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Background: Several noninvasive tools are available for the assessment of nonalcoholic fatty liver disease (NAFLD) including 
clinical and blood biomarkers, transient elastography (TE), and magnetic resonance imaging (MRI) techniques, such as proton 
density fat fraction (MRI-PDFF) and magnetic resonance elastography (MRE). In the present study, we aimed to evaluate wheth-
er magnetic resonance (MR)-based examinations better discriminate the pathophysiologic features and fibrosis progression in 
NAFLD than other noninvasive methods.
Methods: A total of 133 subjects (31 healthy volunteers and 102 patients with NAFLD) were subjected to clinical and noninvasive 
NAFLD evaluation, with additional liver biopsy in some patients (n=54).
Results: MRI-PDFF correlated far better with hepatic fat measured by MR spectroscopy (r=0.978, P<0.001) than with the TE 
controlled attenuation parameter (CAP) (r=0.727, P<0.001). In addition, MRI-PDFF showed stronger correlations with various 
pathophysiologic parameters for cellular injury, glucose and lipid metabolism, and inflammation, than the TE-CAP. The MRI-
PDFF and TE-CAP cutoff levels associated with abnormal elevation of serum alanine aminotransferase were 9.9% and 270 dB/m, 
respectively. The MRE liver stiffness measurement (LSM) showed stronger correlations with liver enzymes, platelets, complement 
component 3, several clinical fibrosis scores, and the enhanced liver fibrosis (ELF) score than the TE-LSM. In an analysis of only 
biopsied patients, MRE performed better in discriminating advanced fibrosis with a cutoff value of 3.9 kPa than the TE (cutoff 8.1 
kPa) and ELF test (cutoff 9.2 kPa). 
Conclusion: Our results suggest that MRI-based assessment of NAFLD is the best non-invasive tool that captures the histologic, 
pathophysiologic and metabolic features of the disease.
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INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD) afflicts approximate-
ly 20% to 40% of the general population worldwide and is the 
most common cause of chronic liver disease [1,2]. The preva-

lence of NAFLD is consistently increasing and is particularly 
high in patients with type 2 diabetes mellitus or morbid obesity 
with a range from 50% to 60% to more than 95% depending 
on the study population [1,3]. Depending on the study proto-
cols, 2/3 or more and at least 1/3 of biopsied patients with 
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NAFLD have been shown to have nonalcoholic steatohepatitis 
(NASH) and fibrosis, respectively [1]. Additionally, NAFLD is 
associated with higher mortality due to cardiovascular disease, 
hepatocellular carcinoma (HCC), and liver diseases and thus 
requires surveillance for its progression, the development of 
related diseases, and their complications [2,4]. In particular, 
the presence of fibrosis and its stages are strong independent 
predictors of disease-specific and all-cause mortality in pa-
tients with NAFLD [5,6]. 

Although a liver biopsy is considered the gold standard for 
the assessment of NAFLD progression, this technique has in-
herent limitations, including severe discomfort, complications, 
sampling errors, and significant heterogeneity between sam-
ples [7]. Furthermore, performing liver biopsy in all patients 
with NAFLD with suspected progression is impractical due to 
the high prevalence of NAFLD.

Noninvasive imaging and blood markers have been inten-
sively studied for the assessment of NAFLD. Transient elastog-
raphy (TE) and magnetic resonance imaging (MRI) are rea-
sonable alternative tools for the assessment of both steatosis 
and fibrosis in NAFLD. TE is an ultrasound-based imaging 
modality that allows simple, rapid, and bedside liver stiffness 
measurement (LSM) and controlled attenuation parameter 
(CAP) measurement [8]. TE-based LSM is correlated with the 
fibrosis stage, particularly for the severe stage of fibrosis, and 
CAP allows assessment of hepatic steatosis [9]. However, TE 
may have a significant technical failure rate for obese patients 
with a high body mass index (BMI) and cover limited liver ar-
eas [10]. The MRI-estimated proton density fat fraction (MRI-
PDFF) can provide fast, accurate, and generalized hepatic fat 
measurements for the entire liver, thereby overcoming the het-
erogeneity of fat deposition, where magnetic resonance elas-
tography (MRE) is a useful diagnostic tool for differentiation 
of histologic-determined advanced liver fibrosis from non-ad-
vanced fibrosis [11]. Recently, spin echo echo-planar imaging 
(EPI)–based MRE has shown a high diagnostic performance 
for staging liver fibrosis compared with that of gradient-re-
called echo MRE sequence [12]. In addition, MRI-PDFF and 
MRE can be integrated into more comprehensive magnetic 
resonance (MR)-based examinations, including morphologic 
and perfusion imaging for the detection of HCC, measure-
ment of the abdominal fat content, proton magnetic resonance 
spectroscopy (1H-MRS), and other functional protocols, if re-
quired. Previous studies showed that MRI-PDFF and MRE 
were better for evaluation and follow-up of hepatic steatosis 

and fibrosis than TE [13]. MRI-PDFF and MRE have also been 
used to evaluate therapeutic outcomes in randomized clinical 
trials of pharmacologic agents in NAFLD and have proven to 
be useful and reliable [14-16]. In addition to imaging studies, 
clinical scoring systems and blood markers of apoptosis (e.g., 
the M30 fragment of cytokeratin 18 [CK-18]) or matrix turn-
over and fibrosis (e.g., the enhanced liver fibrosis [ELF] test) 
have been used as noninvasive tools [17]. 

