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Nutritional Status and Cardiac Autophagy
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Autophagy is necessary for the degradation of long-lasting proteins and  nonfunctional organelles, and is activated to promote 
cellular survival. However, overactivation of autophagy may deplete essential molecules and organelles responsible for cellular 
survival. Lifelong calorie restriction by 40% has been shown to increase the cardiac expression of autophagic markers, which 
suggests that it may have a cardioprotective effect by decreasing oxidative damage brought on by aging and cardiovascular dis-
eases. Although cardiac autophagy is critical to regulating protein quality and maintaining cellular function and survival, in-
creased or excessive autophagy may have deleterious effects on the heart under some circumstances, including pressure over-
load-induced heart failure. The importance of autophagy has been shown in nutrient supply and preservation of energy in times 
of limitation, such as ischemia. Some studies have suggested that a transition from obesity to metabolic syndrome may involve 
progressive changes in myocardial inflammation, mitochondrial dysfunction, fibrosis, apoptosis, and myocardial autophagy.
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INTRODUCTION

Autophagy, responsible for a variety of cellular homeostasis 
functions, is necessary for the degradation of long-lasting pro-
teins and  nonfunctional organelles [1,2]. It is activated to pro-
mote cellular survival by degrading unnecessary proteins and 
organelles [3]. When over-activated, however, the process of 
autophagy may deplete essential molecules and organelles re-
sponsible for cellular survival [4,5]. It has been shown that 
lifelong calorie restriction by 40% increases the expression of 
autophagic markers in the heart [6]. This finding implies that 
up-regulation of autophagy by calorie restriction may have a 
protective role on the cardiomyocytes by reducing levels of ox-
idative damage due to aging and cardiovascular diseases.
  One study has shown that a lack of Atg5, a cardiac-specific 
protein that is required for the activation of autophagy, leads 
to cardiac hypertrophy, left ventricular dilatation, and contrac-
tile dysfunction, along with increased levels of ubiquitination 
[7]. This study also demonstrated that a reduced expression 

level of Atg7, a protein necessary for the formation of autopha-
gosome, is responsible for reduced cellular viability and re-
markable features of cardiomyocyte hypertrophy [7]. In addi-
tion, lysosomal-associated membrane protein 2 is thought to 
be involved in the pathogenesis of cardiomyopathy, as its defi-
ciency has been shown to accumulate autophagic vacuoles and 
impair the autophagic degradation of dysfunctional proteins 
[8].
  Overall, these findings unanimously support that cardio-
myocyte autophagy is essential for controlling protein quality, 
and maintaining cellular function and survival [7]. However, 
it should be noted that increased or excessive autophagy may 
be detrimental under some circumstances, including pressure 
overload-induced heart failure [9].

UNDER ENERGY DEPRIVATION CONDITIONS

Autophagy is important for the preservation of energy status in 
response to energy deprivation. Glucose deprivation, a condi-
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tion similar to myocardial ischemia, induces autophagy, while 
pharmacological inhibition of autophagy has been shown to 
reduce cellular survival in cultured cardiomyocytes [10]. Such 
findings collectively support the notion of the cardioprotective 
roles of autophagy. It may serve to maintain energy production 
in response to energy deprivation, including acute ischemia, 
and also may be responsible for the clearance of long-lived pro-
teins and dysfunctional organelles during chronic ischemia or 
reperfusion.
  A state of nutrient deprivation, such as myocardial isch-
emia, induces macroautophagy activation. Macroautophagy 
degrades proteins and organelles, thereby generating fatty ac-
ids and amino acids that are all used for mitochondrial ade-
nosine triphosphate (ATP) production, which promotes car-
diomyocyte survival [10,11].
  Adenosine monophosphate (AMP)-activated protein kinase 
(AMPK) is an energy sensing kinase, taking action when the 
cellular AMP-to-ATP ratio increases. AMPK activates autoph-
agy by activating ULK1, a serine/threonine-protein kinase, and 
by relieving the mammalian target of rapamycin (mTOR)-me-
diated inhibition of macroautophagy [12]. mTOR tightly regu-
lates autophagy by inhibiting the ULK1 kinase complex and ac-
cordingly prevents autophagy activation, along with phosphor-
ylation of the tuberous sclerosis complex (TSC). This signaling 
pathway is accordingly called AMPK-mTOR, and is considered 

