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Background: Most loci associated with type 2 diabetes mellitus (T2DM) discovered to date are within noncoding regions of un-
known functional significance. By contrast, exonic regions have advantages for biological interpretation.
Methods: We analyzed the association of exome array data from 14,026 Koreans to identify susceptible exonic loci for T2DM. We 
used genotype information of 50,543 variants using the Illumina exome array platform.
Results: In total, 7 loci were significant with a Bonferroni adjusted P=1.03×10–6. rs2233580 in paired box gene 4 (PAX4) showed 
the highest odds ratio of 1.48 (P=1.60×10−10). rs11960799 in membrane associated ring-CH-type finger 3 (MARCH3) and 
rs75680863 in transcobalamin 2 (TCN2) were newly identified loci. When we built a model to predict the incidence of diabetes 
with the 7 loci and clinical variables, area under the curve (AUC) of the model improved significantly (AUC=0.72, P<0.05), but 
marginally in its magnitude, compared with the model using clinical variables (AUC=0.71, P<0.05). When we divided the entire 
population into three groups—normal body mass index (BMI; <25 kg/m2), overweight (25≤ BMI <30 kg/m2), and obese (BMI 
≥30 kg/m2) individuals—the predictive performance of the 7 loci was greatest in the group of obese individuals, where the net re-
classification improvement was highly significant (0.51; P=8.00×10–5).
Conclusion: We found exonic loci having a susceptibility for T2DM. We found that such genetic information is advantageous for 
predicting T2DM in a subgroup of obese individuals.
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INTRODUCTION

Diabetes is an irreversible disease, identification of risk factors 
and disease prevention are therefore important for its manage-
ment. Previous research has revealed risk factors for type 2 dia-
betes mellitus (T2DM) including body mass index (BMI), 
waist circumference, blood pressure, family history, and genet-
ic background [1,2]. 

Many investigators have assumed that identification of ge-
netic factors will improve the prediction of T2DM, so many 

genetic studies have been performed [3]. With the advent of 
high-throughput genotyping technologies, genome-wide asso-
ciation studies (GWASs) have become prevalent [4]. Several 
hundreds of thousands of tag single nucleotide polymorphisms 
(SNPs), which represent genotype variation of neighboring 
SNPs, are selected and probes for the tag SNPs are used in SNP 
microarray chips. Usually, more than 10,000 samples are used 
and imputed with a reference panel from a population se-
quencing project such as the 1000 Genome Project [5]. These 
GWASs have been actively applied to the study of T2DM, and 
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meta-analysis of the individual GWASs identifies genome-wide 
loci associated significantly with the development of T2DM 
[3,6]. For example, Unoki et al. [7] reported that rs2283228, 
which is located in potassium voltage-gated channel subfamily 
Q member 1 (KCNQ1), shows genome-wide significance and 
the result was replicated in a different population [7]. In a me-
ta-analysis of GWASs of European populations, 12 novel loci 
that are enriched in genes involved in cell cycle regulation have 
been identified [8]. A trans-ethnic meta-analysis of several 
consortia for a GWAS of diabetes revealed a directional consis-
tency of the risk alleles across different ethnic groups and sev-
en newly identified susceptible loci for T2DM [9]. While these 
studies used SNP microarray data, a sequencing-based GWAS 
and combination with the chip-based data were applied re-
cently [10]. The results showed that variants associated with 
T2DM are located within the region that identified with previ-
ous GWASs.

Although the exome covers only about 1% of the entire hu-
man genome, it is easier to find functional implications for the 
significant loci because there is a lot of information about gene 
function. In genetic studies of T2DM and related traits, the 
exome-wide association studies have been performed with an 
exome array or exome sequencing to identify susceptible loci 
[10-14].

In the present research, using exome microarray data from 
14,026 Koreans, we identified coding variants having suscepti-
bility for T2DM. We also applied the genotype information of 
the variants into a model to predict T2DM and tested the per-
formance of the model in the entire population and subgroups 
stratified by BMI.

