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INTRODUCTION

Two types of cells, osteoblasts and osteoclasts, maintain bone 

homeostasis by balancing each other’s function [1,2]. Osteoblasts, 

which build bone, are derived from a mesenchymal progenitor cell 

that can also differentiate into marrow stromal cells and adipocytes 

[3]. Osteoclasts, originating from hemopoietic progenitors of the 

monocyte/macrophage lineage, immigrate into bone via the blood 

stream and resorb mineralized tissues [1,2,4]. Bone through this 

continuous dynamic remodeling provides structural integrity, skel-

etal strength, and a reservoir for hematopoiesis. Elevated osteoclast 

numbers and activity cause osteoporosis, Paget’s disease, tumor 

osteolysis, various arthritis, and periodontal disease. These dis-

eases result in low bone mass and high fracture risk, which can 

also occur as a result of an osteoblast defect. 

To become multinucleated mature osteoclasts, mononuclear pre-

cursor cells fuse together under two critical conditions, one of 

which is to have an ‘optimal density’ of precursor cells [5]. The 

other is an existence of two kinds of cytokines; macrophage-col-

ony stimulating factor (M-CSF), a survival factor, and receptor acti-

vator of NF-κB ligand (RANKL), a differentiation factor [4]. Since 

spleen cells and stromal cells can secrete M-CSF and RANKL, the 

combined of bone marrow and these cells can have the same ef-

fect compared to their treatment [6].

Here I will provide brief description of osteoclast physiology and 

focus on the current understanding of the molecules affecting os-

teoclast differentiation. Enhanced understanding of bone biology 

will require reviewing the known molecular mechanisms involved 

in osteoclastogenesis.

OSTEOCLAST PHYSIOLOGY

To solubilize the mineral component of bone, osteoclasts form a 

resorption space called the sealing zone and make it into an acidic 

micro-environment. To do that, cytoskeleton and the integrin of 

osteoclast are arranged in a ring for tight attachment to the sub-

strate [1]. αVβ3 integrin, an adhesion receptor binding the Arg-Gly-

Asp (RGD) motifs of matrix proteins, is essential for normal osteo-

clast function since mice lacking beta3 integrins fail to spread or 

form sealing zones, thus becoming osteosclerotic [7]. Similarly, 

mice deficient in src, a ubiquitously expressed non-receptor tyro-

sine kinase display osteopetrosis characterized by dysfunctional 

osteoclasts with abnormal sealing zones and αVβ3 localization [8,9]. 

Of note, αVβ3 integrin and c-Fms, the receptor of M-CSF, collabo-

rate in the osteoclastogenic process by sharing the activation of the 

ERK/c-Fos, an immediate-early transcription factors in the osteo-

clastogenesis, signaling pathway [10]. In addition, M-CSF, the c-Fms 

ligand-deficient op/op mice develop severe osteopetrosis as a con-

sequence of total absence of macrophages and osteoclasts [11,12].

The adherent cells are polarized and form ruffled border, which 

is the scaffold for large quantities of vacuolar H+-ATPase, a proton 

pump implicated in the acidification process of osteoclasts. The 

vacuolar, electrogenic H+-ATPase pumps protons across the ruffled 

border causing the ambient pH within the resorptive lacuna to fall 

and dissolving bone mineral, which is hydroxyapatite, a calcium-

phosphate salt, containing hydroxyl ions [13,14]. The pH level at 

the ruffled border can be as low as 3 to 4. 

Targeted disruption of Atp6i, a gene encoding a putative osteo-

clast-specific proton pump subunit (termed OC-116kD, a3, or 

TCIRG1), in mice results in severe osteopetrosis. Atp6i-/- osteo-

clast-like cells (OCLs) lose the function for extracellular acidifica-

tion, but retain intracellular lysosomal proton pump activity [15,16]. 

This allows lysosomal enzymes, including cathepsin K, to cleave 
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collagen and release peptides. Cross-linked bone collagen and the 

peptides containing cross-links used to estimate the rate of bone 

resorption in serum or urine are not degraded by proteinases. A 

mutation in the Atp6i also causes an osteopetrosis in human [17, 

18]. 

