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The relative insufficiency of insulin secretion and/or insulin action causes diabetes. However, obesity and type 2 diabetes mellitus 
can be associated with an absolute increase in circulating insulin, a state known as hyperinsulinemia. Studies are beginning to eluci-
date the cause-effect relationships between hyperinsulinemia and numerous consequences of metabolic dysfunctions. Here, we re-
view recent evidence demonstrating that hyperinsulinemia may play a role in inflammation, aging and development of cancers. In 
this review, we will focus on the consequences and mechanisms of excess insulin production and action, placing recent findings 
that have challenged dogma in the context of the existing body of literature. Where relevant, we elaborate on the role of specific sig-
nal transduction components in the actions of insulin and consequences of chronic hyperinsulinemia. By discussing the involve-
ment of hyperinsulinemia in various metabolic and other chronic diseases, we may identify more effective therapeutics or lifestyle 
interventions for preventing or treating obesity, diabetes and cancer. We also seek to identify pertinent questions that are ripe for 
future investigation.
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INTRODUCTION

Insulin is a peptide hormone secreted by pancreatic β-cells to 
regulate glucose homeostasis. Since its discovery in Canada in 
1921 [1], insulin has saved millions of lives. However, in recent 
years, many studies have demonstrated that excess insulin (also 
known as hyperinsulinemia) might play a complex role in 
multiple diseases. In this review, we will focus on the cause-ef-
fect relationships between hyperinsulinemia, aging, obesity, 
inflammation, and cancers. As several complementary reviews 
have extensively discussed the importance of hyperinsu-
linemia in obesity [2-4] and cancer [5] separately, we will focus 
on expanding and integrating these concepts together. We will 
also discuss the potential molecular mechanisms mediating 
the effects of hyperinsulinemia on these disorders. We will dis-
cuss the limitations of the current evidence base and areas for 
future study. We hope that by targeting hyperinsulinemia, we 

may develop new therapeutic strategies for the prevention 
and/or treatment of obesity, diabetes, and cancers.

INSULIN AND INSULIN SIGNALING 
MECHANISMS IN THE CONTROL OF 
METABOLISM AND LIFESPAN

In order to better understand the (patho)physiological effects 
of insulin, we must first consider its evolution. Insulin and its 
related peptides are ancient, evolutionarily conserved, anabolic 
neurohormones [6-9]. Humans have one INS gene, two insu-
lin-like growth factor genes (IGF1, IGF2), several insulin-like 
peptides, and relaxins [10-13]. Mice have two insulin genes. 
Mice lacking either Ins1 or Ins2 have normal glucose, suggest-
ing a genetic compensation [14,15], but loss of both insulin  
genes is lethal [15,16]. Ins1 originated from a reverse-tran-
scribed and partially processed Ins2 mRNA transposition [17] 
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and is restricted to β-cells where it contributes 1/3rd of insulin 
synthesized and secreted into circulation [18]. Ins2 is the an-
cestral gene that produces 2/3 of the insulin mRNA in islets 
[19,20], as well as trace amounts in the thymus [21] and brain 
[20]. Using mice as a genetically tractable model for mammali-
an insulin physiology has provided insight into obesity, diabe-
tes, cancer, and other aging-associated diseases where changes 
in insulin levels and signaling are implicated.

Insulin and IGF have many similarities but also have key dif-
ferences in their function and downstream signaling mecha-
nisms. Insulin is recognized for its acute metabolic roles, 
whereas the IGFs are more commonly studied in association 
with growth, aging, and cancer [22]. Emerging evidence points 
to important ‘growth factor’ roles of insulin [20,23-32], as well 
as ‘metabolic’ roles of IGF1/IGF2 [33,34]. A conserved signal-
ing pathway is largely shared between insulin and IGFs; thus, it 
is difficult to clearly separate the effects of insulin and IGF1/
IGF2. Unfortunately, the majority of studies in the literature, 
especially those reporting in vitro cell culture experiments, 
have used insulin concentrations that are many times higher 
than those found physiologically, confounding interpretation 
of these studies and clouding the field. Insulin binds to its re-
ceptor tyrosine kinase, insulin receptor (INSR) with an IC50 of 
0.89 nM and to the growth factor 1 receptor (IGF1R) with an 
IC50 of 30 to 400 nM [35-37]. INSR/IGF1R can form heterodi-
mer hybrid receptors that have a higher affinity for IGF1 than 
insulin [38-40]. Binding to the INSR and related receptors 
leads to tyrosine kinase autophosphorylation and binding of 
adapter proteins, called insulin receptor substrates (IRS1, IRS2, 
IRS3, IRS4), which attract the lipid kinase, phosphoinositide 
3-kinase (PI3K). Phosphorylation of PI(4,5)P2 to PI(3,4,5)P3 
by PI3K activates the PH-domain-containing kinase 3-phos-
phoinositide dependent protein kinase 1 (PDPK1), which in 
turn phosphorylates serine/threonine kinase AKT serine/thre-
onine kinase 1 (AKT) [41]. Insulin-mediated activation of 
AKT leads to the phosphorylation of multiple signaling inter-
mediates including the forkhead family box O (FOXO) family 
of transcription factors, glycogen synthase kinase 3 (GSK3), 
and the mammalian target of rapamycin complex 1 (mTORC1) 
complex [41,42]. Insulin signaling can also activate the Ras-
family GTPase (Ras)–mitogen-activated protein kinase 
(MAPK)/extracellular signal-regulated kinase (ERK) phos-
phorylation cascade via the adapter proteins SHC-transform-
ing protein 1 (SHC1), growth factor receptor-bound protein 2 
(GRB2), and son of sevenless (SOS) [41]. There are multiple 

levels of cross talk between the major ‘arms’ of insulin signal-
ing, as well as cross talk to other signaling networks [38-40,43]. 
When investigated individually, virtually all aspects of the ex-
tended insulin signaling network have been linked to diabetes 
when strongly suppressed, to longevity when mildly sup-
pressed, and to cancer when overactive [31,38,44-47].

