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Adipose tissue (AT) is the main organ for energy storage. Dur-
ing periods of energy demands, such as fasting and physical ex-
ercise, fatty acids (FAs) can be mobilized from fat stores to meet 
energy needs. Lipolysis is the catabolic pathway through which 
stored triglycerides (TGs) are hydrolyzed into FA and glycerol. 
Three lipases work sequentially [1]. First, adipose triglyceride 
lipase (ATGL) hydrolyzes TG into diacylglycerol (DAG) and 
FA. Then, hormone-sensitive lipase (HSL) cleaves DAG into 
monoacylglycerol, which is ultimately converted into FA and 
glycerol by monoacylglycerol lipase. HSL resides freely in the 
cytosol and can associate with lipid droplets. Lipolytic hor-
mones such as catecholamines stimulate lipolysis primarily via 
cyclic adenosine monophosphate (cAMP)-mediated activation 
of protein kinase A (PKA) [2]. PKA then phosphorylates HSL 
serine residues 563, 659, and 660, leading to translocation of 
HSL to a lipid droplet and to its active participation in lipolysis 
[3]. On the other hand, AMP-activated protein kinase 
(AMPK) phosphorylates HSL Ser565 and prevents PKA-me-
diated phosphorylation of this enzyme [3]. In addition to the 
cAMP/PKA signaling cascade, pathways involving cGMP-de-
pendent protein kinase, protein kinase C (PKC), and extracel-
lular signal-regulated kinase (ERK) contribute to activate li-
polysis in adipocytes [4]. 

During the development of obesity, AT expands tremen-
dously and adipocyte size increases to neutralize and store nu-
tritional overload [5]. This process is necessary to protect the 
body from peripheral insulin resistance. However, when the 
adipocytes are eventually unable to store excess lipids, two im-

portant pathological processes in AT are important for the de-
velopment of metabolic diseases: AT inflammation and hyper-
trophy [5]. In obese individuals, AT inflammation due to the 
recruitment of T-cells and macrophages has been shown to 
contribute to insulin resistance by disturbed adipokine balance 
[6,7]. Moreover, large adipocytes increase lipolysis and pro-
mote elevated circulating TGs, non-esterified fatty acids (NE-
FAs) and glycerols. This process is accompanied by redirection 
of FA to the liver, promoting hepatic TG accumulation [8]. 

Vimentin is a type III intermediate filament that comprises a 
type of cytoskeletal element [9]. It is expressed in mesenchy-
mal cells, including adipocytes where it forms lipid droplets, 
stabilizes TG [10], and participates insulin-dependent translo-
cation of glucose transporter type 4 (GLUT4), the predomi-
nant insulin-responsive glucose transporter isoform, to the 
plasma membrane [11]. Using a proteomics approach, vimen-
tin has been considered to participate in lipolysis through di-
rect interactions with HSL [10], in addition to its interaction 
with β-adrenergic receptors and ERK signaling [12]. A recent 
study showed that mice lacking vimentin (Vim−/−) had less fat 
accumulation compared with wild-type mice, suggesting that 
vimentin is important for normal fat accumulation in the body 
[13]. However, there have been no animal studies that verified 
the role of vimentin in diet-induced obesity and type 2 diabe-
tes mellitus. 

In the article titled, “Vimentin deficiency prevents high-fat 
diet-induced obesity and insulin resistance in mice,” Kim et al. 
[14] investigated whether vimentin deficiency affected high-fat 
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diet (HFD)-induced obesity and glucose intolerance. After 10 
weeks of HFD feeding, Vim−/− mice showed reduced increase 
in body weight and less epididymal white AT and subcutane-
ous AT compared to wild-type mice. Interestingly, epididymal 
Vim−/− adipocytes were bigger than wild-type cells and serum 
TG and NEFA levels were higher in Vim−/− mice. These results 
suggested that Vim−/− adipocytes in epididymal fat appear to 
have improved function with respect to storing lipids and de-
creasing lipolysis. The authors further revealed that vimentin 
deficiency reduced trafficking of cluster of differentiation 36 
(CD36), a major FA translocase, to the plasma membrane in 
adipocytes, indicating that vimentin plays a role in trafficking 
of CD36 and regulates FA uptake of adipocytes. In vimentin-
null AT, active forms of HSL phosphorylation (HSL phosphor-
ylation on Ser563, Ser659, and Ser660) were reduced without 
changes in the expression of FA synthase or perilipin, two ma-
jor markers for lipogenesis. The authors also evaluated if vi-
mentin affected insulin resistance in HFD-fed obese mice. 
Vim−/− mice had significantly lower fasting glucose levels and 
improved glucose tolerance compared to control mice. For the 
mechanism, vimentin deficiency resulted in reduced expres-
sion of GLUT4 in the plasma membrane in adipocytes, al-
though the role of vimentin in different regulatory mecha-
nisms should be studied. 

CD36, a multifunctional membrane receptor, is a key facili-
tator of FA uptake and subsequent TG storage in adipocytes 
[15]. CD36 localization at the plasma membrane was shown to 
be critical for its activity in FA uptake [16]. CD36 deletion in 
3T3-L1 adipocytes decreased lipolysis with altered signaling in 
the cAMP/PKA and ERK pathways [16]. In humans with obe-
sity and type 2 diabetes mellitus, subcutaneous AT CD36 ex-
pression was upregulated, whereas visceral AT CD36 expres-
sion was only increased in type 2 diabetes mellitus [17]. CD36 
deficient mice showed reduced adiposity and improved insulin 
resistance [18]. Kim et al. [14] showed that vimentin-null adi-
pocytes have less membrane-localized CD36 and thus less FA 
uptake via CD36. This deficient CD36-mediated signaling may 
contribute to decreased lipolysis via reduced phosphorylation 
of HSL. Thus, we can conclude that vimentin should be noted 
as a new therapeutic target for diet-induced obesity and diabe-
tes through the regulation of CD36 trafficking and FA uptake 
in adipocytes. Further studies are needed to elucidate the 
mechanism by which vimentin is involved in membrane local-
ization of CD36.
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