Several enzymes including carbonic anhydrase II supply protons 

for the proton pump [19]. In resorbing osteoclasts, carbonic anhy-

drase II is highly expressed, whereas in nonresorbing osteoclasts 

only low basal expression is maintained. Antisense RNA targeted 

against carbonic anhydrase inhibits bone resorption in vitro [20]. 

Similarly, the carbonic anhydrase inhibitor, acetozolamide can in-

hibit osteoclastic bone resorption [21]. Studies in patients with a 

congenital absence of this enzyme and osteopetrosis have shown 

the critical importance of carbonic anhydrase II in osteoclast [22]. 

Cathepsin K, a cysteine protease, was first cloned from rabbit 

and human osteoclasts [23-25]. Cathepsin K knockout mice de-

velop osteopetrosis due to a deficit matrix degradation but not de-

mineralization [26]. Similarly, mutations in the human cathepsin K 

gene have demonstrated an association with a rare skeletal dyspla-

sia, pycnodysostosis [27,28]. Tartrate-resistant acid phosphatase 

(TRAP, encoded by Acp5), an osteoclast differentiation marker, as 

well as cathepsin K also affect the functional activity of osteoclast 

by regulating bone matrix resorption and collagen turnover [29]. 

The CLCN7 (ClC-7gene), a widely expressed chloride transporter 

in osteoclast membrane, acts as a chloride-proton antiporter rather 

than as a chloride channel in osteoclasts [30]. Deficiency of CLCN7 

in osteoclast membrane causes osteopetrosis in mice as well as in 

human [31]. Therefore, osteoclasts need both functional CLCN7 

and vacuolar H+-ATPase in order to acidify the underlying resorp-

tion lacuna, a crucial part of the bone resorption process. Key 

mechanisms involved in bone resorption by osteoclasts differentia-

tion are depicted in the Fig.1. 

Molecular Control of Osteoclast Differentiation 

Prior to discussing transcription factors, it should be mentioned 

the regulation mechanisms of osteoclast differentiation which con-

sists of a RANKL/RANK/OPG system (Fig. 2). Receptor Activator of 

NF-κB (RANK), a type 1 transmembrane protein that belongs to 

the TNF receptor (TNFR) superfamily, is expressed primarily on 

Bicarbonate/chloride

Osteoclast
RANK

Carbonic anhydraseⅡ

HCO3
-

exchanger

TRAP

c-Fms

y

CO2 + H2O        H2CO3

HCO3
- + H+Cl-

Ca2+

αVβ3 integrin
αVβ3 integrin

Ruffled 
border

H+-ATPase

Cathepsin K TRAP

ATP    ADP+PiChloride
channel

Ca2+

Proton pump

H+pH3~4

Resorption lacuna

Lysosomal
enzymesCl-

Ca2+

Bone extracellular matrix

Resorption lacuna

Fig. 1. The mechanisms of osteoclastic bone 
resorption. Several transport systems includ-
ing the H+-ATPase proton pump, Cl/HCO3 ex-
changer and chloride channel are responsible 
for the acidification in the osteoclastic resorp-
tion lacunae. See text for further details.
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Fig. 2. RANKL/RANK/OPG system: the regulation of osteoclast differentiation 
by osteoblasts. RANKL from stromal/osteoblasts binds the RANK receptor on 
osteoclast precursors, thus inducing osteoclast formation whereas OPG inhibits 
osteoclastogenesis. 
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monocytes/macrophages including osteoclastic precursors, acti-

vated T cells, dendritic cells, and mature osteoclasts [32,33]. 

RANKL (receptor activator of NF-κB ligand), also known as 

TRANCE (tumor necrosis factor-related activation-induced cyto-

kine) is a type 2 membrane protein which belongs to the TNF su-

perfamily and is synthesized by stromal cells/osteoblasts and acti-

vated T cells [34]. Osteoprotegerin (OPG), which is related to the 

TNF-receptor-superfamily, is a soluble decoy receptor for RANKL 

and is released from bone marrow stromal cells/osteoblasts as a 

soluble form [35].