 
METHODS

Study population
We used epidemiological data from the Ansan/Ansung (ASAS), 
Cardio-Vascular disease Association Study (CAVAS) and Health 
Examinee (HEXA) cohort, which are part of the Korean Ge-
nome and Epidemiology (KoGES) project [15]. The present 
study was approved by the Institutional Review Board of Korea 
Centers for Disease Control & Prevention (2017-03-10-1C-A) 
and written consent was obtained from all participants. The 
participants in the ASAS cohort underwent an oral glucose tol-
erance test (OGTT) using a solution of 75 g glucose. Using the 
OGTT results, we defined T2DM patients according to their 
past history of diabetes or American Diabetes Association cri-

teria [16], which include (1) fasting glucose ≥126 mg/dL, (2) 
2-hour glucose ≥200 mg/dL, and (3) glycosylated hemoglobin 
≥6.5%. The OGTT had not been used in participants from the 
CAVAS and HEXA cohorts, and so the history and fasting glu-
cose level were used to determine diabetes status in these co-
horts.

Exome chip genotyping and quality control
We used the exome chip data that had been generated in a pre-
vious study [17]. Detailed genotyping and quality control pro-
cesses were described previously. In brief, the Illumina Hu-
manExome Chip v1.1 (Illumina Inc., San Diego, CA, USA), 
which includes probes for 242,901 variants, was used for geno-
typing. Illumina GenomeStudio version 2011.1 software clus-
tered the probe signals to determine the genotype. After geno-
type calling, variant filtering was performed based on the fol-
lowing criteria: (1) completely missing in all participants, (2) 
monomorphic SNP, (3) Hardy-Weinberg equilibrium P<1.0× 
10–6, and (4) genotype call rate of <95%. Samples with cryptic 
relatedness and sex discrepancy were also excluded. After fil-
tering, we imputed a missing genotype using the phasing func-
tion of the Beagle software [18].

Genome-wide association analysis
We used PLINK 1.9 for GWAS of the exome chip and meta-
analysis [19]. The logistic function was applied with covariates 
of sex, age, and BMI. We used the adjust option to estimate λ 
for genomic control of GWAS statistics. For meta-analysis, we 
used the meta function of PLINK, and the result was filtered 
with Cochrane Q statistics and the I2 index. Bonferroni’s mul-
tiple testing correction was applied to select exome-wide sig-
nificant loci. To search published GWAS results, we used the 
Korean Reference Genome Database (KRGDB) [20].

Prediction analysis and comparison of performance
Using follow-up information from the ASAS cohort data, we 
predicted T2DM using clinical and genetic variables. The glm 
function of the R statistical software package was used to de-
velop the predictive model using follow-up information for 
T2DM status [21]. To compare different models, we used the 
area under the curve (AUC) and continuous net reclassification 
improvement (cNRI). To estimate the AUC, we used the partial 
receiver operating curve component of the R package [22]. The 
cNRI was estimated and tested statistically using the reclassifi-
cation function of the PredictABEL R package [23].
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RESULTS

Study population
The age of the study population ranged from 39 to 89 years, 
and mean±standard deviation (SD) was 54.22±9.23 years (Ta-
ble 1). The number of female participants (n=7,588) was high-
er than that of male participants (n=6,438). The mean±SD of 
the BMI was 24.37±3.09, and the BMI of 5,561 participants 
(40%) was over the threshold for being overweight (≥25). 
Among the 14,026 participants to whom the exome array was 
applied, there were 1,992 (14%) patients with T2DM. The three 
covariates (sex, age, and BMI) that were used in the GWAS 
were significantly different between the group with T2DM and 
the control group (P<0.05) (Supplementary Table 1).

Result of the exome-wide association study
From the AS, HEXA, and CAVAS cohorts, exome chip data of 
7,461, 3,456, and 4,566 participants were used in the analysis. 
After filtering, 50,840 variants were tested for their genetic sus-
ceptibility to T2DM. The genomic inflation factor was 1.00, 
which indicated that there was no inflation of the GWAS re-
sult. In the quantile-quantile plot, most of the variants showed 
null distribution, and a few loci that had a significant associa-
tion with T2DM showed a marked deviation from the diagonal 
line (Supplementary Fig. 1).