However, previous studies of noninvasive tools, including 
TE, MRI, and the ELF test, have focused mainly on mechanical 
measures of liver stiffness and their correlations with the histo-
logic grade of hepatic fibrosis [17,18]. Thus, to be more gener-
ally applicable to patients with NAFLD with various metabolic 
backgrounds, the mechanical and functional aspects of the im-
aging parameters need to be evaluated in relation to the meta-
bolic and pathophysiologic profiles of patients with NAFLD. 
Furthermore, few studies have compared MRE, TE, and the 
ELF test simultaneously for the evaluation of fibrosis stage in 
NAFLD [16].

In the present study, we aimed to evaluate whether MR-
based examinations better reflected the pathophysiologic fea-
tures and fibrosis progression in NAFLD and to compare the 
methods with other noninvasive tools in the differentiation of 
advanced fibrosis, including clinical scoring systems, the ELF 
test, and TE.

METHODS

Study subjects
Between June 2017 and May 2020, a total of 133 subjects who 
were either healthy volunteers or patients with NAFLD were 
recruited from advertisements, as well as from the diabetes and 
endocrinology, hepatology, metabolic surgery, and health ex-
amination centers in the hospital. Study protocols were in ac-
cordance with the Declaration of Helsinki and were approved 
by the Institutional Review Board at the Gachon University Gil 
Medical Center (GAIRB2017-001, -200, and -310). All partici-
pants provided written informed consent and the studies were 
registered at https://cris.nih.go.kr (registration numbers KCT-
0005161, KCT0003144, and KCT0003527) in accordance with 
the World Health Organization International Clinical Trials 
Registry Platform.

The inclusion criteria were as follows: healthy volunteers or 
subjects who were diagnosed to have or suspected of having 
NAFLD (aged from 19 to 70 years). Additionally, we tried to 
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enroll subjects with evidence of NAFLD on a liver biopsy per-
formed within 3 months prior to enrollment at a hepatology 
clinic of the hospital. All biopsied patients reported no signifi-
cant changes in body weight or interventions for the treatment 
of NAFLD or comorbidities between the date of the liver biop-
sy and enrollment. Patients were excluded if they had excessive 
alcohol consumption (alcohol intake >20 g/day for women 
and >30 g/day for men), evidence of another coexistent liver 
or biliary disease (positive hepatitis B surface antigen, anti-
hepatitis C virus antibody, autoimmune hepatitis, histological 
evidence of other concomitant chronic liver diseases, primary 
biliary cirrhosis, or primary sclerosing cholangitis), use of 
medications known to cause secondary hepatic steatosis (cor-
ticosteroids, tamoxifen, amiodarone, or methotrexate) within 
1 year, drug abuse, human immunodeficiency viral infection, 
contraindications for MRI, including the presence of a cardiac 
pacemaker or other electronic implant devices, a pregnant sta-
tus, or any conditions that might affect the patient competence 
or participation as determined by the opinion of the principal 
investigator.

Clinical and laboratory evaluation
A wide array of demographic, lifestyle, anthropometric, and 
clinical characteristics were collected, including age, sex, body 
weight, waist circumference (WC) and comorbidities such as 
hypertension and diabetes. After an overnight fast, blood sam-
ple analyses for various markers and routine biochemical tests, 
which included aspartate aminotransferase (AST), alanine 
aminotransferase (ALT), glucose, insulin, a complete blood 
count with a platelet count, alkaline phosphatase (ALP), gam-
ma-glutamyl transferase (GGT), total bilirubin, albumin, gly-
cosylated hemoglobin (HbA1c), and lipid panel, were per-
formed within days of the imaging studies. All samples were 
originally processed to serum and plasma and stored frozen at 
–80°C. Commercial kits were used for measurement of plasma 
angiotensinogen (Human Total Angiotensinogen Assay Kit – 
IBL; Immuno-Biological Laboratories Co. Ltd., Gunma, Japan) 
and the serum levels of the apoptosis-associated neo-epitope 
in the C-terminal domain of CK-18 (the M30-Apoptosense 
ELISA kit, PEVIVA; Alexis, Grünwald, Germany), comple-
ment factors C3 and C4 (turbidimetric immunoassay Tina-
quant C3c and C4; Roche Diagnostics Ltd., Rotkreuz, Switzer-
land), glucagon (Mercodia AB, Uppsala, Sweden) and the ELF 
test (The ADVIA Centaur Enhanced Liver Fibrosis Test; Sie-
mens Healthcare, Erlangen, Germany). The ELF score was 

produced by the ADVIA Centaur systems, by measuring the 
serum hyaluronic acid (HA), amino-terminal propeptide of 
type III procollagen (PIIINP), and tissue inhibitor of matrix 
metalloproteinase 1 (TIMP 1) levels as follows: ELF score= 
2.278+0.851 ln(HA)+0.751 ln(P3NP)+0.394 ln(TIMP 1), 
where the concentration values in parentheses are in ng/mL. 
The body fat and lean body mass were measured using the du-
al-energy X-ray absorptiometry (DXA) technique (GE Health-
care, Wauwatosa, WI, USA), on the same day as the imaging 
studies. All patients fasted for at least 5 hours before the imag-
ing studies, as described below. Several clinical indices and 
scores were calculated based on clinical and laboratory data, 
including the homoeostatic model assessment of insulin resis-
tance (HOMA-IR), NAFLD fibrosis score (NFS), AST-to-
platelet ratio index (APRI), and fibrosis-4 (FIB-4) index [8].

Histologic assessment
The liver biopsy was performed at the discretion of hepatolo-
gists in the hospital if indicated or systematically during bariat-
ric surgery. After standard processing, all specimens were sub-
jected to hematoxylin-and-eosin staining and Masson tri-
chrome staining to assess the liver fibrosis stage. A pathologist 
(D.H.C.) who was blinded to the patients’ clinical and radio-
logic results assessed the stained specimens. Histological scor-
ing was performed using the Nonalcoholic Steatohepatitis 
Clinical Research Network histologic (NASH CRN) scoring 
system [19]. Fibrosis was staged from F0 to F4 (Supplementary 
Figs 1 and 2) [19].

