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Low levels of mitochondrial stress are beneficial for organismal health and survival through a process known as mitohormesis. 
Mitohormetic responses occur during or after exercise and may mediate some salutary effects of exercise on metabolism. Exer-
cise-related mitohormesis involves reactive oxygen species production, mitochondrial unfolded protein response (UPRmt), and 
release of mitochondria-derived peptides (MDPs). MDPs are a group of small peptides encoded by mitochondrial DNA with 
beneficial metabolic effects. Among MDPs, mitochondrial ORF of the 12S rRNA type-c (MOTS-c) is the most associated with 
exercise. MOTS-c expression levels increase in skeletal muscles, systemic circulation, and the hypothalamus upon exercise. Sys-
temic MOTS-c administration increases exercise performance by boosting skeletal muscle stress responses and by enhancing 
metabolic adaptation to exercise. Exogenous MOTS-c also stimulates thermogenesis in subcutaneous white adipose tissues, 
thereby enhancing energy expenditure and contributing to the anti-obesity effects of exercise training. This review briefly sum-
marizes the mitohormetic mechanisms of exercise with an emphasis on MOTS-c. 
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The Sulwon Award for Scientific Achievement is the Korean 
Diabetes Association’s highest scientific award and honors an 
individual who has excellently contributed to the progress in 
the field of diabetes and metabolism. The Sulwon Award is 
named after an emeritus professor, Eung Jin Kim, who found-
ed Korean Diabetes Association. Prof. Min-Seon Kim received 
the 13th Sulwon Award at the 34th Spring Congress of Korean 
Diabetes Association & 5th Korea-Japan Diabetes Forum 
which was held as a virtual congress from May 6 to 8 in 2021.

INTRODUCTION

In 2016, the World Health Organization (WHO) reported that 
39% of adults aged ≥18 years were overweight, and 13% were 
obese [1]. Additionally, this report indicated that over 340 mil-

lion children and adolescents aged 5 to 19 were overweight or 
obese [1]. Since 1975, the prevalence of overweight and obesity 
in adults and children has continued to grow every year [1]. A 
rapid expansion in the overweight or obese population con-
comitantly increases the prevalence of obesity-associated dis-
orders such as type 2 diabetes mellitus, hypertension, dyslipid-
emia, heart disease, and certain types of cancer [2,3]. Notably, 
obesity and overweight are preventable and can be alleviated 
by increasing physical activity [4]. Exercise reduces excessive 
fat mass and ultimately helps to maintain a non-obese healthy 
condition [4]. Exercise provides metabolic advantages by in-
creasing oxygen consumption, insulin sensitivity, and fatty 
acid oxidation [5]. These beneficial effects of exercise are 
strongly associated with mitochondrial adaptive changes [6,7]. 
In this review, we will outline the latest knowledge on the role 
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of mitochondria and the mitochondria-derived peptide 
(MDP) mitochondrial ORF of the 12S rRNA type-c (MOTS-c) 
in exercise physiology. 

MITOCHONDRIAL ADAPTATION TO 
EXERCISE 

Exercise induces a variety of changes in mitochondria depend-
ing on exercise intensity, duration, and frequency [8,9]. These 
include changes in mitochondrial biogenesis, mitochondrial 
dynamics (fusion/fission), cristae remodeling, mitophagy, mi-
tochondrial respiration capacity, and oxidative metabolism 
(Fig. 1). Exercise offers metabolic advantages such as increased 
oxygen consumption, insulin sensitivity, and fatty acid oxida-
tion, which are closely linked to mitochondrial functions [5,10]. 