By using RANK or RANKL-deficient mice showing similar osteo-

petrotic phenotypes, their association links their critical roles in 

bone remodeling [36,37]. On the contrary, OPG competitively 

binds to RANKL, thereby inhibiting osteoclast differentiation. OPG 

knock-out mice result in osteoporosis secondary to an excess of 

osteoclasts [35,38]. 

The binding of RANKL to RANK stimulates the differentiation of 

osteoclastic precursors into osteoclasts by inducing the expression 

of osteoclastogenesis-specific transcription factors or by activating 

them. The development of mouse genetics has contributed to bet-

ter characterize osteoclast functions by identifying transcription 

factors regulating osteoclast differentiation. 

Mouse mutants lacking transcription factors that function early in 

the lineage are osteopetrotic and lack either macrophages and os-

teoclasts or only osteoclasts. The PU.1, a myeloid- and B-cell spe-

cific transcription factor, regulates the initial stages of myeloid dif-

ferentiation although it is expressed at all stages of osteoclast dif-

ferentiation [39]. PU.1-/- mice exhibit osteopetrotic bone due to an 

arrested development of both osteoclasts and macrophages [39]. 

The PU.1-/- progenitor cells fail to express the RANK as well as c-

Fms and reconstitution of PU.1 in these cells can induce RANK ex-

pression [39,40]. In addition, PU.1 and microphthalmia-associated 

transcription factor MITF, a basic helix-loop-helix-leucine zipper 

protein, collaborate to increase an expression of target genes like 

cathepsin K (Ctsk) and acid phosphatase 5 (Acp5) during osteoclast 

differentiation [41,42]. They recruit p38 mitogen activated protein 

kinase and Nuclear factor of activated T-cells cytoplasmic 1 

(NFATc1) to target genes during osteoclast differentiation [43]. 

Fos, a component of the dimeric transcription factor activator 

protein-1 (AP-1), is a key regulator of osteoclast-macrophage lin-

eage determination [44]. The lack of Fos (encoding c-Fos) causes a 

lineage shift between osteoclasts and macrophages that results in 

increased numbers of bone marrow macrophages [44]. Fosl1 (en-

coding Fra-1) appears to be a transcriptional target of c-Fos since a 

transgene expressing Fra-1, a member of Fos proteins (c-Fos, FosB, 

Fra-1, Fra-2), rescues c-Fos–mutant mice from osteopetrosis in vivo 

[45]. Moreover, the rescue is both gene-dosage dependent and 

bone-development-specific [46]. 

The pleiotropic NF-κB transcription factor is critical for osteoclast 

formation [47,48]. NF-κB is a family consisting of five members: 

‘Rel’ proteins including Rel A (p65), Rel B, and c-Rel (Rel) which 

synthesized as mature proteins and NF-κB1 (p105/p50) and 

NF-κB2 (p100/p52) which are synthesized as large precursors. 

These NF-κB proteins (p105 and p100) become shorter following 

post-translational processing into p50 and p52, respectively. They 

form dimers with Rel family members. 

Both the generation of NF-κB1 null mice (p50-/-) and NF-κB2 

-deficient mice (p52-/-) show an altered immune responses but 

without developmental defects [47]. Unlike single KO mice, the 

NF-κB p50/p52 double Knockout (dKO) mice are osteopetrotic and 

show growth retardation, craniofacial abnormalities with un-

erupted incisor teeth [47]. NF-κB p50/p52 dKO mice do not form 

osteoclasts and FACS analysis of the dKO mice showed a threefold 

increase in RANK-expressing splenocytes suggesting that NF-κB 

p50 and p52 are not required for RANK-expressing progenitor for-

mation, but are necessary for RANKL-RANK-induced osteoclasto-

genesis [49]. In addition, RANKL or TNF failed to induce c-Fos in 

M-CSF-treated NF-κB p50/p52 double knockout splenocytes, 

whereas overexpression of c-Fos rescued the defect in osteoclast 

formation in osteoclast precursors in the absence of RANKL, indi-

cating that c-Fos are downstream of NF-κB [45,47,50]. 