Transient elastography 
TE was performed using FibroScan 502 (Echosens, Paris, 
France) by a trained technician blinded to the clinical and his-
tological data. All patients were scanned first using the M 
probe (3.5 MHz) or, when indicated by equipment, using the 
XL probe (2.5 MHz) at the right lobe of the liver. At least 10 
measurements were made to obtain the median valid LSM in 
kilopascals (kPa) and the interquartile range (IQR). Liver ste-
atosis values were obtained by the CAP measurement in dB/m. 
Technical failure was defined as no stiffness measurement ob-
tained or unreliable measurements (defined as a success rate 
<60% or IQR/median >30%) [20]. 

MR studies
All MR examinations, including MRE, were performed with a 
3-T scanner (MAGNETOM Skyra; Siemens Healthineers, Er-
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langen, Germany) using an 18-channel body matrix coil and 
table-mounted 32-channel spine matrix coil. To quantify the 
liver fat content, we used a multi-echo three-dimensional gra-
dient-echo sequence to obtain MRI-PDFF from a single 
breath-hold acquisition. Automated calculation and output of 
a stack with quantitative MRI-PDFF coding were performed 
and archived to the picture archiving and communication sys-
tem. If the automated MRI-PDFF calculation failed, then three 
circular regions of interest (ROIs) were located in segment VII 
or VIII on the liver for each MRI-PDFF. The mean value for 
the three ROIs was considered the representative MRI-PDFF

High-speed T2-corrected multiecho single-voxel 1H-MRS 
with stimulated echo acquisition mode readout was per-
formed. Experienced MR technicians placed a spectroscopy 
voxel ROI (30×30×30 mm) in the superior portion of the 
right hepatic lobe (segment VII or VIII) with a normal appear-
ance while avoiding large hepatic vessels, bile ducts, focal he-
patic lesions, and liver margins.

The two-dimensional SE-EPI-based MRE sequence (Work-
In-Progress package; Siemens Healthineers) was performed. 
For MRE, a cylindrical passive longitudinal pneumatic driver 
was attached to the right anterior chest wall using a rubber belt 
with the center of the driver at the level of the xiphoid process. 
To produce propagating shear waves in the liver, continuous 
longitudinal 60 Hz mechanical vibrations were used. An inver-
sion algorithm was used to generate elastograms that depicted 
the shear stiffness measured in kilopascals (kPa). To obtain 
LSM values for the liver parenchyma, the reviewer (S.J.C., who 
was blinded to the patients’ clinical or histologic results) drew 
a geographical ROI that included the largest part of the liver 
parenchyma (Supplementary Figs. 1 and 2) [21]. The visceral 
and subcutaneous fat adipose areas were calculated at the L3–
L4 discs from the multi-echo three-dimensional gradient-echo 
sequence. 

Statistical analysis
Categorical variables were compared as counts and percentag-
es and associations were tested using the chi-square or Fisher’s 
exact test. Continuous variables are reported as the mean± 
standard deviation, and differences between groups were ana-
lyzed using Student’s t-test (two-tailed) or the Mann-Whitney 
U test as appropriate. Correlations were evaluated using the 
Spearman correlation coefficient. A two-tailed P value less 
than 0.05 was considered statistically significant for all analy-
ses. Univariate and multivariate logistic regression analyses to 

assess for the potential predicting factors of significant liver fi-
brosis was performed. Characteristics determined to be statis-
tically significant (P<0.05) by univariate analysis were used as 
input variables for multivariate logistic regression analysis. The 
diagnostic accuracy was assessed by the standard area under 
the receiver operating characteristic curve (AUROC) and the 
weighted AUROC. For each AUROC, 95% confidence inter-
vals were measured using its standard error. The AUROC 
curves were compared according to DeLong et al. [22]. The 
AUROC and the Youden index were used to determine the 
optimal thresholds. Statistical analyses were performed using 
R software/environment (R-2.9.1; R Foundation for Statistical 
Computing, Vienna, Austria).

RESULTS

The characteristics of the study subjects
A total of 133 subjects were included in this cross-sectional 
study, after excluding three patients due to chronic hepatitis B 
(n=2) and C (n=1). Table 1 presents the characteristics of the 
study subjects. The mean age of the participants was 39.4 years, 
with a prevalence of males (46%). Of the 130 TE assessments, 
82 (63%) were performed with the M probe and the XL probe 
was applied for 48 (37%) subjects whose BMI was at least 30 
kg/m2. Three patients failed TE (failure rate, 2.2% [3/133]). 

The MR studies could not be finished in one patient due to 
unexpected claustrophobia. A MRE-LSM result from another 
patient was not included due to a disorganized wave pattern on 
wave images and the patient refused to receive MRE reexami-
nation. A total of 131 patients underwent MRE. Liver biopsy 
data were available for 54 patients. A total of 16, 23, five, six, 
and four patients had fibrosis stages 0, 1, 2, 3, and 4, respective-
ly. In the present study, the minimal diagnostic criterion for the 
diagnosis of NAFLD was defined as the presence of ≥5% he-
patic steatosis on MRI-PDFF or NAFLD evidence based on 
liver biopsy, after the exclusion of secondary causes [23]. Pa-
tients with NAFLD had higher BMI, WC, and whole body and 
abdominal fat measured by DXA and MRI, respectively. They 
were more likely to have hypertension or type 2 diabetes melli-
tus than the non-NAFLD group. Additionally, compared with 
the values of the subjects without NAFLD, the NAFLD group 
had higher AST, ALT, HbA1c, fasting glucose, fasting insulin, 
glucagon, HOMA-IR, C3, C4, CK-18, low density lipoprotein 
cholesterol, triglycerides, and white blood cell and platelet 
counts in the blood tests (Table 1).
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Table 1. Baseline characteristics of the study subjects