When we applied Bonferroni’s multiple testing correction to 
the results of GWAS using logistic regression with the additive 
genetic model, 15 variants showed exome-wide significance 
with cut-off P=9.83×10–7 (0.05/50,840). We used the PLINK 
clump function to filter the variants based on linkage disequi-
librium (LD) and distance between variants. We applied default 
parameters with LD=0.2 and distance=250K. After the clump-

ing, we obtained six variants (Table 1 and Fig. 1). Among them, 
rs2233580 showed the highest significance (P=1.60×10−10) 
with an odds ratio (OR) of 1.48 (95% confidence interval [CI], 
1.31 to 1.67), which is located on paired box gene 4 (PAX4). 
The rs2206734, which is located on cyclin-dependent kinase 
like 1 (CDKL1), showed the second highest significance (P= 
1.60×10−10). The rs2237895 of KCNQ1 gene was identified as 
susceptible loci only in the GWAS of an East Asian population, 
and it was replicated in our result. The rs11960799 has not been 
reported as a susceptible locus for T2DM, although it has 
shown nominal significances for triglyceride level, rheumatoid 
arthritis, and birth weight previously [24]. The OR of the vari-
ant was less than 1 (=0.82), which indicated a protective effect 
for T2DM. The rs75680863 also showed a protective effect 
(OR, 0.61; 95% CI, 0.51 to 0.74) for T2DM. This variant was a 
novel locus that had never been reported for its association 
with the development of T2DM. rs2237892 also showed a pro-
tective effect against the development of T2DM (OR, 0.83; 95% 
CI, 0.77 to 0.89). It is also located in KCNQ1, and previous 
studies reported that this variant had genome-wide signifi-
cance in its association with T2DM [7,25]. When nominal sig-
nificance (P<0.05) is considered, there are a lot of significant 
associations between T2DM and the other traits and the 
rs2237892 variant (Supplementary Fig. 2). Interestingly, the 
ORs of the previous studies of GWAS for T2DM are >1, which 
indicates increasing risk of disease. rs10965250, having the least 
significant P value, appears to have a protective effect against 
T2DM. The variant has been reported to have a genome-wide 
association with T2DM in a European population [8].

We also performed a meta-analysis using our results and 
summary statistics from the GWAS catalog database. In the 
GWAS catalog, we extracted 1,222 variants having genome-

Table 1. Result of exome-wide association analysis of 14,026 Koreans

Chr BP SNP Gene MA MAF OR (95% CI) P value

7 127253550 rs2233580 PAX4 A 0.07 1.48 (1.31–1.67) 1.60×10−10

6 20694884 rs2206734 CDKAL1 A 0.46 1.25 (1.17–1.34) 2.03×10−10

11 2857194 rs2237895 KCNQ1 C 0.31 1.25 (1.16–1.34) 3.73×10−9

5 126356042 rs11960799 MARCH3 G 0.35 0.82 (0.76–0.88) 1.19×10−7

22 31007023 rs75680863 TCN2 T 0.05 0.62 (0.51–0.74) 2.08×10−7

11 2839751 rs2237892 KCNQ1 A 0.38 0.83 (0.77–0.89) 4.83×10−7

9 22133284 rs10965250 – A 0.43 0.84 (0.71–0.90) 6.73×10−7

Chr, chromosome; BP, base position; SNP, single nucleotide polymorphism; MA, minor allele; MAF, minor allele frequency; OR, odds ratio; CI, 
confidence interval; PAX4, paired box gene 4; CDKAL1, cyclin-dependent kinase 5 regulatory associated protein 1-like 1; KCNQ1, potassium 
voltage-gated channel subfamily Q member 1; MARCH3, membrane associated ring-CH-type finger 3; TCN2, transcobalamin 2.
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wide significance (P<5×10–8) in susceptibility for T2DM. 
Among them, 124 variants were identified in our exome array 
data. We used the variants in a meta-analysis, and the summa-
ry statistics of the variants from our results and the GWAS cat-
alog were applied to the meta-analysis. The P values from a 
fixed effects model were used to test significance. We used a P 
threshold of 9.83×10–7, which was used to identify significant 
exome-wide results in our data. To exclude a heterogeneous ef-
fect of the variants under the fixed effects assumption, we se-
lected results with a threshold of I2 <50% and P of Cochrane Q 
statistics >0.05. After filtering, 23 variants were found to be 
significant (Fig. 2 and Supplementary Table 2). rs10440833, 
which lies in CDKL1, showed the most significant result 
(P=3.27×10–27). Interestingly, of the exome-wide significant 
loci in our data, only rs2237895 showed significance in the 
meta-analysis (P=1.25×10–14) (Supplementary Table 2).

