and JNK2, and inhibition of the latter two molecules 

abolished β-catenin nuclear localization and signaling in these can-

cer cells. Thus, the colon adenoma cancer cells appear to have hi-

jacked the same mechanisms used by normal Wnt signaling.

RETHINKING CANONICAL VERSUS NONCANONICAL 
WNT PATHWAYS

Although “canonical” versus “noncanonical” Wnt pathways 

have been customarily used in the Wnt field, the new evidence 

calls for an understanding of these terms. First, it has become clear 

that the same Wnt ligand can activate multiple intracellular path-

ways in the same cell. This was evident in our studies where 

Wnt3a activates both the β-catenin and the PKCδ pathway [28]. The 

divergence in intracellular signaling pathways likely occurs at the 

level of cell-surface receptors, including both the Frizzled family 

members and the atypical receptor kinase Ryk [17,24], as well as 

the orphan receptor tyrosine kinase Ror2 [19]. Second, the same 

Wnt ligand can activate different pathways in different cells. For in-

stance, we’ve shown that Wnt7b fails to activate β-catenin signaling 

in ST2 cells [28,33], but others have shown that it can activate the 

pathway in epithelial and vascular smooth muscle cells [30]. The 

difference could be caused by the presence of different receptors 

in different cells. Third, whereas β-catenin stabilization is clearly 

important, it is not synonymous with β-catenin signaling in the nu-

cleus. Indeed, the additional regulatory steps for β-catenin signal-

ing may well be “non-canonical”, as demonstrated by the involve-

ment of Rac1 and JNK2 [33]. Finally, whereas “canonical” is de-

fined as β-catenin-dependent, the broad category of “non-canoni-

cal pathways” may include an unknown number of cascades that 

remain to be discovered. Thus, when it comes to Wnt signaling, 

one would be wise to keep a very open mind for the years to 

come.
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