Characteristic All subjects (n=133) NAFLD (n=102) No NAFLD (n=31) P value

Age, yr 39.4±14.3 40.0±14.1 37.7±15.2 0.44
Male sex 60 (45) 41 (40) 19 (61) <0.05
MRI-PDFF, % 13.9±10.0 17.2±9.4 3.4±0.9 <0.001
MRE-LSM, kPa 3.5±1.3 3.6±1.2 3.3±1.4 0.26
R2*, s−1 54.6±16.3 59.0±15.5 42.0±6.9 <0.001
CAP, dB/m 298.0±67.2 323.4±52.6 216.9±38.3 <0.001
TE-LSM, kPa 8.4±9.3 9.4±9.5 5.1±8.0 <0.05
Weight, kg 88.7±23.5 95.5±22.2 66.3±10.3 <0.001
BMI, kg/m2 31.7±7.6 34.3±6.7 23.2±3.2 <0.001
WC, cm 101.5±17.5 107.9±14.4 80.6±7.6 <0.001
Hypertension 33 (25) 31 (30) 2 (6) <0.05
Type 2 diabetes mellitus 39 (29) 36 (35) 3 (10) <0.05
AST, U/L 44.7±42.3 50.9±45.9 24.3±16.2 <0.001
ALT, U/L 60.9±69.7 72.5±75.4 22.7±17.8 <0.001
GGT, U/L 59.1±83.2 63.8±50.3 43.8±146.5 0.24
ALP, U/L 76.2±55.9 77.4±24.4 72.4±108.4 0.79
HDL-C, mg/dL 51.3±15.2 49.0±14.7 58.8±14.6 <0.05
LDL-C, mg/dL 123.1±37.8 127.9±38.3 107.4±31.5 <0.05
Triglycerides, mg/dL 145.1±94.3 154.7±84.2 113.6±117.7 <0.05
WBC, ×109/L 6.9±2.2 7.4±2.2 5.4±1.6 <0.001
Platelet, ×109/L 268.8±85.5 277.6±90.4 239.8±59.2 <0.05
HbA1c, % 6.3±1.7 6.6±1.8 5.5±0.8 <0.001
Glucose, mg/dL 110.6±41.2 116.3±44.8 91.5±15.2 <0.001
Insulin, μU/mL 20.9±25.6 25.4±27.8 6.7±3.9 <0.001
HOMA-IR 6.2±9.1 7.5±9.9 1.5±1.0 <0.001
Glucagon, pmol/L 12.9±8.2 14.6±8.8 8.9±4.6 <0.001
C3, mg/dL 136.6±41.0 143.1±38.1 103.8±40.6 <0.001
C4, mg/dL 31.0±10.5 31.9±10.8 26.1±6.7 <0.05
Cytokeratin-18, U/L 372.7±539.7 492.6±597.2 72.8±74.6 <0.001
Angiotensinogen, ng/mL 6.0±5.4 6.5±5.7 3.7±2.0 0.21
NFS 0.3±1.6 0.4±1.7 -0.2±1.0 <0.05
FIB-4 1.1±1.4 1.2±1.6 0.9±0.5 0.31
APRI 0.5±0.6 0.6±0.6 0.3±0.2 <0.001
ELF score 8.8±0.9 8.9±0.9 8.4±0.9 <0.05
DXA total body fat, % 39.7±12.0 43.8±9.2 26.5±10.4 <0.001
DXA total muscle, kg 44.4±18.0 44.5±18.9 44.0±14.9 0.89
MRI-visceral fat, cm2 155.3±90.1 183.4±82.7 64.3±38.2 <0.001
MRI-subcutaneous fat, cm2 261.2±133.1 302.1±122.7 129.3±59.0 <0.001

Values are presented as mean±standard deviation or number (%). 
NAFLD, nonalcoholic fatty liver disease; MRI-PDFF, magnetic resonance imaging-estimated proton density fat fraction; MRE, magnetic reso-
nance elastography; LSM, liver stiffness measurement; R2*, R2* relaxation rate; CAP, controlled attenuation parameter; TE, transient elastogra-
phy; BMI, body mass index; WC, waist circumference; AST, aspartate aminotransferase; ALT, alanine aminotransferase; GGT, gamma-glutamyl 
transpeptidase; ALP, alkaline phosphatase; HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; WBC, 
white blood cell; HbA1c, glycosylated hemoglobin; HOMA-IR, homoeostatic model assessment of insulin resistance; C3, complement compo-
nent 3; C4, complement component 4; NFS, nonalcoholic fatty liver disease fibrosis score; FIB-4, fibrosis-4; APRI, AST-to-platelet ratio index; 
ELF, enhanced liver fibrosis; DXA, dual-energy X-ray absorptiometry.
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Evaluation of hepatic steatosis and its association with 
various parameters 
For the evaluation of hepatic steatosis, the MRI-PDFF study 
was performed in the same session as the 1H-MRS examina-
tion and on the same day or within 1 or 2 days of the TE exam-
ination. The MRI-PDFF correlated perfectly with the 1H-MRS, 
whereas the TE-CAP showed only a modest correlation with 
the 1H-MRS or MRI-PDFF (Fig. 1). Compared with those of 
the TE-CAP, the MRI-PDFF showed better correlations with 
fasting circulating AST, ALT, glucose, glucagon, triglycerides, 
C3, and CK-18 levels as well as the HOMA-IR value (Table 2). 
However, the TE-CAP showed higher correlations with BMI, 
WC, DXA total body fat (%), and MRI-measured abdominal 
fat areas than the MRI-PDFF (Table 2).