High-intensity physical training enhances mitochondrial 
biogenesis and improves mitochondrial functional capacity 

[11]. Mitochondrial biogenesis is a process that synthesizes 
new mitochondria and is primarily regulated by the peroxi-
some proliferator-activated receptor gamma (PPARγ) coacti-
vator 1-alpha (PGC-1α) [12]. All three isoforms of PGC-1α 
are involved in skeletal muscle mitochondrial biogenesis 
[13,14]. Indeed, PGC-1α overexpression increases mitochon-
drial biogenesis and capillary density in skeletal muscle, which 
leads to increased mitochondrial catabolic metabolism and 
enhanced physical activity [13]. Exercise increases PGC-1α 
expression via the β2-adrenergic receptor and its downstream 
signaling pathways [15]. Additionally, intracellular Ca2+ levels 
increase in contracting muscles and act as a messenger for the 
transcriptional regulation of exercise-related genes. The calci-
um/calmodulin-dependent protein kinase (CaMK) largely 
mediates the regulatory functions of Ca2+ [16]. Physical exer-
cise activates CaMK-II, the dominant isoform of CaMK in hu-
man skeletal muscle [17]. In turn, CaMK-II stimulates mito-

Fig. 1. Mitochondrial changes in response to acute exercise or exercise training. Exercise induces a variety of changes in mito-
chondria depending on the exercise intensity, duration, and frequency. Exercise increases mitochondrial mass through increasing 
mitochondrial biogenesis and increases inner mitochondrial membrane surface through cristae remodeling. These changes lead 
to increased mitochondrial respiration and oxidative metabolism. Exercise also promotes overall mitochondrial fusion and au-
tophagy, which may help to maintain mitochondrial function and homeostasis during exercise-induced stress. MFN1, mitofusin 
1; MFN2, mitofusin 2; OPA1, optic atrophy 1; DRP1, dynamin related protein 1; OXPHOS, oxidative phosphorylation; TCA: tri-
carboxylic acid; NADH, nicotinamide adenine dinucleotide (reduced); FADH2, flavin adenine dinucleotide (reduced). 
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chondrial biogenesis and improves glucose transport by stimu-
lating PGC-1α expression [18-20]. These findings indicate an 
involvement of CaMK-II in exercise-induced mitochondrial 
and metabolic adaptation. 

In addition to mitochondria biogenesis, endurance exercise 
increases the area of mitochondrial inner membranes per mi-
tochondrial volume in human muscles [21]. Moreover, the mi-
tochondrial cristae density correlates with whole body oxygen 
uptake and serves as a marker for mitochondrial respiratory 
capacity [21]. This mitochondrial cristae remodeling may be a 
part of mitochondrial adaptation for increasing mitochondrial 
respiration.

Mitochondrial dynamics (i.e., fission and fusion) play criti-
cal roles in maintaining mitochondrial functions and mor-
phology [22]. Key regulators of these processes are the cytosol-
ic GTPase dynamin-related protein 1 (DRP1) for fission and 
mitofusin 1 (MFN1), MFN2, and optic atrophy 1 (OPA1) for 
fusion [23-25]. Exercise stimulates mitochondrial fusion by in-
creasing the expression of mitofusins (MFN1, MFN2) in hu-
man skeletal muscles [26]. Exercise-induced changes in mito-
chondrial dynamics are mediated via both the PGC-1α and 
estrogen-related receptor α (ERRα) [26]. Moreover, inhibiting 
mitochondrial fusion in skeletal muscles via depletion of 
MFN1/MFN2 impedes exercise performance and shortens ex-
haustion time in mice [27]. Taken altogether, mitochondrial 
fusion may be critical for skeletal muscle adaptation to exercise 
and exercise performance.

Autophagy is a catabolic pathway that recycles intracellular 
components under energy-shortage conditions and clears dam-
aged organs and protein aggregates [28]. Exercise increases mi-
tochondrial autophagy, i.e., mitophagy in skeletal muscle and 
heart tissue through AMP activated protein kinase (AMPK)- 
dependent mechanisms [29]. Exercise-induced mitophagy 
helps to maintain mitochondrial homeostasis by selective re-
moval of damaged/dysfunctional mitochondria [29]. There-
fore, mitophagy is considered an important part of mitochon-
drial adaptation to exercise.

POTENTIAL MECHANISMS OF EXERCISE-
INDUCED MITOHORMESIS 

Hormesis refers to salutary biological adaptations to low con-
tinuous or moderate intermittent doses of stress, which may be 
fatal at higher or chronic doses. Exposure to lower levels of 
stress protects organisms against subsequent greater stress. Mi-

tohormesis, a compound word derived from mitochondria 
and hormesis, was initially demonstrated in lower organisms 
such as Caenorhabditis elegans [30,31]. Exposure to low levels 
of mitochondrial stressors extends life span and retards aging-
related diseases [30,31]. Now, this phenomenon has been ob-
served in mammals [32]. 