We have learned much about the role of insulin and insulin 
signaling in longevity by studying relatively simple model or-
ganisms. INSR or IRS mutant flies live 50% longer than wild-
type flies [48,49]. Mice lacking IRS1 have increased lifespan 
compared to wildtype controls [50,51]. Studies in humans have 
linked insulin and IGF1 to longevity [9], with lower levels of 
these factors associated with longer life [52,53]. Mice with het-
erozygous loss of Igf1r were reported to have increased longev-
ity [54], but this has been questioned [55]. Reducing circulat-
ing IGF1 by liver-specific gene ablation in female mice increas-
es mean lifespan, but not maximum lifespan [56]. These obser-
vations and others demonstrate that IGF1 plays important 
roles in longevity [57], but also suggest that factors other than 
IGF1, such as insulin, may be important in some contexts. 
Mice lacking adipose tissue Insr are leaner and live longer than 
controls [58-60], but Insr loss also impacts IGF signaling via 
hybrid receptors [24,26,61]. Because the insulin and IGF li-
gands can (promiscuously) target receptor hetero dimers and 
each other’s homodimers, the receptor ligands must be manip-
ulated directly to understand insulin’s role in metabolism and 
lifespan. Indeed, we found genetically reduced insulin produc-
tion extended lifespan in mice [44]. In liver, gene networks re-
lated to cellular metabolism, circadian rhythm, proteostasis, 
and cell-cycle progression were altered in mice with reduced 
insulin [44]. Thus, insulin/insulin signaling is a positive regula-
tor of energy storage and is a negative regulator of longevity in 
all animals studied to date (Fig. 1) [9,54,57,62,63]. Manipula-
tions that reduce plasma glucose levels, and thereby circulating 
insulin, also extend lifespan [64], but it remains unclear 
whether the glucose effects are independent of insulin. Emerg-
ing evidence links hyperinsulinemia and/or hyperglycemia to 
mortality after infections, including severe acute respiratory 
syndrome coronavirus 2 [65,66], but these concepts also require 
further mechanistic studies to determine causality.

HYPERINSULINEMIA PLAYS A CAUSAL 
ROLE IN OBESITY

The range of circulating insulin is relatively broad in healthy 
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individuals and peaks approximately 30 minutes after glucose 
administration, remaining elevated above baseline for over 2 
hours. Studies that tracked insulin over 24 hours found that 
fasting insulin averaged 60 pmol/L while post-meal insulin 
peaked at 420 pmol/L [67]. In individuals with obesity, fasting 
insulin was 140 pmol/L while post-meal insulin reached 840 
pmol/L [67]. Fasting insulin of >85 pmol (12.2 mIU/L) has 
been proposed as a cutoff to define hyperinsulinemia and is 
sufficient to mark the pathological state of metabolic syndrome 
[68]. In all conditions, insulin levels are thought to be at least 
approximately 10 times higher in the pre-hepatic portal circu-
lation and in the pancreas [69,70]. Conceptually, hyperinsu-
linemia can be defined as excess insulin relative to what is re-
quired to maintain normal glucose. Hyperinsulinemia can 
manifest as an elevation in basal/fasting circulating insulin 
and/or as a potentiation of post-prandial insulin secretion 
[71,72], and can result from insulin hypersecretion or reduced 
systemic insulin clearance, or both [73-76]. It is critical to un-
derstand which type of hyperinsulinemia is being studies when 
examining correlations with and causal effects on various 
(patho)physiological parameters.

Relative insulin insufficiency defines diabetes, but long be-
fore diagnosis of type 2 diabetes mellitus (T2DM), excess insu-
lin predicts the people who will progress to disease [77,78]. 
The coincidental timing of hyperinsulinemia, insulin resis-
tance, and obesity has led to ‘chicken and egg’ questions and 
extensive debate [2-4,79]. Conventional dogma places excess 
adiposity and insulin resistance as initial causes, with hyperin-
sulinemia as a consequence. The commonly accepted model 
holds that obesity causes hyperinsulinemia via insulin resis-
tance. The insulin resistance is thought to arise primarily from 
the spill over of lipids into liver, muscle, and other tissue (i.e., 

ectopic lipid deposition), from adipose tissue that has exceeded 
its capacity for storage [4,41,80]. The obesity-induced insulin 
resistance is then thought to lead to hyperglycemia which then 
drives the pancreatic β-cells to secrete more insulin to main-
tain glucose homeostasis, causing hyperinsulinemia. However, 
clinical observations cast doubt that this paradigm is applica-
ble in all cases, especially when hyperglycemia is often one of 
the last clinical features in the progression from obesity to 
T2DM and when insulin resistance is circularly defined as un-
explained hyperinsulinemia [81]. Basal hyperinsulinemia has 
been documented to occur prior to insulin resistance, obesity 
and/or hyperglycemia [24,71,82-92]. Analysis of 1,168 non-di-
abetic adolescents and adults found that the upper tertile of in-
sulin hypersecreting individuals showed significantly in-
creased fat mass, worse lipid profile and impaired glucose tol-
erance independent of clamp-measured insulin resistance, 
compared to the lower tertiles [93]. Obesity is associated with 
increased basal and post-prandial insulin secretion even in 
subjects without insulin resistance [94]. Moreover, injected in-
sulin is sufficient to induce insulin resistance in humans, com-
pared with glycemia matched controls [95]. Epidemiological 
studies show that children with hyperinsulinemia had an in-
creased risk of developing obesity later in life [82,92]. These 
observations cast doubt on the primacy of classically-defined 
insulin resistance in the pathogenesis of obesity and T2DM. 
From an endocrinological perspective, hormones are known 
to desensitize their receptors and post-receptor signaling pro-
cesses when present in excess. Genetic downregulation of in-
sulin production illustrated that hyperinsulinemia is a cause, 
and not just the consequence, of insulin resistance and elevated 
fasting glucose in old age [44]. Revisiting the concept of insulin 
resistance is beyond the scope of this review, but will be the 
subject of a forthcoming article.

The human genetics of obesity are complex but provide in-
sight into cause-and-effect and the role of specific components 
of insulin signaling. Genome-wide association study (GWAS) 
studies have shown that the vast majority of the common varia-
tion underlying body mass index (BMI) is related to food intake 
centers in the brain [96]. FTO (FTO alpha-ketoglutarate depen-
dent dioxygenase) is associated with hyperinsulinemia, among 
many other possible mechanisms [97]. INSR and other compo-
nents of the insulin signaling pathway are associated with lipid 
and adiposity-related traits (www.ebi.ac.uk/gwas). Moreover, 
the INS locus itself is associated with anthropometric traits in-
cluding height, birth weight, fat-free mass, and waist-hip ratio, 

Fig. 1. Trade-offs with insufficient and excessive circulating in-
sulin levels.
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in addition to both type 1 diabetes mellitus (T1DM) and T2DM 
(www.ebi.ac.uk/gwas). The INS locus is complex, and how 
these polymorphisms affect insulin secretion remain unclear, 
but are beginning to be investigated. Mendelian randomization 
studies support a causal role for genetically driven glucose-
stimulated hyperinsulinemia in obesity [98], although studies 
also support a causal contribution of BMI to fasting insulin and 
insulin resistance [99]. It is likely that there is bi-directional 
causality and the results depend on which single-nucleotide 
polymorphisms and which anthropomorphic traits are chosen 
for analysis. Studies of rare human genetic conditions also sup-
port a causal role for insulin action in obesity. For example, in-
creased global insulin sensitivity in humans with phosphatase 
and tensin homolog (PTEN) mutations causes obesity [100], 
whereas humans with INSR loss-of-function mutations (e.g., 
Donohue syndrome) have intrauterine growth restriction and 
reduced subcutaneous fat [101]. Together, these studies point 
the possibility that genetic variation in insulin and/or insulin 
signaling contributes to human obesity.