The optimal cutoff values of TE-CAP and ALT for the predic-
tion of hepatic steatosis (≥5% on MRI-PDFF) were 264 dB/m 
and 31 U/L, respectively (Fig. 2). When the upper limits of 
normal for ALT were defined as 35 and 25 U/L for the male 
and female subjects, respectively [24], the optimal discriminat-
ing cutoff values of MRI-PDFF and TE-CAP for abnormal 
ALT were 9.9% and 270 dB/m, respectively, with a higher AU-
ROC with MRI-PDFF (Fig. 2).

Evaluation of hepatic fibrosis and related factors
The MRE-LSM showed significant correlations with the blood 
AST, ALT, GGT, ALP, and CK-18 levels; the platelet count (neg-
ative); and the clinical and ELF scores, whereas the TE-LSM 
showed poor or weak correlations with those parameters (Ta-
ble 3, Fig. 1).

Both MRE- and TE-measured LSM values showed a higher 
correlation with the APRI and FIB-4 index than with the NFS 
(Table 3). The NFS, FIB-4 index, and APRI scores were catego-
rized using their respective lower and higher cutoff values, which 
have been suggested for the exclusion or prediction of ad-
vanced fibrosis (for the NFS <–1.455 and >0.676; for the FIB-4 
index <1.3 and >2.67; and for the APRI <0.5 and >1.5, respec-
tively) [8]. There was less overlap in both the MRE-LSM and 
TE-LSM values between the low-, intermediate-, and high-risk 
fibrosis groups based on the FIB-4 index than in those groups 
based on the NFS or APRI (Supplementary Fig. 3).

When we analyzed liver-biopsied patients (n=54), the MRE, 
TE and the ELF score showed statistical significance in differ-
entiating significant fibrosis (≥F2) from no or minimal hepatic 
fibrosis (F0/1). However, the ELF score showed more overlap 
between the fibrosis grades and wider variation within each fi-
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Table 2. The relationships of MRI-PDFF and TE-CAP with other factors

Parameter Correlation coefficient (r) 95% CI P value

MRI-PDFF correlates with
   1H-MRS, % 0.978 0.970 to 0.985 <0.001
   R2*, s−1 0.822 0.757 to 0.870 <0.001
   CAP, dB/m 0.716 0.620 to 0.791 <0.001
   Age, yr –0.194 –0.353 to –0.024 <0.05
   Weight, kg 0.598 0.476 to 0.698 <0.001
   BMI, kg/m2 0.618 0.500 to 0.713 <0.001
   WC, cm 0.590 0.466 to 0.691 <0.001
   DXA total body fat, % 0.532 0.396 to 0.645 <0.001
   DXA total muscle, kg 0.069 –0.104 to 0.238 0.43
   MRI-visceral fat, cm2 0.492 0.350 to 0.612 <0.001
   MRI-subcutaneous fat, cm2 0.596 0.473 to 0.696 <0.001
   AST, U/L 0.347 0.187 to 0.488 <0.001
   ALT, U/L 0.376 0.219 to 0.513 <0.001
   GGT, U/L 0.140 –0.031 to 0.303 0.10
   Triglycerides, mg/dL 0.273 0.107 to 0.424 <0.05
   HbA1c, % 0.297 0.133 to 0.445 <0.001
   Fasting glucose, mmol/L 0.280 0.115 to 0.430 <0.05
   Insulin, μU/mL 0.363 0.203 to 0.503 <0.001
   Glucagon, pmol/L 0.381 0.158 to 0.566 <0.05
   HOMA-IR 0.339 0.176 to 0.483 <0.001
   C3, mg/dL 0.486 0.333 to 0.614 <0.001
   Cytokeratin-18, U/L 0.593 0.414 to 0.727 <0.001
   Angiotensinogen, ng/mL –0.008 –0.308 to 0.292 0.95
TE-CAP correlates with
   1H-MRS, % 0.727 0.633 to 0.799 <0.001
   R2*, s−1 0.580 0.453 to 0.685 <0.001
   Age, yr 0.048 –0.125 to 0.218 0.58
   Weight, kg 0.639 0.524 to 0.730 <0.001
   BMI, kg/m2 0.733 0.642 to 0.804 <0.001
   WC, cm 0.716 0.621 to 0.791 <0.001
   DXA total body fat, % 0.662 0.552 to 0.749 <0.001
   DXA total muscle, kg 0.015 –0.158 to 0.188 0.86
   MRI-visceral fat, cm2 0.609 0.487 to 0.708 <0.001
   MRI-subcutaneous fat, cm2 0.674 0.566 to 0.758 <0.001
   AST, U/L 0.157 –0.014 to 0.321 0.07
   ALT, U/L 0.217 0.046 to 0.375 <0.05
   GGT, U/L 0.094 –0.080 to 0.262 0.28
   Triglycerides, mg/dL 0.236 0.066 to 0.393 <0.05
   HbA1c, % 0.301 0.135 to 0.450 <0.001
   Fasting glucose, mmol/L 0.221 0.050 to 0.378 <0.05

(Continued to the next page)
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Parameter Correlation coefficient (r) 95% CI P value

   Insulin, μU/mL 0.281 0.113 to 0.434 <0.05
   Glucagon, pmol/L 0.333 0.106 to 0.526 <0.05