Nuclear factor of activated T-cells cytoplasmic 1 (NFATc1, 

NFAT2)-deficient embryonic stem cells fail to differentiate into os-

teoclasts. The overexpression of constitutively active NFATc1 in 

bone marrow monocytes/macrophages causes precursor cells to 

undergo efficient differentiation even in the absence of RANKL, 

suggesting that NFAT2 is not only indispensable but also sufficient 

for osteoclastogenesis [51]. 

NFAT, a calcineurin- and calcium-regulated transcription factor, 

is a family of transcription factors originally identified in T cells. 

The gene family has five members (NFATc1 through NFATc5). The 

release of Ca2+ activates the calmodulin-regulated phosphatase cal-

cineurin, which binds the N-terminal domain of NFAT2 and de-

phosphorylates it [51,52]. NFAT2 undergoes nuclear translocation 

and regulates the expression of many osteoclast-specific genes, 

such as cathepsin K, TRAP, calcitonin receptor as well as NFAT2 it-
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self, in cooperation with other transcription factors, although the 

components of the transcriptional complex are not always the 

same [53-56]. The C-terminal domain of NFAT2 binds DNA se-

quence specifically and cooperates with AP-1 in vitro [52]. 

Activation of NFATc1 as well as c-Fos by RANKL signaling re-

quires expression of NF-κB p50 and p52, indicating that c-Fos and 

NFATc1 are downstream of NF-κB [45,47,50]. In addition, NFATc1 

seems to be activated by osteoblasts through a Ca2+ oscillation-in-

dependent signal pathway during osteoclastogenesis and this 

clearly differs from that seen during RANKL/M-CSF-induced osteo-

clastogenesis [57]. Recently, it has been found that NFATc1 func-

tions in the osteoclast fusion process via up-regulation of the den-

dritic cell-specific transmembrane protein (DC-STAMP) and the d2 

isoform of vacuolar ATPase V0 domain (Atp6v0d2) through co-ac-

tivation with MEF2 and MITF, which would be followed [58,59]. 

Mice lacking genes that act later in the lineage are still osteope-

trotic but have substantial numbers of osteoclasts which are not 

functional as a result of the absence of a normal ruffled mem-

brane. Mice lacking Mi have morphologically normal osteoclast but 

fail to resorb bone since they are incapable of acidifying the re-

sorptive microenvironment or cannot degrade the bone matrix. 

Stimulation of p38 MAP kinase results in the downstream activa-

tion of Mi/MITF, which controls the expression of genes encoding 

tartrate-resistant acid phosphatase (TRAP) and cathepsin K [60]. 

Moreover, interleukin-1 (IL-1) activates osteoclast-specific genes in-

cluding TRAP and OSCAR, in part, via the MITF pathway [61]. Mi 

mutant osteoclasts are primarily mononuclear and express de-

creased levels of TRAP [41,62]. Mice heterozygous for both the mu-

tant Mi allele and a PU.1 null allele also develop osteopetrosis. The 

size and number of osteoclasts were not altered in the double het-

erozygous mutant mice, indicating that the defect lies in mature 

osteoclast function [41]. The critical molecules regulating osteoclast 

differentiation and function are summarized in Fig. 3.

CONCLUSIONS

Bone remodeling occurring throughout life is an important bio-

logical and medical issue. The discovery of RANKL/RANK and the 

production of several mouse models produced considerable ad-

vancements in osteoclast biology. The importance of several mole-

cules including transcription factors that regulate osteoclast differ-

entiation and function has been highlighted by mouse studies. 

Nonetheless, we still require increasing-knowledge about bone 

physiology given that our current knowledge is at a particularly 

primitive state. Increasing detailed molecular understanding while 

integrating current information of osteoclast differentiation is re-

quired. More studies are needed to help develop novel therapeutic 

drugs that target the formation and bone resorption activity of os-

teoclast. 
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