critical in regulating the activation of autophagy under circum-
stances such as energy stress and glucose starvation (Fig. 1). The 
TSC-mTOR pathway can function in diabetic hearts. In diabet-
ic hearts, phosphorylation of raptor at both Ser722 and Ser792 
is decreased, and phosphorylation of mTOR at both Ser2448 
and Thr2446 is increased. Also, 4 E binding protein 1 and p70 
ribosomal protein S6 kinase 1, downstream effectors of mTOR, 
are increased [13]. Studies collectively suggest that mTOR com-
plex 1 (mTORC1) activation may be detrimental under cardiac 
energy deprivation, while mTORC1 inhibition is protective be-
cause of energy preservation [14]. In addition, it has been re-
vealed that mTORC1 activation may be responsible for cell 
growth.
  Rheb, a Ras homolog guanosine triphosphate-binding pro-
tein, is inhibited in response to energy deprivation for autoph-
agy activation. In addition, suppression of autophagy activa-
tion by inhibiting Beclin-1 counteracts the protective action of 
Rheb protein for energy deprivation. The action of Rheb-regu-
lated autophagy has been shown to be protective against nutri-
ent starvation and ischemia in cardiomyocytes through the 
preservation of ATP content and the reduction of misfolded 
protein accumulation [14].
  Rheb controls the activation of autophagy partly through 
Atg7, where Atg7 overexpression induces autophagy and sup-
presses Rheb-induced cell death in response to glucose depri-

Fig. 1. Regulation of cardiac autophagy and nutritional status, including overnutrition and undernutrition. mTOR, mammalian 
target of rapamycin; PI3K, phosphoinositide 3-kinase; TSC, tuberous sclerosis complex; AMPK, adenosine monophosphate-ac-
tivated protein kinase; Sirt1, Sirtuin 1.
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vation. In addition, mTORC1 may be involved in regulating 
autophagy through ULK1/2 regulation [15], though its exact 
function remains to be elucidated.
  Under a starvation state, such as in myocardial ischemia, 
AMPK acts as a checkpoint by suppressing cellular growth 
and promoting autophagy activation in cardiomyocytes. 
Therefore, the AMPK-mTOR pathway is certainly a crucial 
regulator of autophagy in such circumstances, as inhibition of 
AMPK reduces autophagy and increases cell death in cardio-
myocytes [10]. This phenomenon was also observed in trans-
genic mice with cardiac-specific expression of a dominant 
negative AMPK. This setting has shown reduced autophagy 
induction in states of fasting in vivo [10], which suggests that 
AMPK-induced autophagy may be controlled by inhibiting 
the expression of mTOR in response to ischemia. One study 
has shown that glycogen synthase kinase (GSK)-3, an enzyme 
involved in gene transcription regulation, protein translation, 
and apoptosis, as well as hexose metabolism, may be a regula-
tor of the mTOR pathway in cardiomyocytes [16]. In addition, 
inhibition of GSK-3β has been reported to be cardioprotective 
[17-20] by inhibiting mTOR signaling and thus activating au-
tophagy via phosphorylation of TSC2 [21,22]. The function of 
GSK-3β also includes the regulation of mTOR during both 
myocardial ischemia and reperfusion [20].
  In response to glucose deprivation, cardiomyocytes initiate 
the nuclear translocation of FoxO1 and FoxO3 to the nucleus 
where the transcription of genes responsible for autophagy are 
activated [23,24]. FoxO3 overexpression in the heart is associ-
ated with increased autophagy, which may be related to the 
development of cardiac atrophy [25], while genetic deletion of 
FoxO3 resulted in the development of cardiac hypertrophy 
[26]. Under a starvation state, Sirtuin 1 (Sirt1), a NAD-depen-
dent deacetylase, is up-regulated [27,28]. Sirt1 mediates the 
deacetylation of FoxO1 and upregulation of Rab7, which func-
tions as the center for mediating increased autophagic flux in 
response to starvation, which in turn maintains left ventricu-
lar function during these events [23].
  Atg13 binds to Atg1 and Atg17 in response to glucose de-
privation, promoting the induction of autophagy at the phago-
phore assembly site. This complex can be found in yeast; the 
mammalian counterpart shows slight differences [29]. During 
starvation, mTOR dissociates and promotes the activation of 
ULK1, which up-regulates autophagy by increasing the phos-
phorylation of mATG13 and focal adhesion kinase interacting 
protein of 200 kD (FIP200). A class III phosphoinositide 3-ki-

nase (PI3K) complex is then recruited to the assembly site and 
Vps34 lipid kinase protein binds to the phagophore via Vps15. 
This complex contains Beclin1/ATG6 and ATG14, which con-
trol the induction of Vps34 lipid kinase protein. It is believed 
that this lipid kinase is an essential protein for recruiting addi-
tional ATG proteins, where they complete the autophagosome 
formation [30].