Multiple environmental and inherited factors can drive in-
sulin hypersecretion and reducing these burdens has been 
shown to prevent or ameliorate disease. Thomas et al. [92] and 
Corkey [102] proposed environmental/diet factors that can 
drive primary hyperinsulinemia. Reducing fasting insulin with 
low carbohydrate diets, caloric restriction, or time-restricted 
feeding improves insulin sensitivity in mice and humans and 
may lead to T2DM remission [103-106]. Bariatric surgery si-
multaneously corrects hyperinsulinemia and diabetes, inde-
pendent of weight loss, insulin sensitivity, or glucose [3]. How-
ever, even clinical studies with sensitive measures are often 
correlative, making direct experimental manipulation of insu-
lin the most robust way to test the hypothesis that hyperinsu-
linemia drives chronic diseases, including diabetes, obesity, 
and even cancer. Indeed, blocking insulin secretion with di-
azoxide or octreotide causes weight loss in both rat model and 
human studies, supporting a causal role in obesity for excess 
insulin [107-112]. Clinical trials have shown that prolonged el-
evation of exogenous long-acting insulin analogues causes 
weight gain [113]. Collectively, there is strong clinical evidence 
in humans, both loss-of-function and gain-of-function studies, 
that support a primary, causal role for hyperinsulinemia in 
obesity and associated traits [2,71,79,92,102].

Complementing clinical studies, engineered mouse models 
provide genetic certainty that manipulation of insulin produc-
tion causes changes in body weight and adiposity [2]. In an 

initial study, Mehran et al. [20] found that mice with only one 
allele of Ins1, which significantly reduced fasting insulin levels, 
were protected from high-fat diet-induced obesity and adipo-
cyte hypertrophy compared to control mice with two alleles of 
Ins1 in an Ins2-null genetic background. Energy expenditure 
was increased, but there was no difference in measured food 
intake [20]. Follow-up studies identified upregulation of oxida-
tive phosphorylation complex proteins and uncoupling protein 
1 in white adipose tissue [114]. Templeman et al. [30,115] 
made similar observations by modulating Ins2 gene dosage in 
mice without Ins1. When experimental Ins1−/−;Ins2+/− mice 
were implanted with insulin releasing pumps, body weight, 
white adipose tissue mass and adipose tissue hypertrophy were 
partially restored [30]. D’Souza et al. [116] showed that obesity 
driven by leptin deficiency also requires hyperinsulinemia. 
Page et al. [117] used a conditional Ins2 partial ablation and 
the resulting modest reduction in insulin secretion to induce 
weight loss in mice that were already obese. In all of these ex-
periments, changes in circulating insulin that were too small to 
adversely affect glucose homeostasis were nonetheless able to 
significantly alter adiposity. Our studies agree with work from 
other groups showing that mouse models with reduced insulin 
secretion are protected from diet-induced obesity [118] and 
that Insr deficiency in adipose tissue prevents diet- and age-in-
duced obesity [26,59,119,120]. Multiple lines of evidence dem-
onstrate that maximal adipocyte hyperplasia and hypertrophy 
require fully intact insulin action.

The biochemical rationale for insulin-driven obesity and in-
sulin resistance are established. Insulin is a robust stimulator of 
lipid transport into adipocytes, adipocyte differentiation and a 
potent inhibitor of lipolysis in adipose tissue [121]. The specific 
mechanisms by which hyperinsulinemia affects adiposity re-
main understudied. One of the main effects of insulin on adi-
pocytes is to promote lipogenesis through stimulation of fatty 
acid uptake and triglyceride synthesis [2,122,123]. Insulin can 
also inhibit lipolysis and induce the expression of transcription 
factors such as CCAAT/enhancer-binding protein β to modu-
late lipid uptake and storage [2,124,125]. More acute, inducible 
reduction of insulin production in adult mice had a specific ef-
fect on visceral adipose tissue and a reduction in the protein 
abundance of the human lipodystrophy gene, caveolae associ-
ated protein 1 (Cavin1) [117]. Therefore, excess insulin signal-
ing in adipocytes can lead to excess fat accumulation and to 
obesity. 

Insulin may also regulate peripheral lipid metabolism 
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through the brain [119,124,125]; however, the actions of cen-
tral insulin signaling on food intake and body weight remain 
controversial. For instance, insulin administration by intra-
cerebroventricular injection increased fat mass and adipocyte 
size in some studies [26,119], but decreased food intake and 
body weight in others [126-130]. Moreover, some researchers 
observed that hypothalamic Insr deletion was accompanied by 
hyperphagia and fat mass increase [126,131,132], while some 
found the deletion caused a reduction in white adipose tissue 
mass [130]. The reasons for these inconsistencies are unclear. 
Likely, the direction of the effects depends on the specific brain 
regions in which insulin signaling is inhibited or activated 
[124,126]. 

EFFECTS OF HYPERINSULINEMIA ON 
INFLAMMATION

Inflammation is associated with metabolic dysfunction such as 
obesity and insulin resistance [133]. Several studies suggest 
that obesity-associated, chronic, low-grade inflammation can 
cause insulin resistance in metabolic tissues like liver, muscle, 
and adipose tissues [134-136]. However, insulin resistance can 
also precede inflammation [137], can occur independently of 
inflammation [138], and anti-inflammatory treatments have 
not been shown to cause weight loss in humans. The root cause 
and the ultimate consequences of inflammation in context of 
metabolic health remains to be fully understood. Nevertheless, 
there is a strong association between hyperinsulinemia and 
chronic low-grade inflammation. Modest hyperinsulinemia in 
experimental animals is sufficient to cause adipose tissue in-
flammation [139]. Mice with both chronically and acutely re-
duced insulin production exhibit a gene expression profile that 
suggests impaired innate immunity in adipose tissue [20,117]. 
Insulin infusion during euglycemic hyperinsulinemic clamp 
increases pro-inflammatory interleukin 6 (IL-6), tumor necro-
sis factor alpha (TNF-α), and monocyte chemoattractant pro-
tein-1 (MCP-1) in human serum and adipose tissue [140-143]. 
Thus, both human and mouse studies support the concept that 
hyperinsulinemia is necessary and sufficient to promote in-
flammation. 