Exercise may be a powerful way to induce mitohormesis 
[33]. Potential mechanisms underlying exercise-induced mito-
hormesis are depicted in Fig. 2. During exercise or muscle con-
traction, reactive oxygen species (ROS) are produced in skele-
tal muscle as a byproduct of mitochondrial oxidative phos-
phorylation (OXPHOS) [33]. Chronic ROS overproduction by 
excessive metabolic flux and mitochondrial dysfunction, have 
been implicated in the progression of human diseases such as 
atherosclerosis, diabetes, dementia, and cancer [34-36]. In 
contrast, moderate levels of ROS, such as is generated during 
exercise, may help maintain normal energy metabolism and 
health [33]. Exercise-induced ROS production increases the 
expression of PGC-1α, nuclear respiratory factor 1 (NRF1), 
and mitochondrial transcription factor A (mtTFA)/mitochon-
drial transcription factor A (TFAM) in skeletal muscle [33]. 
Moreover, supplementation with antioxidants attenuates exer-
cise-induced PGC-1α expression, mitochondrial biogenesis, 
and insulin sensitivity in skeletal muscles [37]. In line with this, 
a chronic moderate degree of exercise training increases ROS 
production in the hypothalamus, a controlling center of energy 
balance [38]. Hypothalamic ROS production during exercise 
training is critical for exercise-induced thermogenesis given 
that central administration of antioxidants blocks exercise-in-
duced thermogenesis [38].

The mitochondrial unfolded protein response (UPRmt) is a 
type of adaptive response to mitochondrial stress that occurs 
during recovery from various mitochondrial insults [39-41]. 
Upon mitochondrial stress, unfolded or misfolded proteins ac-
cumulate in the mitochondria and are subsequently degraded 
by mitochondrial proteases and exported to the cytosol [39, 
41]. These proteins activate retrograde signaling involving ac-
tivating transcription factor associated with stress-1 (ATFS-1) 
in C. elegans and c-Jun N-terminal kinase (JNK) and activat-
ing transcription factor 4 (ATF4) in mammals and relay mito-
chondrial stress signals to the nucleus [39,41]. Consequently, 
the transcription of mitochondrial chaperones and proteases is 
stimulated to help resolve mitochondrial proteotoxic stress. 
Evidence suggests that induction of UPRmt improves survival 
and provides a health benefit [39-41]. Interestingly, UPRmt also 
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takes place in neighboring cells or distal tissues through a pro-
cess known as non-cell-autonomous UPRmt [42]. For instance, 
knocking down electron transport chain components in the 
nervous system can trigger UPRmt responses in the intestine 
and extend the life span of C. elegans [42]. It was recently 
shown that high-intensity interval training induces UPRmt in 
the skeletal muscle of aged mice [43]. Moreover, we observed 
that moderate-intensity treadmill exercise induced UPRmt in 
the white and brown adipose tissue (BAT) of young mice [38]. 
These data suggest that UPRmt may underlie the mitohormetic 
effect of exercise. 

Exercise-induced mitohormetic responses may be also me-
diated by myomitokines such as fibroblast growth factor 21 
(FGF21) and growth differentiation factor 15 (GDF15) [44,45]. 
The expression levels of both factors in skeletal muscle are ele-
vated by exercise-induced mitochondrial stress via the inte-

grated stress response (ISR) involving ATF4-C/EBP-homolo-
gous protein (CHOP) pathway [44,45]. They are released into 
the bloodstream to stimulate adipose tissue thermogenesis, li-
polysis, and fatty acid oxidation, leading to alleviation of obesi-
ty and obesity-related metabolic complications [46-48].

Another potential endocrine mediator of exercise-induced 
mitohormesis is mitochondrial DNA (mtDNA)-encoded 
small proteins, called MDPs [49], given that their production 
is increased by exercise and mitochondrial stress and depends 
on ROS levels [38]. The roles of MDPs in exercise physiology 
will be described in detail in the following section.