UNDER NUTRIENT-RICH CONDITIONS

Under nutrient-rich conditions, including obesity, the Akt sig-
naling pathway is activated, and Akt phosphorylates and acti-
vates mTOR kinase and the FoxO family. It has been shown 
that inhibition of the TOR pathway is responsible for cardio-
protection against cardiac dysfunction induced by a high fat 
diet [31]. Activated mTOR interacts with ULK1, the mamma-
lian ATG13, and FIP200 complex. This leads to the phosphor-
ylation of ULK1, which suppresses autophagy (Fig. 1).
  High fat diet-induced obesity activates the Rheb/mTORC1 
pathway and reduces the activation of autophagy in the heart 
of mice [14]. Increased myocardial injury in these mice in re-
sponse to prolonged ischemia suggests that an increased level 
of mTORC1 activity may be associated with an increased sus-
ceptibility. It has been demonstrated that reactivation of au-
tophagy is a critical mechanism underlying the beneficial ef-
fects of mTORC1 inhibition in high fat diet-induced obesity, as 
shown in the failure of pharmacological mTORC1 inhibition 
to reduce ischemic injury by inhibiting Beclin-1. Physiological 
inhibition of the Rheb-mTORC1 signaling pathway during 
myocardial ischemia can be impaired in such conditions as 
obesity and metabolic syndrome, which consequently exacer-
bates myocardial injury. This Rheb-dependent mTORC1 path-
way seems to be critical in regulating the activation of autoph-
agy during ischemia in cardiomyocytes and its dysfunction is 
thereby associated with human diseases.
  Nonobese mice with fructose-induced insulin resistance 
have shown activation of myocardial autophagy [32], while 
Ossabaw swine with excessive nutrition have shown inhibition 
of cardiac autophagy, which may be responsible for myocardi-
al injury [33]. The expression of conjugated Atg12-Atg5 is in-
creased in obesity and metabolic syndrome, as well as in de-
fective hepatic autophagy of obese individuals [34], while unc-
51-like kinase-1, Beclin-1, and LC3 conversion, which are in-
dicative of autophagic activity, all decrease in metabolic syn-
drome, indicating the suppressed formation of nascent and 
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mature autophagosomes. In addition, insulin resistance im-
pairs the action of autophagy as highlighted by the up-regula-
tion of the autophagy inhibitor mTOR in metabolic syndrome. 
On the other hand, Sirt1 is responsible for activating autopha-
gy by inhibiting the expression mTOR [35]; its down-regula-
tion may be associated with the inhibition of autophagy in 
metabolic syndrome. Inhibition of autophagy, in turn, leads to 
accumulation of dysfunctional cellular organelles and proteins 
that thereby result in apoptosis or cell death [36,37].
  Insulin receptors are activated in nutrient-rich conditions, 
which in turn switches on enzyme class I PI3K. This enzyme 
acts to modify the lipid phosphatidylinositol in the plasma 
membrane and leads to Tor up-regulation and autophagy in-
hibition [38-40].

CONCLUSIONS

Increased numbers of autophagosomes have been observed in 
patients with left ventricular hypertrophy [41], hibernating 
myocardium [42], aortic valve stenosis [43], and heart failure 
[44]. Unfortunately, the exact roles of autophagy activation in 
cardiac diseases have not been fully elucidated. It is still am-
biguous whether autophagy is activated to promote cell death 
in these conditions, or to prevent it. The increased expression 
of autophagic proteins and occurrence of autophagic vacuoles 
in chronic myocardial ischemia suggest that autophagy may 
show cardioprotective effects [45]. This cardioprotective role 
of autophagy has also been implicated in the autophagic deg-
radation of dysfunctional organelles, misfolded proteins, and 
the importance of autophagy in nutrient supply and preserva-
tion of energy in times of limitation, such as ischemia. Some 
studies have suggested that a transition from obesity to meta-
bolic syndrome may involve progressive changes in myocardi-
al inflammation, mitochondrial dysfunction, fibrosis, apopto-
sis, and myocardial autophagy [33].
  It is still unclear whether autophagy activation promotes 
cell survival or cell death. Further research on autophagy is 
warranted to clarify whether autophagy plays a beneficial role 
or has a deleterious effect, and to elucidate the exact role of au-
tophagy in obesity-associated cardiac dysfunction.
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