Hyperinsulinemia can contribute to tissue-specific inflamma-
tion in multiple ways. For example, we and others have shown 
that hyperinsulinemia leads to hypertrophic and unhealthy 
adipocytes [20,119,144,145], which can attract macrophages 
and other immune cells [146-149]. Hyperinsulinemia may also 

promote inflammation by direct effects on immune cells. Insr 
mRNA is expressed in multiple immune cell types, based on 
single-cell RNA sequencing data (Fig. 2A), suggesting that at 
least some effects of hyperinsulinemia may be direct. Previous 
studies have identified INSRs mRNA or protein in T-cells, B-
cells, neutrophils, monocytes, macrophages, and natural killer 
(NK) cells [150-153]. INSR expression in murine T-cells in-
creased with activation [151,152], suggesting a role in T-cell 
function. T-cells with specific Insr gene knockout exhibit re-
duced production of interferon gamma (IFNγ), IL-4, and IL-
10 upon activation, as well as diminished cytotoxicity [151, 
153]. Insulin, acting through INSR, is also required for maxi-
mal T-cell proliferation and its loss leads to apoptosis sensitivi-
ty and defective differentiation toward the T helper cell 1 (Th1) 
and Th17 lineages [151,154]. Similarly, AKT inactivation limits 
proliferation and the production of IL-2, IL-4, and IFNγ in 
CD4+ T-cells [155]. Collectively, these studies suggest that in-
sulin signaling regulates T-cell cytokine production and prolif-
eration. T-cell activation requires glucose and glutamine me-
tabolism [153,156-158]. Therefore, it is possible that insulin 
signaling controls activated T-cell functions through regula-
tion of glucose metabolism (e.g., stimulating glycolysis and 
regulating glucose or amino acid transporters expression on T-
cells). Although no studies have directly addressed how hyper-
insulinemia affects T-cell function, it seems likely based on the 
above evidence that hyperinsulinemia would be pro-inflam-
matory. Obesity-induced hyperinsulinemia has been correlat-
ed with reduced regulatory T-cell proportions [153,159,160]. 
Both in vivo and in vitro studies showed that hyperinsulinemia 
reduced the regulatory T-cells’ ability to produce IL-10, which 
in turn impairs their ability to suppress TNF-α production in 
macrophages [153]. The effects of AKT/PI3K signaling on reg-
ulatory T-cell suppressive activity have been reported to be 
positive in some studies [155,161] and negative in others [155, 
162]. Collectively, the available literature suggests that insulin 
and downstream signaling may have important and direct ef-
fects on both cytotoxic and regulatory T-cells.

Insulin signaling also affects innate immune cells. Macro-
phages are responsible for detecting, destroying and engulfing 
pathogens and macrophages can polarize along a spectrum of 
M1 to M2 [163,164]. So called ‘M1 macrophages’ produce pro-
inflammatory cytokines such as TNF-α, IL-6, and IL-1β which 
kill pathogens or tumor cells. ‘M2 macrophages’ produce anti-
inflammatory cytokines like IL-10 and transforming growth 
factor beta 1 (TGF-β), which heal wounds and resolve inflam-
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mation [136,163,164]. Macrophages are known to modulate 
both insulin secretion [165] and tissue insulin sensitivity [136, 
166,167]. Insulin signaling within macrophages has been ex-
tensively studied [168,169]. Macrophages express all compo-
nents of insulin signaling cascade [170,171], and when Insr or 
Akt2 were deleted, macrophages shifted towards an anti-in-
flammatory phenotype with reduced IL-6, IL-1β, and TNF-α 
[170-173]. However, studies employing PI3K or AKT overex-
pression, PI3K knockout, or deletion of PTEN and Src homol-
ogy 2‑containing inositol 5ʹ‑phosphatase have also implicated 
PI3K/AKT/mTOR signaling in M2 polarization [173-179]. 
These inconsistencies in M1/M2 polarization may be related to 
AKT and mTOR isoform specificity [173,174,180]. Moreover, 
given that PI3K/AKT/mTOR signaling can be stimulated by 
many ligands besides insulin, for example TGF-β, IL-10, and 
bone morphogenetic protein 7 [174,180], the role of this sig-
naling cascade in macrophage function may be context depen-
dent. 

HYPERINSULINEMIA AND CANCER

Interest has grown recently around the possibility that excess 
insulin, a consequence of unhealthy diets and lifestyles, may 
have cancer-promoting effects. Insulin is a powerful mitogen 
and survival factor for virtually all cell types [23,32,181]. While 
insulin’s close relative IGF1 has been extensively studied for its 
roles in many cancers, studies on the potential role of insulin 
have lagged behind. Some epidemiological studies report in-
creased cancer risk in patients receiving exogenous long-acting 
insulins as diabetes therapy [182-187], but these findings were 
controversial and subsequent studies have failed to find a con-
sistent association [188-191]. Interest has now shifted towards 
the role of endogenous insulin in cancer risk. Despite correla-
tive human data associating high levels of insulin with multiple 
types of cancer, the cause-and-effect relationship had not pre-
viously been established for any cancer [192-195]. 

Obesity and diabetes are risk factors for many different types 
of cancers [5,196-200]. In 2012, combined effects of high BMI 
and diabetes were responsible for 5.7% of cancer cases [201]. 

Fig. 2. Possible cellular targets of hyperinsulinemia in pancreatic cancer. (A) Violin plot showing insulin receptor (Insr) expres-
sion in pancreatic cells and immune cells. The data is based on single-cell gene expression analysis of mouse pancreas in Ptf1aCreER; 
LSL-KrasG12D; Ins1−/− genetic background generated using 10x Genomics. Background mRNA contamination was cleaned by R 
packages SoupX and the single-cell gene expression data was analyzed by Seurat 4.0 (Satija Lab). (B) Possible cellular targets of 
hyperinsulinemia in pancreatic cancer initiation and/or progression.
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Broken down by cancer type, 16.5% to 18.8% of liver cancer, 
13.1% of pancreatic cancer, 7.2% of breast cancer, 31.3% of en-
dometrial cancer, 28.7% to 29.5% oesophageal cancer, and 18% 
to 21.3% of kidney cancers have been attributed to obesity and 
diabetes [201]. Compared to healthy people, patients with dia-
betes have 1.57-fold increased risk of death from cancer and 
more specifically, they were associated with about 2.34-fold, 
8.47-fold, and 4.2-fold increased risk of deaths from pancreas, 
liver, and breast cancers, respectively [200,202]. Obesity is as-
sociated with 14% in colorectal and 35% increase in breast 
cancer-specific mortality, respectively [203,204]. Populations 
with diabetes and obesity are increasing rapidly [205-208] and 
the percentage of cancer cases attributable to obesity and dia-
betes increased 20% and 30%, respectively, between 1980 and 
2002 [201]. Obesity and diabetes are also associated with in-
creased cancer mortality [199,200,202,209-211]. There is an 
urgent need to identify the underlying mechanisms that link 
cancers to obesity and diabetes.