MITOCHONDRIA-DERIVED PEPTIDES AND 
THEIR BIOLOGICAL ACTIONS

MDPs are small bioactive peptides encoded by short open-

Fig. 2. Mitohormetic responses to exercise. Exercise induces beneficial stress responses in mitochondria in a process known as 
mitohormesis. Exercise increases the production of reactive oxygen species (ROS) and triggers mitochondrial unfolded protein 
responses (UPRmt). However, exercise-induced mitochondrial stress also stimulates the production and release of myomitokines 
(growth differentiation factor 15 [GDF15] and fibroblast growth factor 21 [FGF21]) as well as mitochondrial DNA (mtDNA)-de-
rived peptides (humanin and mitochondrial ORF of the 12S rRNA type-c [MOTS-c]), all of which have beneficial metabolic ef-
fects. PGC-1α, peroxisome proliferator-activated receptor gamma coactivator 1-alpha; NRF1, nuclear respiratory factor 1; mtT-
FA, mitochondrial transcription factor A; JNK, c-Jun N-terminal kinase; eIF2α, eukaryotic initiation factor-2α; ATF4, activating 
transcription factor 4; AP-1, activating protein-1; CHOP, C/EBP-homologous protein; eIF1α-P, phosphorylated eukaryotic initia-
tion factor-1α; ISR, integrated stress response. 
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reading frames (sORF) in mtDNA. To date, eight MDPs have 
been identified, most of which have various cell- and organ-
protective properties [38,50]. Humanin was the first MDP to 
be identified and is encoded by an sORF in the 16S ribosomal 
RNA gene called MT-RNR2 [51,52]. Humanin has been iden-
tified as a cytoprotective and anti-apoptotic factor in Alzheim-
er’s diseases, where it protects neurons from amyloid-β-related 
cytotoxicity [52,53]. Its neuroprotective effects are mediated 
via inhibition of JNK, activation of signal transducer and acti-
vator of transcription-3 (STAT3) and extracellular signal-regu-
lated kinase (ERK) signaling as well as through interactions 
with insulin-like growth factor-binding protein 3 (IGFBP-3) 
[54,55]. Humanin also has beneficial roles in glucose metabo-
lism. Indeed, humanin treatment improves glucose-stimulated 
insulin secretion and peripheral insulin sensitivity [56,57]. An-
other six small humanin‐like peptides (SHLP) are encoded in 
the ORFs within the same 16S rRNA gene in which humanin 
is located [58]. SHLP-2 and SHLP-3 have similar protective ef-
fects as humanin and improve mitochondrial metabolism by 
increasing oxygen consumption rate and reducing apoptosis 
and ROS production [58]. SHLP-2 and SHLP-3 act as insulin 
sensitizers [58]. Central and systemic treatment with SHLP-2 
and SHLP-3 enhance the ability of insulin to inhibit hepatic 
glucose production and to stimulate glucose uptake [58]. Both 
peptides also promote adipocyte differentiation in 3T3‐L1 pre-
adipocytes [58].

A novel MDP named MOTS-c was recently identified [59]. 
Unbiased gene microarray and global metabolomics assays re-
vealed that the folate-methionine cycle is a target of MOTS-c 
function [59]. By inhibiting the folate cycle at the level of 
5-methyl-tetrahydrofolate (5Me-THF), MOTS-c treatment for 
4 hours increases the cellular levels of 5-aminoimidazole-
4-carboxamide ribonucleotide (AICAR) in cultured cells [59]. 
Resultant AMPK activation improves glucose and fatty acid 
metabolism. Seven days MOTS‐c infusion significantly in-
creases glucose clearance and the insulin‐stimulated glucose 
disposal rate in lean mice [59]. This effect may be mediated via 
through increased glucose transporter 4 (GLUT4) expression 
and mitochondrial fusion-induced GLUT4 translocation to 
the plasma membrane [59,60].