Prediction of future diabetes using clinical and genetic 
markers
Using significant loci in the exome-wide association analysis, 
we performed prediction analysis. In the prediction analysis, 
we used clinical variables including fasting glucose, BMI, high-
density lipoprotein, sex, parental history of diabetes, triglycer-
ide, systolic pressure, diastolic pressure, and treatment status of 

hypertension. These have been frequently used to develop 
models to predict T2DM [26]. The incident diabetes was iden-
tified using 10-year follow-up information of the ASAS cohort. 
The number of baseline participants who did not have T2DM 
was 7,889 and 6,317 participants had exome chip data. In total, 
1,054 participants having exome chip data developed T2DM 
during follow-up.

To measure the predictive performance, we estimated the 
AUC and the net reclassification index (NRI) was used to com-
pare the prediction models with or without genetic informa-
tion (Fig. 3). When the prediction model was built using the 
clinical variables, the AUC was 0.71 (95% CI, 0.70 to 0.73). The 
AUC increased to 0.72 (95% CI, 0.70 to 0.74) with the geno-
type information of the 7 loci. The difference in the AUCs was 
significant (P=1.04×10–3) and the NRI (0.11) was also signifi-
cant (P=9.80×10–4).

We then compared the prediction performances of the clini-
cal variables and genetic markers between BMI subgroups. We 
divided the total population into three BMI subgroups: normal 
(BMI <25, n=3,727), overweight (25≤ BMI <30, n=2,314), 
and obese (BMI ≥30, n=267) individuals. We applied logistic 
regression to each subgroup and compared the prediction re-
sults with the analysis of the entire population. We found that 
there was a substantial difference in the prediction perfor-

Fig. 1. Manhattan plot of P values from exome-wide association analysis (GWAS). The 6 points that are placed over the red dotted 
line indicates significant loci with Bonferroni’s multiple testing correction (adjusted P=9.83×10–7). OR, odds ratio.
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mance for future T2DM between the BMI subgroups (Fig. 3). 
In the normal group, AUC of the clinical model and combined 
model (clinical+genetic information) was 0.70 (95% CI, 0.68 to 
0.73) and 0.71 (95% CI, 0.69 to 0.74), respectively. The differ-
ence in AUC was significant (P=0.03). The NRI was 0.14 (95% 
CI, 0.05 to 0.23), which was also significant (P=3.58×10–3). In 
the overweight group, there was no significant difference in 
AUC between clinical model and combined model (0.72 and 
0.73, respectively), although the NRI was significant (NRI= 
0.12; 95% CI, 0.02 to 0.22; P=0.02). The difference in AUC be-
tween the clinical model and combined model was highest for 
the obese group (Fig. 3). Although not significant (P=0.16), 
the AUC of the combined model increased to 0.75 (95% CI, 
0.69 to 0.81), compared with that of the clinical model in the 
obese group, which was 0.72 (95% CI, 0.65 to 0.79). Moreover, 
the NRI was 0.52 (P=8.00×10–5); that is, 4.3-fold that of the 
overweight group, which had the lowest NRI value. To exclude 
the possibility that the greater AUC in the combined model in 

the obese group resulted from a small sample size, we random-
ly selected the same number of participants as those in the 
obese group (n=267) and estimated the AUC. We repeated 
this process 1,000 times. No AUC from random selection of 
the participants showed a greater AUC than that of the obese 
group (Supplementary Fig. 3).