Hyperglycemia, hyperinsulinemia, increased inflammation 
and dyslipidemia usually accompany obesity and diabetes and 
those metabolic changes are considered as factors causing in-
creased risks of cancers morbidity and mortality [5,209,211, 
212]. For instance, hyperglycemia may provide extra-glucose 
to cancer cells to maintain their rapid proliferation and meet 
the demand for biomass production. Hyperglycemia can cause 
overproduction of advanced glycation end-products and reac-
tive oxygen species, which can cause DNA damages [209, 212]. 
Moreover, dysregulation of leptin and adiponectin production 
in adipocytes that is associated with obesity and diabetes can 
also affect cancer cells growth and survival [209,212]. Here, 
however, we are focused on hyperinsulinemia as a potential 
driver of increased cancer incidence and mortality. Previous 
scholarship has thoroughly reviewed other possible mecha-
nisms [209,212]. 

Hyperinsulinemia is associated with cancer mortality inde-
pendently of diabetes, obesity, and metabolic syndrome [213, 
214]. Insulin is a well-established growth factor for many cell 
types, including pancreatic cancer cells and their likely precur-
sors [215]. In addition to pancreatic cancer (see below) [213, 
216-219], people with hyperinsulinemia also had increased 
risk of breast [197,220-223], colorectal [196,224,225], prostate 
[226], endometrial [227,228], liver [198], and ovarian cancers 
[229], regardless of BMI. Hyperinsulinemia was associated 
with a 2-fold risk of cancer death [196,211,230,231]. This in-
crease of cancer mortality is also observed in people with nor-

mal body weight if they had hyperinsulinemia [214]. There-
fore, hyperinsulinemia is associated with increased risk of both 
cancer incidence and death. However, unlike hyperglycemia, 
there is no widely accepted insulin concentration to define hy-
perinsulinemia, so it is difficult to compare across studies. 
Nevertheless, the rationale to study the contribution of hyper-
insulinemia to cancer is strong.

THE INSULIN RECEPTOR, INSULIN 
SIGNALING AND CANCER

Insr expression levels and isoform splicing have been investi-
gated for their roles in cancer. There are two isoforms of INSR, 
INSR-A, and INSR-B. INSR-B includes the exon 11, which is 
not present in INSR-A [39,40]. INSR-A/INSR-A homodimers, 
INSR-A/IGF1R heterodimers, and INSR-B/IGF1R heterodi-
mers can bind to insulin, IGF1, and IGF2; however, INSR-B/
INSR-B homodimers can only bind to insulin when compar-
ing the ligands at physiological concentrations [39,40]. INSR-
A has a higher affinity to insulin than INSR-B. INSR-A is be-
lieved to mediate more of the mitogenic and anti-apoptotic ef-
fects of insulin while INSR-B is believed to carry more meta-
bolic effects [39,40]. INSR-A is believed to be the isoform that 
is predominantly upregulated and overexpressed during can-
cer development [5,39,40,211]. The increase of INSR-A/INSR-
B ratio has been found in breast [46,232-236], prostate [237-
239], endometrial [240,241], colon [242], and lung cancers 
[242-244]. The mechanism of how cancer cells overexpress 
INSRs (especially INSR-A) is still unknown but some studies 
suggest that the transcription of Insr maybe dysregulated. Two 
transcription factors, high mobility group AT-Hook 1 and 
specificity protein 1 which positively regulate Insr expression, 
were found upregulated in some cancers [245-248]. On the 
other hand, tumor protein p53 (TP53), which is the negative 
regulator of Insr, frequently has loss-of-function mutation in 
cancers [249]. Some microRNAs that are known to be involved 
in regulating Insr and Igf1r are also dysregulated in certain 
cancers, although additional mechanistic studies are required 
[250,251]. Hyperinsulinemia can cause INSR internalization, 
which decreases the number of INSRs available on the cell 
membrane for binding the insulin ligand; however, some stud-
ies have found that breast cancer cells lose their sensitivity to 
hyperinsulinemia-induced INSR downregulation [46,234]. 
Furthermore, the increased INSR-A to INSR-B ratio was posi-
tively correlated with hyperinsulinemia, while the decreased 
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INSR-A to INSR-B ratio was associated with low insulin levels 
after fasting or after bariatric surgery [40,252,253]. One of the 
mechanisms for this hyperinsulinemia-induced INSR-A up-
regulation could involve the insulin-induced degradation of 
splicing factor, which can shift INSR-A to INSR-B ratios 
[40,254]. Multiple drugs were designed to targeted IGF1R and 
INSR. However, the potential for insulin and IGF1 to bind 
both receptors complicates results from clinical studies and 
highlights the need for further understanding of receptor regu-
lation in cancer cells [40,209,255]. Anticancer therapies that 
target both receptors at the same time or target molecules 
which are downstream the merged signaling pathway may be 
more effective.

Major components of the insulin signaling pathway (e.g., 
RAS, AKT, PI3K) are frequently mutated in cancer [41,256]. 
Moreover, phosphatases like PTEN which negatively regulate 
insulin signaling, are well-known as tumor suppressors and are 
also frequently mutated in cancers [41,256]. The frequent mu-
tations in insulin signaling pathway can affect cell proliferation 
and survival in multiple steps. When insulin binds to INSR, it 
causes receptor autophosphorylation and activation of the 
PI3K/AKT/mTOR signaling cascade [42]. AKT can directly 
phosphorylate BCL2 associated agonist of cell death and cas-
pase-9 which inhibit the mitochondrial apoptosis pathway and 
promote cell survival [41,256]. AKT can also indirectly inhibit 
apoptosis and cause cell-cycle arrest by phosphorylating and 
inhibiting FOXO, as FOXO can promote Bcl-2-like protein 11 
and induce proapoptotic cytokine Fas ligand expression [256]. 
MDM2 proto-oncogene is also phosphorylated by AKT and 
inhibits the tumor suppressor TP53 [257]. Therefore, insulin 
can provide survival signals to cancer cells to escape cell-cycle 
arrest and apoptosis. In addition, insulin also supports cancer 
cell proliferation. When mTOR is phosphorylated by AKT, it 
activates substrates S6 kinase 1 and eIF4E-binding protein 1, 
which regulate mRNA translation initiation and progression to 
control protein synthesis and cell growth [42]. Moreover, tu-
mor cells generally need to take up more glucose to generate 
biomass and support their repaid growth, so hyperinsulinemia 
may also contribute to cancer development through making 
more glucose transporters available in tumor cell surface to 
transport glucose. In addition to PI3K/AKT/mTOR signaling 
pathway, hyperinsulinemia can also promote cancer develop-
ment through MAPK/ERK pathway which is important for 
cell proliferation and RAS is frequently mutated to be constitu-
tively active in cancer cells [41,43,211,258]. RAS needs to be 