   HOMA-IR 0.253 0.082 to 0.410 <0.05

   C3, mg/dL 0.332 0.157 to 0.487 <0.001

   Cytokeratin-18, U/L 0.319 0.090 to 0.515 <0.05

   Angiotensinogen, ng/mL 0.297 0.0001 to 0.545 0.05

MRI-PDFF, magnetic resonance imaging-estimated proton density fat fraction; TE, transient elastography; CAP, controlled attenuation param-
eter; CI, confidence interval; 1H-MRS, proton magnetic resonance spectroscopy; R2*, R2* relaxation rate; BMI, body mass index; WC, waist cir-
cumference; DXA, dual-energy X-ray absorptiometry; AST, aspartate aminotransferase; ALT, alanine aminotransferase; GGT, gamma-glutamyl 
transpeptidase; HbA1c, glycosylated hemoglobin; HOMA-IR, homoeostatic model assessment of insulin resistance; C3, complement compo-
nent 3.

Table 2. Continued

Fig. 2. Determination of the areas under the receiver operating characteristic curves (AUROCs) for the cutoff levels of transient 
elastography (TE)-controlled attenuation parameter (CAP) for steatosis definition and of the liver fat level associated with an ab-
normal alanine aminotransferase (ALT) value. The upper limits of normal for ALT (i.e., 35 and 25 U/L for males and females, re-
spectively) were defined based on a recent guidance [24]. (A) TE-CAP cutoff value corresponding to magnetic resonance imag-
ing-estimated proton density fat fraction (MRI-PDFF) 5% or more. (B) ALT cutoff value corresponding to MRI-PDFF 5% or 
more. (C) MRI-PDFF cutoff level corresponding to the upper limit of normal for ALT. (D) TE-CAP cutoff value corresponding to 
the upper limit of normal for ALT. 
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Table 3. The relationships of MRE-LSM and TE-LSM with other factors

Parameter Correlation coefficient (r) 95% CI P value

MRE-LSM correlates with
   Age, yr 0.244 0.075 to 0.399 <0.05
   Weight, kg 0.084 –0.088 to 0.252 0.33
   BMI, kg/m2 0.028 –0.144 to 0.198 0.75
   WC, cm 0.115 –0.057 to 0.281 0.18
   DXA total body fat, % –0.033 –0.205 to 0.140 0.70
   DXA total muscle, kg –0.133 –0.299 to 0.399 0.13
   MRI-visceral fat, cm2 0.264 0.096 to 0.417 <0.05
   MRI-subcutaneous fat, cm2 –0.005 –0.177 to 0.166 0.95
   R2*, s−1 –0.053 –0.223 to 0.117 0.54
   TE-LSM, kPa 0.568 0.437 to 0.675 <0.001
   AST, U/L 0.352 0.192 to 0.494 <0.001
   ALT, U/L 0.264 0.097 to 0.417 <0.05
   GGT, U/L 0.631 0.515 to 0.724 <0.001
   ALP, U/L 0.543 0.410 to 0.654 <0.001
   WBC, ×109/L 0.016 –0.156 to 0.186 0.85
   Platelet, ×109/L –0.323 –0.468 to –0.160 <0.001
   HOMA-IR –0.040 –0.213 to 0.133 0.65
   C3, mg/dL 0.201 0.018 to 0.371 <0.05
   Cytokeratin-18, U/L 0.477 0.270 to 0.641 <0.001
   Angiotensinogen, ng/mL 0.132 –0.174 to 0.416 0.39
   NFS 0.444 0.295 to 0.572 <0.001
   FIB-4 0.491 0.348 to 0.611 <0.001
   APRI 0.523 0.386 to 0.637 <0.001
   ELF score 0.511 0.368 to 0.630 <0.001
TE-LSM correlates with
   Age, yr 0.083 –0.090 to 0.251 <0.001
   Weight, kg 0.393 0.236 to 0.529 <0.001
   BMI, kg/m2 0.374 0.215 to 0.513 <0.001
   WC, cm 0.428 0.276 to 0.559 <0.001
   DXA total body fat, % 0.195 0.022 to 0.356 <0.05
   DXA total muscle, kg 0.069 –0.105 to 0.239 0.43
   MRI-visceral fat, cm2 0.376 0.217 to 0.516 <0.001
   MRI-subcutaneous fat, cm2 0.296 0.129 to 0.447 <0.001
   R2*, s−1 0.072 –0.102 to 0.242 0.41
   AST, U/L 0.187 0.016 to 0.348 <0.05
   ALT, U/L 0.130 –0.042 to 0.296 0.14
   GGT, U/L 0.565 0.434 to 0.672 <0.001
   ALP, U/L 0.437 0.286 to 0.566 <0.001

   WBC, ×109/L 0.239 0.069 to 0.394 <0.05

(Continued to the next page)
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brosis grade than the MRE- or TE-LSM (Supplementary Fig. 
4). In addition, MRE performed better in differentiating ad-
vanced fibrosis (≥F3) from lower grade hepatic fibrosis (<F3) 
than TE and the ELF test (Fig. 3). The cutoff values for ad-
vanced fibrosis were 3.9 kPa for MRE-LSM, 8.1 kPa for TE-
LSM and 9.2 for the ELF test.