DISCUSSION

Here we identified the exome-wide loci having susceptibility 
for T2DM in a Korean population. When we applied the loci 
to the predictive model for T2DM, we found that while perfor-
mance of the model was marginal in the total population, the 
performance was more obvious in the obese group.

rs2233580 had the highest OR (1.45; 95% CI, 1.31 to 1.67; 
P=1.60×10−10). This variant had been reported in a recent 
exome-wide association study using exome sequencing data, 
and the current data were used to replicate the analysis [27]. 

Fig. 2. Forest plot of meta-analysis with result from Korean exome data and genome-wide association stud (GWAS) catalog sum-
mary data. P value indicates P values of meta-analysis with fixed effect model. In the presentation of odds ratio (OR) and confi-
dence interval (CI), upper one is from Korean exome data, and the lower one is from GWAS catalog. Blue line of the forest plot 
indicates OR and CI of Korean exome data. The whole results were presented in Supplementary Table 2. SNP, single nucleotide 
polymorphism.

rs10440833

rs7901695

rs4712523

rs7754840

rs4712524

rs2237895

rs1470579

rs10946398

rs9295474

rs576674

1.249 [1.166–1.338]

1.274 [1.129–1.438]

1.186 [0.975–1.442]

1.37 [1.31–1.43]

1.236 [1.154–1.324]

1.235 [1.095–1.394]

1.236 [1.154–1.324]

1.236 [1.095–1.394]

1.236 [1.154–1.324]

1.235 [1.095–1.394]

1.248 [1.159–1.343]

1.29 [1.19–1.4]

1.136 [1.056–1.221]

1.17 [1.031–1.327]

1.236 [1.154–1.324]

1.235 [1.095–1.393]

1.234 [1.152–1.322]

1.229 [1.089–1.387]

1.103 [1.008–1.206]

1.07 [1.05–1.1]

3.29E-27

5.00E-25

6.86E-23

1.37E-18

2.20E-16

1.25E-14

1.72E-14

2.45E-14

6.98E-13

3.96E-12

OR=1.262

OR=1.278

OR=1.236

OR=1.236

OR=1.236

OR=1.269

OR=1.153

OR=1.236

OR=1.232

OR=1.087

SNPs P value Odds ratio OR [95% CI]

Odds ratio
0.975 1.2 1.425

Exome data
GWAS catalog



Cho SB, et al.

236 Diabetes Metab J 2021;45:231-240  https://e-dmj.org

The variant is located in PAX4, which is a transcription factor 
involved in pancreatic islet development [28]. In previous stud-
ies, variants of PAX4 were found to be associated with T2DM 
[16,29,30]. In particular, recent genome-wide or exome-wide 
association studies with East Asian populations revealed PAX4 
variants are associated with T2DM [19,21,32]. In the present 
study and in an exome chip analysis of T2DM in a Chinese 
population, rs2233580 had the highest OR for significant vari-
ants in each study (1.45 and 1.38 in Korean and Chinese popu-

lations, respectively) [12]. PAX4 has a potential role in the 
management of T2DM, especially by preserving or replenish-
ing β-cells [28]. It was notable that no significant results for 
rs2233580 have been reported in GWAS of non-Asian popula-
tions. rs2237892 and rs2237895, which are located in KCNQ1, 
are also well-known for their genome-wide significant associa-
tion with the development of T2DM (Supplementary Fig. 4). 
Interestingly, the significance of rs2237895 has been reported 
only for an East Asian population, while rs2237892 and other 