farnesylated and anchored at plasma membrane before it acti-
vated by SOS, which is a guanine nucleotide exchange factor 
[259]. Insulin can phosphorylate and active farnesyltransferase 
which is the enzyme involved in isoprenylation of RAS [259-
263], so hyperinsulinemia may augment the amount of farne-
sylated RAS available for GTP loading in response to stimula-
tion by other growth factors. As a result, hyperinsulinemia 
may promote cancer cell growth and prevent cancer cell death 
through both PI3K/AKT/mTORC and MAPK/ERK signaling 
cascades.

HYPERINSULINEMIA AND PANCREATIC 
CANCER

Pancreatic cancer, more specifically exocrine pancreatic cancer 
or pancreatic ductal adenocarcinoma (PDAC), is the 4th most 
common cause of cancer death [264]. Risk factors for pancre-
atic cancer include obesity, T2DM, pancreatitis, smoking, and 
family history [265-271]. As obesity and diabetes rates sky-
rocket, these are becoming even more ominous risk factors 
[265], with obesity predicted to overtake smoking as the lead-
ing preventable cause of cancer [272]. T2DM was shown to be 
an independent risk factor for pancreatic cancer in many stud-
ies [273-278] and some authors have implicated hyperglycemia 
in cancer pathogenesis [279,280]. However, inferring causality 
for this observation is further complicated by the fact that 
PDAC itself and PDAC treatment regimens can cause diabetes 
[281-283]. Nevertheless, a Mendelian randomization study 
pointed to causal roles for BMI and fasting insulin, but not 
T2DM or dyslipidemia, in PDAC [284].

The pancreas is anatomically unique due to its close proxim-
ity to the source of circulating insulin. After insulin is secreted 
from β-cells, it is first transported through the portal circula-
tion to the liver, where over 50% of insulin is absorbed [76]. As 
a result, the local pancreatic insulin concentration is approxi-
mately 10 times higher than what is found in the post-hepatic-
circulation [69,70]. Insulin has potent mitogenic and anti-
apoptotic actions on primary and transformed cells from the 
endocrine pancreas, from both humans and rodents [20,181, 
285,286]. Previous studies have shown that there were more 
acinar cell mitoses around islet cells compared to other pancre-
atic cell types, and T1DM patients had smaller number of aci-
nar cells [287-289]. Pre-clinical islet transplant experiments 
have suggested that local hyperinsulinemia alone, at levels that 
do not cause hypoglycemia, can promote neoplasia [290,291]. 
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Clinical and epidemiological studies showed hyperinsulinemia 
was associated with increased risk of cancer, including PDAC. 
For example, in a 16 years follow-up study for male Finnish 
smokers, researchers found insulin concentration in the high-
est vs lowest quartile predicted a 2-fold increased risk for pan-
creatic cancer and the associations were stronger when the fol-
low-up was longer than 10 years [219]. Retrospective studies 
show that metformin, which reduces hyperinsulinemia, may 
lower pancreatic cancer risk in animals [292] and in patients 
by up to 60% [182,293-297], although the magnitude of this ef-
fect is controversial [298,299] and it is unclear whether metfor-
min acts via lowering insulin or modulating AMP-activated 
protein kinase (AMPK) or another mechanism [300-303]. 
Thus, multiple groups have proposed that excess insulin levels 
contribute to pancreatic cancer initiation or progression [304-
308], but this possibility had never been formally tested before 
our recent work [31], in part because animal models with pre-
cise control of insulin secretion or action were not available. 

In vivo animal studies are required to directly test for causal-
ity in the hyperinsulinemia-cancer hypothesis. In our recent 
study, we demonstrated hyperinsulinemia contributes causally 
to pancreatic cancer development using a unique mouse mod-
el [31]. We again used female mice with lower fasting insulin 
without affecting the glucose homeostasis (Ins1+/−; Ins2−/− com-
pared to Ins1+/+; Ins2−/−) [20,30] that also expressed commonly 
used pancreatic cancer susceptibility alleles that reflect human 
disease genetics (Ptf1aCreER; LSL-KrasG12D) [258]. We fed all 
groups of mice a hyperinsulinemia-inducing high-fat diet. We 
found there were significant reductions of pre-pancreatic can-
cer lesions and fibrogenesis in mice with reduced insulin secre-
tion, demonstrating that endogenous hyperinsulinemia con-
tributes to pancreatic cancer development [31]. These observa-
tions are consistent with other, less direct models designed to 
test whether hyperinsulinemia accelerates the initiation and/or 
progression of other types of cancer. The next step will be to 
determine which of the main Insr expressing cell types contrib-
ute to the effects of hyperinsulinemia on pancreatic cancer ini-
tiation and/or progression (Fig. 2B).

TESTING THE INSULIN-CANCER 
HYPOTHESIS OUTSIDE OF THE PANCREAS

Insulin signaling connects with many signaling networks 
known to drive breast cancer initiation and progression (Fig. 
3). Epidemiological evidence demonstrates that both obesity 

and diabetes are associated with breast cancer incidence and 
prognosis. Clinically, breast cancer is categorized into three 
subtypes, which dictate treatment courses and prognoses. 
More than 70% of breast cancers (>150,000 cases/year) over-
express the estrogen receptor (ER) and/or progesterone recep-
tor (PR) and these are frequently diagnosed after menopause 
[309]. Half of the remaining tumors express the human epider-
mal growth factor receptor 2 (HER2). The other half of cases 
lack all three receptors and are classified as triple negative 
[309]. The obesity-specific risk for breast cancer is greatest for 
the ER/PR-positive subtype [310]. Breast cancer risk increases 
by 12% (relative risk [RR], 1.12) for every 5 kg/m2 increase in 
BMI [269]. Because obesity is a shared risk factor between dia-
betes and breast cancer, most studies evaluate cancer risk in 
patients with diabetes after adjusting for BMI. Data from the 
Nurses’ Health Study suggest that women with diabetes have 
an elevated risk for breast cancer (hazard ratio [HR], 1.17) 
[311], which was confirmed in a more recent meta-analysis 
(summary relative risk [SRR], 1.16) [312]. These significant re-
lationships remained after adjusting for BMI. A different study 
found that diabetes was associated with increased breast can-
cer-specific mortality (RR, 1.27) [312,313] that was not ex-
plained by obesity. Both obesity and diabetes are associated 
with advanced breast cancer at diagnosis [310,314,315], in-
cluding larger, higher grade tumors and lymph node involve-
ment [310,314,316]. In each study that found a relationship 
between breast cancer and either obesity or diabetes, the link 
was strongest in postmenopausal women [269,312,316-319]. 
Before menopause, obesity and diabetes each associate with a 
decreased risk for breast cancer [312,317], but the mechanisms 
behind this paradox are unclear. Importantly, the associations 
between diabetes and breast cancer are specific to T2DM, as 
individuals with T1DM do not face increased risk or mortality 
[312]. This observation implies that one or more of the major 
pathophysiological differences between T2DM and T1DM, 
such as hyperinsulinemia or hyperlipidemia (but not hypergly-
cemia) play causal roles.