When we analyzed liver-biopsied patients (n=54), the opti-
mal discriminating cutoff value of significant fibrosis (≥F2) 
based on MRE from those with lower grade fibrosis (<F2) was 
3.8 kPa. We dichotomized the subjects between significant fi-
brosis and non-significant fibrosis groups by utilizing this cut-
off value (3.8 kPa) (Supplementary Table 1). Based on this cut-
off value, patients with high MRE-LSM (≥3.8 kPa) had higher 
age and other various unfavorable body and metabolic param-

eters, and lower platelet count compared to those who repre-
sented low MRE-LSM (<3.8 kPa). Factors associated with high 
MRE-LSM on univariate analysis were age, type 2 diabetes 
mellitus, AST, ALT, GGT, ALP, platelet count, MRI-PDFF, and 
MRI-visceral and subcutaneous fat areas. Multivariate analyses 
showed that age (odds ratio [OR], 1.058; P<0.05), ALP (OR, 
1.023; P<0.05), and platelet count (OR, 0.990; P<0.05) were 
found the potential predictors for significant fibrosis based on 
the MRE-LSM cutoff value (Supplementary Table 2).

DISCUSSION

NAFLD is among the most common metabolic disorders with 
a broad spectrum of disease entities and requires widely avail-

Fig. 3. Comparisons of the areas under the receiver operating characteristic curves (AUROCs) for magnetic resonance elastogra-
phy (MRE), transient elastography (TE), and the enhanced liver fibrosis (ELF) test for a diagnosis of advanced fibrosis (≥F3) in 
the biopsied subjects (n=54). (A) The comparison of the AUROC between MRE and TE, (B) the comparison of the AUROC be-
tween MRE and ELF test, and (C) the comparison of the AUROC between TE and ELF test.
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Table 3. Continued

Parameter Correlation coefficient (r) 95% CI P value

   Platelet, ×109/L –0.153 –0.317 to 0.019 0.08

   HOMA-IR 0.078 –0.097 to 0.250 0.38

   C3, mg/dL 0.259 0.078 to 0.423 <0.05

   Cytokeratin-18, U/L 0.214 –0.021 to 0.427 0.07

   Angiotensinogen, ng/mL 0.285 –0.012 to 0.537 0.06

   NFS 0.263 0.094 to 0.417 <0.05

   FIB-4 0.287 0.120 to 0.438 <0.05

   APRI 0.295 0.129 to 0.445 <0.001

   ELF score 0.399 0.239 to 0.538 <0.001

MRE, magnetic resonance elastography; LSM, liver stiffness measurement; TE, transient elastography; CI, confidence interval; BMI, body mass 
index; WC, waist circumference; DXA, dual-energy X-ray absorptiometry; MRI, magnetic resonance imaging; R2*, R2* relaxation rate; AST, 
aspartate aminotransferase; ALT, alanine aminotransferase; GGT, gamma-glutamyl transpeptidase; ALP, alkaline phosphatase; WBC, white 
blood cell; HOMA-IR, homoeostatic model assessment of insulin resistance; C3, complement component 3; NFS, nonalcoholic fatty liver dis-
ease fibrosis score; FIB-4, fibrosis-4; APRI, AST-to-platelet ratio index; ELF, enhanced liver fibrosis.
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able and relatively exact diagnostic tools for the diagnosis and 
assessment of its specific disease stages [2,25]. Although hepat-
ic fibrosis is the most important and independent prognostic 
factor in NAFLD [5,6], liver biopsy, which is the gold standard 
for fibrosis staging in NAFLD, is not performed for the majori-
ty of patients with NAFLD. As alternatives, noninvasive tools 
for the assessment of NAFLD have received much attention, 
and some noninvasive methods have been validated and are 
available in a clinical-dependent context [26]. 

In the present study, we aimed to evaluate whether MR-
based examinations better reflected the pathophysiologic fea-
tures and fibrosis progression in NAFLD and to compare the 
methods with other noninvasive tools in the differentiation of 
advanced fibrosis, including clinical scoring systems, the ELF 
test, and TE. Few studies have tried to correlate pathophysio-
logic and metabolic features with the results of these three vali-
dated noninvasive examinations simultaneously [16].

Our results revealed that the MRI-PDFF correlated perfectly 
with the liver fat measured by 1H-MRS and had a significant 
association with other various pathophysiologic and metabolic 
parameters including liver enzyme activities, lipid and glucose 
metabolism, insulin resistance, the marker of hepatocyte apop-
tosis (CK-18), and inflammation (C3). In contrast, the TE-
CAP correlated more with BMI than with the 1H-MRS-mea-
sured liver fat and showed a closer association with body fat, 
abdominal subcutaneous fat, and WC than with the above-
mentioned pathophysiologic parameters. The reason that the 
TE-CAP correlated more with anthropometric than with met-
abolic parameters seems to be related to the principle of the 
CAP, which measures total ultrasonic attenuation [27]. Be-
cause obesity is associated with a higher skin-to-liver capsule 
distance due to subcutaneous fat, the presence of thicker non-
hepatic tissue between the liver and the TE probe has been 
shown to significantly affect the CAP values [27]. In the pres-
ent study, the cutoff level of the TE-CAP value corresponding 
to MRI-PDFF ≥5% was 264 dB/m. To define steatosis, variable 
cutoff levels of the TE-CAP value have been reported, ranging 
from 243 to 288 dB/m [20,28]. In addition, a previous study 
showed that an increased TE-CAP value was also associated 
with an overestimation of LSM by TE, especially in patients 
with lower fibrosis stages [29]. Thus, in obese patients, TE can 
increase the false positive LSM results for advanced fibrosis, as 
the TE-CAP increases with its known failure rate and there is a 
significant rate of disagreement between repeated examina-
tions [30]. Collectively, our results suggest that MRI-PDFF is 

an accurate and reproducible noninvasive tool that removes 
the technical complexity of the 1H-MRS protocol and is not af-
fected by patient factors (e.g., BMI and subcutaneous fat), 
which are important confounding factors for TE examination.