Moreover, chronic systemic administration of MOTS‐c for 8 
weeks prevents high-fat diet (HFD)‐induced obesity and insu-
lin resistance [59]. MOTS-c treatment also improved hyper-
glycemia and reproductive outcomes in the mice model of ges-
tational diabetes mellitus [61] and attenuated the development 

of autoimmune diabetes by suppressing T-cells-induced β-cell 
destruction in mice [62]. Subsequent studies have demonstrat-
ed multiple beneficial effects of MOTS-c on bone biology, in-
flammation, pain, vascular calcification, and myocardial re-
modeling where these actions seem to be largely mediated via 
AMPK activation [63-66]. 

EFFECTS OF EXERCISE ON THE 
EXPRESSION OF MDPs 

Exercise-induced changes in MDP expression have been inves-
tigated in humans and mice [67-69]. In humans, acute high-
intensity endurance exercise (cycling) increased plasma con-
centrations of humanin, SHLP-6, and MOTS-c, as well as the 
skeletal muscle expression of humanin and MOTS-c [67-69]. 
Acute exercise-induced elevations in blood and muscle 
MOTS-c expression returned to baseline levels several hours 
later [68]. Exercise-induced changes in MDPs may differ ac-
cording to exercise types. Von Walden et al. [69] showed that 
plasma humanin levels were elevated during post-endurance 
exercise (cycling) but remained unaltered after resistance exer-
cise (leg press and extension). The effects of exercise training 
on MDP expression are less distinct than those of acute exer-
cise [67,70,71]. Twelve weeks of endurance exercise (Nordic 
walk) in older men with prediabetes increased humanin pro-
tein levels in the serum but not in skeletal muscle [70]. Sixteen 
weeks of combined endurance and resistance exercise in-
creased MOTS-c levels in the blood of non-Hispanic breast 
cancer survivors [71]. In contrast, 2 weeks of high-intensity cy-
cling in young men and 8 weeks of endurance exercise in 
women with polycystic ovary syndrome did not alter the ex-
pression levels of humanin, SHLP-2, or MOTS-c in the blood 
and skeletal muscles [72]. In mice, eight weeks of treadmill 
running in lean and obese male mice elevated the plasma and 
skeletal muscle expression levels of MOTS-c [73,74]. We found 
that in young male mice, a moderate-degree of treadmill exer-
cise for 2 weeks increased MOTS-c expression in the hypothal-
amus while acute running until exhaustion had no effect [38]. 

It remains unclear how exercise alters MDP expression. 
Upon acute exercise, humanin protein expression in skeletal 
muscles increases within 30 minutes without changes in its 
transcript levels [67]. Moreover, humanin directly binds to E3 
ubiquitin-protein ligase tripartite motif 11 (TRIM11), imply-
ing the possibility of proteolysis-mediated regulation of huma-
nin [75]. This regulatory mechanism has not been reported for 
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MOTS-c. The expression of MDPs may be also regulated at the 
transcriptional level. Indeed, adiponectin increases MOTS-c 
expression in a sirtuin 1 (SIRT1)- and PGC-1α-dependent 
manner [74], suggesting the involvement of PGC-1α in the 
transcriptional regulation of MOTS-c. 

EFFECTS OF MOTS-c TREATMENT ON 
EXERCISE PERFORMANCE

Among MDPs, MOTS-c is the most associated with exercise. 
While exercise controls MOTS-c expression, MOTS-c controls 

exercise performance. A recent paper reported that chronic 
MOTS-c treatment enhanced physical activity and health span 
in young-, middle-, and old-age mice [68]. Mice treated with 
MOTS-c for 2 weeks displayed increased muscle force and 
stride length, along with increased lean mass and decreased fat 
mass [68]. However, the detailed mechanisms by which 
MOTS-c increases physical performance largely remain to be 
elucidated. Notably, it took more than 1 week to observe the ef-
fect of MOTS-c on exercise performance [68]. Thus, MOTS-c 
may promote adaptive responses to exercise-induced metabol-
ic and oxidative stress in skeletal muscle (Fig. 3A). Supporting 