Two underlying drivers of the obesity-cancer relationship 
may be metabolic dysfunction and adult weight gain. Three 
studies found similar links between metabolic health and 
breast cancer risk independent of obesity. In a prospective co-
hort study, women with a normal weight (BMI <25 kg/m2) 
and one or more features of metabolic disease (e.g., high waist 
circumference, elevated blood pressure, and/or diabetes) had a 
similarly elevated risk for postmenopausal breast cancer (HR, 
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1.26) to women who were metabolically healthy but had over-
weight or obesity (HR, 1.24) [320]. Another recent study found 
that obesity, regardless of metabolic health, associated with in-
creased risk of breast cancer, with the highest risk seen in met-
abolically unhealthy women with obesity (HR, 1.62) [321]. A 
third study found that women classified as metabolically un-
healthy based on homeostatic model assessment for insulin re-
sistance or fasting insulin had an elevated risk for breast cancer 
regardless of BMI [197]. The most recent, large, prospective 
cohort study reported elevated risks for breast (HR, 1.16) and 
endometrial cancer (HR, 2.94) in women with overweight or 
obesity even after adjusting for metabolic status [322]; howev-
er, risks were greatest in the presence of metabolic disease and 

obesity [315]. Together, these studies suggest that while meta-
bolic dysfunction contributes to cancer, it may not be the only 
mechanism. Women who transitioned from a “lean” BMI (<25 
kg/m2) to either overweight or obese faced an increased risk of 
breast cancer (HR, 1.36) compared with women who had an 
elevated BMI as young adults and did not gain more than 5% 
weight over approximately 13 years of follow-up [316]. In ad-
dition, a meta-analysis estimated that every 5 kg of weight 
gained increased the risk for breast cancer by 11% (SRR, 1.11) 
and endometrial cancer by 39% (SRR, 1.39) [323]. 

As with obesity, women with diabetes may have a greater 
risk of breast cancer recurrence compared to women without 
diabetes (odds ratio [OR], 2.21) [314]. However, whether dia-

Fig. 3. Multiple links between insulin signaling and breast cancer. Insulin/Igf1 receptor signaling interacts with master regulators 
of breast cancer cell fate, including estrogen receptor signaling, core cell-cycle regulators, and metabolism. Virtually all proteins in 
this signaling network are regulated by phosphorylation. RTK, receptor tyrosine kinase; Erbb2, proto-oncogene Neu/Her2; Fgfr, 
fibroblast growth factor receptor; Insr, insulin receptor; Esr1, estrogen receptor 1; Grb2, growth factor receptor-bound protein 2; 
Irs, insulin receptor substrate; PI3K, phosphoinositide 3-kinase; Tsc2, tuberous sclerosis complex 2; Pten, phosphatase and tensin 
homolog; Glut1, glucose transporter 1; Hk, hexokinase; mTORC, mammalian target of rapamycin complex; Erk, extracellular 
signal-regulated kinase; Tp53, tumor protein p53; Gsk3b, glycogen synthase kinase 3b; Hif1a, hypoxia-inducible factor 1a; Pfk, 
phosphofructokinase; Pk, pyruvate kinase; Cdkn1, cyclin-dependent kinase inhibitor-1; Ampk, AMP-activated protein kinase; 
Pgr, progesterone receptor; Foxm1, forkhead box M1; Ccnd1/3, cyclin-dependent kinase 1/3; Myc, myc oncogene; Foxo, forkhead 
family box O; Cdk, cyclin-dependent kinase; Rb, retinoblastoma; E2f1, E2F transcription factor 1.
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betes increases breast cancer-specific mortality remains con-
troversial. A recent Mendelian randomization study that inves-
tigated the genetic predisposition to T2DM, as well as predict-
ed fasting insulin and glucose, did not find a causal association 
with any variable and breast cancer risk [324], but this does not 
preclude roles for non-genetic drivers of hyperinsulinemia and 
hyperglycemia. Some studies [325] including the Women’s 
Health Initiative (WHI) [315,326], do not support a link be-
tween diabetes and death specifically from breast cancer. In 
contrast, one large prospective study found that diabetes in-
creased the risk for death from breast cancer in women (RR, 
1.16) and in men (RR, 4.20) [200] after adjusting for BMI. 
Similarly, a smaller population-based study found that diabetes 
predicted a shorter breast cancer specific survival (HR, 1.53) 
for women with early stage breast cancer, which was also inde-
pendent of BMI [327]. Consistent with breast cancer, obesity 
and diabetes are strongly associated with the incidence and 
mortality of endometrial cancer [328-330]. Obesity is thought 
to be responsible for over half of endometrial cancer diagnoses 
[269,331], with risk increasing by 50% (RR, 1.50) for every 5 
kg/m2 increase in BMI [332]. Data from the WHI suggests that 
elevated BMI increases the risk for endometrial cancer by 76% 
(HR, 1.76) [333]. Diabetes increases the risk for endometrial 
cancer by 2-fold [328], and a Mendelian randomization analy-
sis estimated a small increase (OR, 1.08) in the risk associated 
with both diabetes and predicted fasting insulin [324]. Howev-
er, among a total of nine studies examining diabetes and endo-
metrial cancer risk, only four studies [328,334-336] adjusted 
for BMI with two [328,336] reporting a significant association 
independent of BMI. Thus, for endometrial cancer, the data are 
moderate that diabetes is associated with risk independently of 
obesity. Unlike breast cancer, T1DM is associated with endo-
metrial cancer risk (SRR, 3.15) [328], suggesting subtle but po-
tentially important underlying differences in etiology. 