The degree of steatosis related to early ALT elevation during 
the course of NAFLD has not been studied extensively. How-
ever, this issue seems to be important, because a significant 
proportion of patients with NAFLD have a normal ALT level 
[31]. Our results showed that the hepatic fat cutoff level associ-
ated with an abnormal ALT level were 9.9%. This PDFF value 
is lower than the previously reported NASH-predicting PDFF 
value (i.e., 12.4%) [32]. However, it is of note that in some pa-
tients with NAFLD and normal liver enzymes, hepatic fibrosis 
also needs to be tested [33]. The clinical implications of those 
PDFF cutoff values in NAFLD need to be studied further with 
other noninvasive tools for the discrimination of NASH and/
or fibrosis from simple steatosis.

Regarding the hepatic fibrosis assessment in the present 
study, MRE-LSM better correlated with the clinical and ELF 
scores and other pathophysiologically relevant parameters 
than TE-LSM. And, MRE outperformed both TE and the ELF 
test in discriminating advanced fibrosis in NAFLD. The excel-
lent performance of MRE in this study echoed previous studies 
[13,18,34]. However, few studies have evaluated MRE simulta-
neously with TE, the ELF and clinical scores, and serum bio-
markers [16]. Collectively, the comprehensive analysis of non-
invasive tools for assessing hepatic fibrosis in the present study 
showed that MRE performed better than other tools in both 
mechanical and pathophysiologic aspects. TE-LSM showed 
marginal significance in differentiating significant fibrosis, 
whereas the ELF score did not. However, TE did not outper-
form the ELF test in differentiating advanced fibrosis. In the 
present study, the cutoff values for advanced fibrosis were 3.9 
kPa for MRE-LSM, 8.1 kPa for TE-LSM, and for 9.2 for the 
ELF test. These values are in the ranges of previous reports [16, 
35-37]. 

Additionally, many indirect clinical scoring systems for the 
assessment of fibrosis, including the NFS, FIB-4 index, and 
APRI, and direct serum markers for extracellular matrix turn-
over, including the ELF test, have been studied frequently [8]. 
The NFS, FIB-4 index, and APRI may perform relatively well 
in excluding or predicting advanced fibrosis with their respec-
tive lower and higher cutoff values [8]. Each of the three groups 
categorized by applying the low and high risk for fibrosis cutoff 
values of the three clinical scoring systems did show signifi-



Choi SJ, et al.

750 Diabetes Metab J 2021;45:739-752  https://e-dmj.org

cantly overlapping MRE- and TE-LSM values, especially for 
NFS, but less so with the FIB-4 index. In addition, APRI and 
FIB-4 correlated better with MRE-LSM than NFS in the pres-
ent study. Thus, in line with a previous study [38], our results 
suggest that FIB-4 better discriminates fibrosis stages than the 
other two scoring systems. The ELF score may be a useful 
blood test for the exclusion of fibrosis by applying a cutoff val-
ue of 7.7 and can significantly discriminate cirrhosis by apply-
ing a higher cutoff value (e.g., 11.3) [39]. However, cautious in-
terpretation is required because age (increased with age) and 
sex (lower in females) also significantly affect the ELF score.

In addition, the CK-18 M30 fragment, which is a marker of 
hepatocyte apoptosis [8], was increased and correlated better 
with the MR-based parameters than with the TE parameters. 
Furthermore, the level of the M30 fragment correlated well 
with C3 (r=0.423, P<0.001, data not shown), which was re-
ported to be associated with excessive fat accumulation, hepa-
tocyte apoptosis, and hepatic neutrophil sequestration and to 
play a role in NAFLD progression [40]. Unfortunately, we 
could not include the C-reactive protein levels in the analysis 
due to missing values in the majority of cases. Our results 
showed that the MR-based parameters better matched both 
hepatocyte apoptosis and necroinflammation, which was in 
line with the results of a previous study in which longitudinal 
changes in the CK-18 M30 fragment and PDFF were correlat-
ed with each other after medical treatment [16].

Our results show that although TE may be a reasonable ini-
tial option to evaluate patients with NAFLD and to exclude or 
differentiate advanced hepatic fibrosis, MR-based protocols, 
which have undergone rapid technical development, are be-
coming user-friendly and better capture the pathophysiologic, 
histologic, and metabolic features of NAFLD. In line with our 
view, MRI-PDFF and MRE have been shown to outperform 
TE in discriminating the progression of hepatic steatosis and 
fibrosis [13,34].

The strengths of the current study include the comprehen-
sive analyses of various noninvasive assessment tools for 
NAFLD. In addition, we included not only liver fat and LSM 
values but also various pathophysiologic parameters in the 
analysis, which supported the superiority of the MR-based 
techniques compared to those of the other methods in various 
aspects. This study also has several limitations. First, a liver bi-
opsy was performed in a relatively small number of partici-
pants. However, in the case of steatosis, MRI-PDFF can mea-
sure liver fat more precisely than biopsy [7,20]. Additionally, 

LSM measured by MRE may reflect a larger area of liver pa-
thology than that covered by TE or biopsy, which may suffer 
from sampling variability. Second, this study has a cross-sec-
tional design. Longitudinal follow-up data and therapeutic re-
sponses need to be included in future studies. Third, the pres-
ent study was performed in a single center, which may not rep-
resent the Korean population.

In conclusion, when we compared several noninvasive meth-
ods to assess NAFLD, including MRI-based methods, TE, the 
ELF score, other serum markers and clinical scoring systems, 
we found that MRI-based techniques (MRI-PDFF and MRE) 
were the best at measuring steatosis accurately, discriminating 
advanced hepatic fibrosis, and capturing pathophysiologic and 
metabolic features of the disease.
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