Fig. 3. Roles of the mitochondria-derived peptide mitochondrial ORF of the 12S rRNA type-c (MOTS-c) in exercise physiology. 
(A) MOTS-c production is increased in exercising skeletal muscle in a reactive oxygen species (ROS)-dependent manner. MOTS-
c translocates to the nucleus to modulate gene expression profiles involved in stress adaptation, mitochondrial biogenesis, and 
mitochondrial dynamics. This mechanism may contribute to enhanced exercise capacity induced by exercise training. (B) Exer-
cise enhances MOTS-c expression in hypothalamic proopiomelanocortin (POMC) neurons, likely through exercise-related myo-
kines, such as interleukin-6 (IL-6). MOTS-c stimulates POMC transcription and β-endorphin production, which in turn increas-
es sympathetic nerve activity innervating the inguinal subcutaneous white adipose tissue, and consequently, the beiging of ingui-
nal subcutaneous white adipose tissue (iWAT) and enhanced thermogenesis are induced. This mechanism may underlie exercise-
induced thermogenesis. AMPK, AMP activated protein kinase; PGC-1α, peroxisome proliferator-activated receptor gamma co-
activator 1-alpha; HSF1, heat shock factor 1; HO-1, heme oxygenase-1; NRF2, nuclear respiratory factor 2; ARH, arcuate nucleus 
of the hypothalamus; 3V, the third cerebroventricle; SNS, sympathetic nervous system.

A

B
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this assumption, MOTS-c treated mice exhibit increased ex-
pression of genes associated with glucose and amino acid me-
tabolism and metabolic stress responses in skeletal muscles 
[68]. Particularly, the expression of heat shock factor 1 (HSF1), 
heme oxygenase-1 (HO-1), nuclear factor erythroid-2-related 
factor 2 (NFE2L2/NRF2) is significantly increased [68] and 
these genes are linked to exercise performance enhancement 
[76-78]. HSF1 is associated with maintaining protein quality 
and metabolism, especially under stress conditions [79]. HO-1 
and NRF2 are associated with antioxidant capacity and main-
tenance of mitochondrial function [76-78]. Therefore, these 
molecules may act downstream of MOTS-c to affect physical 
performance. As shown previously [80], intracellular MOTS-c 
might translocate to the nucleus during exercise, where it may 
possibly modulate the transcription of those genes by interact-
ing with transcription factors and coregulators. Additionally, 
MOTS-c treatment increases the expression of mitochondrial 
biogenesis-related molecules such as PGC-1α, NRF1, TFAM, 
cytochrome c oxidase subunit 4 (COX4), and translocase of 
outer mitochondrial membrane 20 (TOMM20) and induces 
mitochondrial fusion by upregulating fusion-related genes 
such as MFN2 and OPA1 [60]. These mitochondrial changes 
can also contribute to MOTS-c-enhanced physical perfor-
mance. In addition, a recent paper has shown that MOTS-c 
treatment for 8 weeks prevented HFD-induced muscle atrophy 
through suppression of myostatin expression [81].

MOTS-c is secreted from exercising muscles [68,74], and 
extracellular MOTS-c may act on neighboring cells or cells in 
remote organs like hormones [82]. It is yet unclear whether in-
tracellular and extracellular MOTS-c are structurally different. 
Indeed, MOTS-c treatment stimulates fatty acid oxidation and 
glucose uptake in skeletal muscle cells and adipocytes through 
increased AMPK activity [59,83]. At the same time, MOTS-c 
may interact with other metabolic regulators. For example, ad-
iponectin stimulates MOTS-c expression and vice versa [74]. 
These two molecules act synergistically to stimulate adaptor 
protein, phosphotyrosine interacting with PH domain and 
leucine zipper 1 (APPL1), SIRT1, and PGC-1α expression 
[74]. A recent study has demonstrated that exercise training 
and MOTS-c treatment have additive effects on weight loss, 
improvement of insulin resistance and PGC-1α upregulation 
[73]. Thus, MOTS-c and exercise training may have some non-
overlapping effects.