Elevated fasting insulin and glucose are commonly associat-
ed with diabetes, obesity, and weight gain. Consistent with epi-
demiological observations, insulin and glucose have also been 
attributed to breast and endometrial cancer. Genetically pre-
dicted fasting insulin levels were associated with endometrial 
cancer risk after adjusting for BMI in a Mendelian randomiza-
tion study [324]. Hyperinsulinemia associated with an in-
creased risk for breast (HR, 1.46) [337] and endometrial can-
cer (HR, 2.33) [228] in the WHI study. For endometrial cancer, 
the risk was higher in women with hyperinsulinemia and 
overweight or obesity (HR, 4.30) [228]. For both cancer types, 

this relationship between insulin and risk was specific to non-
users of menopausal hormone replacement therapy [228,337], 
suggesting potential crosstalk between the insulin and estro-
gen signaling pathways in driving early tumor growth. A dif-
ferent study reported that insulin resistance, inferred from C-
peptide levels, associated with elevated breast cancer risk in 
women without diabetes (RR, 2.9) [338]. The potential tumor 
promoting mechanisms downstream of insulin are similar be-
tween breast and endometrial cancers, and include extensive 
cross talk with signaling networks regulated by E2 and IGF1 
[338,339]. Insulin itself is a potent mitogen for cancer cells 
[340,341], and may potentiate signaling through ER [338,340, 
342]. Data from large randomized controlled trials suggest that 
improving glycemic control does not reduce the risk for breast 
cancer [343], although this has been debated [344]. The large 
body of evidence linking obesity and diabetes to women’s can-
cers has supported clinical trials that aim to address the effica-
cy of metformin, a widely used anti-hyperglycemic agent, 
against breast [345-347] and endometrial cancers [348].

Hyperinsulinemia-induced by muscle cell-specific insulin 
resistance in mice [349] was found to accelerate esophageal 
cancer [38] and breast cancer development and increase lung 
metastases [5,45-47,209,350]. The tissues and cancer cells from 
these hyperinsulinemic mice showed increased activation of 
INSR/PI3K/AKT signaling pathway and mammary tumor 
growth was independent of the IGF1 receptor [47,351]. Exoge-
nous insulin promoted breast and colon carcinogenesis [352, 
353], and diet-induced hyperinsulinemia was able to accelerate 
prostate cancer xenograft progression [354]. Additionally, en-
dometrial carcinoma cell growth could be promoted by over-
expressing INSR, and pancreatic cancer cells proliferated pro-
portionally with the increase of insulin concentrations [215, 
240,355]. Knocking out INSRs slowed the growth of pancreatic 
neuroendocrine cancer cells and melanoma cells as well as in-
ducing the apoptosis in DNA-damaged colon cells [356-358]. 
Therefore, in addition to epidemiological data, the experimen-
tal mouse models provide abundant evidence that hyperinsu-
linemia can contribute to carcinogenesis. It remains unclear 
whether these effects of insulin are via cancer initiating cells, 
local immune cells, cancer associated stroma, or indirectly 
through insulin’s effects on adiposity. Likely, multiple complex 
mechanisms are responsible for specific cancer promotion in 
various tissue types. Experiments where INSR is deleted from 
these putative cellular mediators will be required to provide 
clarity to this question.
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Hyperinsulinemia may also contribute to cancer develop-
ment through influencing IGF1 levels. IGF1, which plays a 
critical role in the development of various tumors, is primarily 
produced in liver under the stimulation of growth hormone 
[212,359-362]. Similarly, insulin can also increase sex hormone 
and reduce sex hormone binding protein production [211, 
363]. This increase of hormones such as estrogen and andro-
gen can affect the growth of hormone-dependent tumors in 
the breast, prostate, and endometrium. As mentioned above, 
hyperinsulinemia is correlated with inflammation, which can 
contribute to tumorigenesis in many different aspects [364,365]. 
Together, the studies discussed above provide potential mecha-
nisms by which hyperinsulinemia may contribute to cancer 
development.

As people become more aware of the cause-and-effect rela-
tionship between insulin and cancer, many more anticancer 
therapies targeting hyperinsulinemia have been developed and 
tested in animal models or in clinical trials. For instance, a re-
cent study showed that the combination of PI3K inhibitors with 
kenogenetic diet or sodium-glucose transport protein 2 
(SGLT2) inhibitors can effectively reduce tumor growth and 
increase the survival rate [366]. Also, multiple studies have 
demonstrated metformin could possess anti-cancer properties 
and there are some drugs in pre-clinical trials already [367,368]. 
In summary, although it is still at an early stage, our studies 
have demonstrated that hyperinsulinemia can contribute to tu-
morigenesis. It follows that lifestyle interventions or therapeu-
tics with mild insulin suppressing actions may be useful in the 
prevention and treatment of some types of cancers.

CONCLUSIONS

Hyperinsulinemia is a condition associated with obesity and 
early stage T2DM. Recent studies have implicated hyperinsu-
linemia in multiple pathological conditions including insulin 
resistance, inflammation, obesity, and cancer. Modest inhibi-
tion of insulin production or insulin signaling is sufficient to in-
crease of lifespans in a variety of animal models, from inverte-
brates to mice. Additional studies are required to elucidate the 
relationship between insulin and IGF during aging, as well as 
the shared and distinct molecular mechanisms. Conventionally, 
hyperinsulinemia was considered to be an adaptation to obesi-
ty-induced insulin resistance. However, evidence continues to 
mount that hyperinsulinemia can precede and cause obesity 
and insulin resistance. Animal models with reduced endoge-

nous insulin secretions were protected from diet-, age-, and 
leptin-induced obesity, which clearly demonstrates the causal 
role of hyperinsulinemia in obesity. It is also clear that insulin 
resistance can lead to hyperinsulinemia, including at the level of 
the pancreatic β-cells, suggesting at least a bi- or tri-directional 
relationship. Future studies will be required to determine the 
nature of the complex vicious cycles that lead to T2DM. The 
metabolic importance of insulin has been long recognized but 
now the field is beginning to appreciate its importance in can-
cers. Both clinical and epidemiological studies demonstrated 
hyperinsulinemia is associated with increased cancer morbidity 
and mortality. Furthermore, direct animal studies have shown 
hyperinsulinemia could promote tumorigenesis, especially for 
pancreatic. Invertebrate models of hyperinsulinemia-induced 
cancer provide opportunities for powerful screens [369] that 
may uncover the specific molecular mechanisms involved and 
lead to targeted therapeutics. In summary, while insulin is es-
sential for maintain normal life, the negative consequences of 
hyperinsulinemia shed light on the importance of maintaining 
insulin levels within a healthy range. Lifestyle interventions or 
therapeutics with mild insulin suppressing actions provide new 
opportunities to prevent and treat certain disorders like obesity, 
chronic inflammation and cancers.
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