MOTS-c AND EXERCISE-INDUCED 
THERMOGENESIS 

In addition to skeletal muscle, exercise training causes benefi-
cial adaptations to multiple organs, including adipose tissues 
[84,85]. The most prominent finding of exercise-induced 
changes in adipose tissue is ‘beiging’ or ‘browning’ in the in-
guinal subcutaneous white adipose tissue (iWAT) [84,85]. Adi-
pocytes in this fat depot look like classical white adipocytes 
under the conditions of low thermogenic need. However, upon 
increased thermogenic needs induced by cold exposure, HFD 
feeding, and exercise, these cells adopt the features of brown 
adipocytes, i.e., small multilocular fat droplets, high mitochon-
drial density/activity, increased glucose uptake, and increased 
expression of thermogenic genes such as uncoupling protein-1 
(UCP1), PR domain containing 16 (PRDM16), and PGC-1α. 
Exercise-induced changes are relatively less distinct in visceral 
WAT and the primary thermogenic organ BAT [85]. There-
fore, exercise-induced adipose tissue thermogenesis seems to 
occur primarily in the iWAT. On the other hand, skeletal mus-
cle non-shivering thermogenesis also increases during physical 
activity, possibly through sarcoplasmic reticulum calcium 
ATPase (SERCA)-dependent mechanisms [86]. It is thus curi-
ous why adipose tissue thermogenesis should be elevated de-
spite increased skeletal muscle thermogenesis.

The major mediator of exercise-induced thermogenesis is 
thought to be the sympathetic nerves innervating iWAT [87]. 
Other potential mediators are exercise-induced myokines, 
such as irisin [88], myostatin [89], meteorin-like 1 (Metrnl) 
[90], lactate [91], and β-aminoisobutyric acid (BAIBA) [92]. 
MOTS-s can also be considered a myokine involved in exer-
cise-induced thermogenesis. Indeed, intraperitoneal injection 
of MOTS-c for 7 days promotes cold tolerance by stimulating 
non-shivering thermogenesis [93]. Mechanistically, it is thought 
that MOTS-c dramatically upregulates the thermogenic gene 
expression in BAT and induces beiging in the iWAT [93]. In-
terestingly, MOTS-c can stimulate thermogenic activity 
through central mechanisms (Fig. 3B). In our previous study 
[38], moderate-degree exercise training increases MOTS-c ex-
pression in hypothalamic neurons via exercise-related myo-
kine interleukin-6. Moreover, intracerebroventricular admin-
istration of MOTS-c for 28 days induced beiging of iWAT and 
enhanced thermogenic gene expression [38]. These effects oc-
curred via increased β-endorphin production in hypothalamic 
proopiomelanocortin (POMC) neurons and enhanced sympa-
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thetic innervation in iWAT [38]. In this process, hypothalamic 
neuron ROS production may be essential given that inhibition 
of hypothalamic ROS production during exercise training sig-
nificantly inhibits the inducible thermogenic response in 
iWAT [38].

CONCLUSIONS

Exercise is a type of stress to our body as it depletes energy 
stores, stimulates ROS production and induces mitochondrial 
stress responses, such as UPRmt. Mitochondrial stress respons-
es to exercise generally yield beneficial outcomes by increasing 
mitochondrial anti-oxidant and protein-folding capacities 
[33]. These reactions are currently proven in skeletal muscles, 
adipose tissues, and the hypothalamus [38,43,94,95] and might 
also occur in other organs. Future studies are warranted to test 
this possibility. 

MDPs have drawn attention from many researchers as this 
class of peptides has numerous beneficial biological effects on 
the brain, cardiovascular system, glucose/energy metabolism, 
and bones [54,59,70,71]. Moreover, MDPs are short peptides 
consisting of less than 30 amino acids [50], potentially making 
them more therapeutically approachable. In this view, MOTS-
c is a promising target as an exercise mimetic or physical per-
formance enhancer. Indeed, MOTS-c treatment enhances 
physical capacity and metabolic health in both young and aged 
mice [68]. This effect must be confirmed in humans, especially 
in physically inactive elderly persons. In addition, as both 
MOTS-c and antidiabetic drug metformin activate AMPK [59, 
96], it will be worth to test whether MOTS-c/metformin com-
bination treatment will be more effective than monotherapy in 
activating AMPK and improving glucose metabolism. To be 
druggable, MOTS-c might be modified to degradation-resis-
tant form for long-lasting effects. Better insight into the adap-
tive responses to exercise can lead us to challenging interven-
tion for many human diseases, including obesity. 
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