Fig. 3. Receiver operating curve (ROC) plots of prediction model with or without genotype information in total, normal, over-
weight, and obese population. The thick line indicated ROC of combined model (clinical variable+genetic marker). The dashed 
line shows ROC of clinical model that integrated clinical variables in the prediction of incident type 2 diabetes mellitus. (A) There 
was a small gap between the two ROCs of total population. (B) In the normal weight group, there was a slight gap between the 
lines, which showed no substantially wider than that of total population. (C) Compared with the plots of normal weight popula-
tion, there was wider gap between the plots, although still the magnitude is small. (D) In the obese group, area under the curve 
(AUC) of combined model (0.75) is greater than that of clinical model (0.72), which showed a clear gap between the ROC curves. 
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variants of KCNQ1, such as rs2237896 and rs2237897, were 
significant in other ethnic groups (Supplementary Table 3). 
The rs2206734 lies in cyclin-dependent kinase 5 regulatory 
subunit associated protein 1 like 1 (CDKAL1), and the SNP has 
been reported in many GWASs of T2DM or related traits such 
as fasting glucose level and BMI. When we searched the vari-
ant on the KRGDB, we found many associations with metabolic 
traits including T2DM (Supplementary Fig. 5). rs10965250 is lo-
cated in the intergenic region between AL157937.1 and CD-
KN2B-AS1 and has been reported to be associated with T2DM 
and fasting glucose, 2-hour glucose level, waist-hip ratio, and 
birth weight in various ethnic groups (Supplementary Fig. 6). 
The two variants (rs2237892 and rs10965250) had OR <1, in-
dicating the protective effect of the variants in the development 
of T2DM. However, the previously reported ORs were >1, in-
dicating the ethnic-specific effect of the variant. This finding 
should be confirmed in future studies.

rs11960799 within membrane associated ring-CH-type fin-
ger 3 (MARCH3) located at 126,356,042 of chromosome 3 had 
never been reported for its association with T2DM. In previ-
ous studies, rs11960799 showed a significant association with 
triglyceride level, rheumatoid arthritis, and birth weight. How-
ever, these variants were found to have nominal significance 
(P<0.05), and did not reach genome-wide significance. Con-
sidering a previous report that showed the significant tran-
script change of MARCH3 in human islet cells [31], it seems 
possible that rs11960799 is at least a variant associated with the 
development of T2DM. rs75680863 is another variant newly 
discovered in the present study. No previous GWASs have ever 
reported the significant association of this variant and T2DM. 
The OR of rs75680863 was 0.63, which is equivalent to an OR 
of 1.58 if the direction of the coefficient of the variant is posi-
tive, and the size of the OR is highest among those of the sig-
nificant variants. rs75680863 lies within transcobalamin 2 
(TCN2), the gene for transcobalamin 2, which is a member of 
the vitamin B12 binding protein family. Because vitamin B12 
deficiency is closely related to T2DM [32], there is a possible 
pathway involving vitamin B12 metabolism and the develop-
ment of T2DM.

In the present meta-analysis, we identified 32 loci showing 
significance, and the levels were sufficiently high to reach ge-
nome-wide significance (P=5×10–8). In a fixed effects model, 
more variants (n=64) among the 124 that were used in the 
meta-analysis showed significance. However, after filtering 
based on Cochrane Q statistics and the I2 heterogeneity index, 

the number decreased to 32. Moreover, only a single significant 
variant from our results was included in the significant result 
from the meta-analysis. These might imply substantial hetero-
geneity in the genetic effect for development of T2DM in Ko-
reans.

In this study, we performed prediction analysis using 7 sig-
nificant loci. While many studies used genetic risk score (GRS) 
by summing the risk scores of individual loci, we used the 7 
loci directly because the number of loci was not so high. When 
we applied the 7 significant loci to the prediction analysis, we 
obtained a significant, but marginal, increase in the AUC. This 
result was consistent with those of previous studies [33]. These 
results were consistent regardless of the number of genetic 
markers that were used in the prediction models. For example, 
Vassy et al. [34] used different numbers of common genetic 
variants for predicting incident T2DM. Even when genetic in-
formation was integrated into the prediction model, the per-
formance showed only marginal improvement. Talmud et al. 
[35] reported similar results with weighted scoring of 65 com-
mon genetic variants. They showed a significant but marginal 
change of receiver operating curve (ROC) (from 0.75 to 0.76, 
P=0.0003) with integrating a GRS into their prediction model. 
Lall et al. [36] applied a greater number of genetic variants into 
a prediction model. They used 1,000 SNPs for developing a 
prediction model using a doubly weighted GRS method. In the 
results, the prediction model with the GRS showed a slight in-
crease of AUC (from 0.77 to 0.79), but highly significant P val-
ue (2.01×10–11) of the difference of AUC between the model 
with or without GRS [36]. The NRI was mildly but significant-
ly increased in our results; this compares to previous studies 
that also reported a mild increase of continuous NRI in a mod-
el with genotype information [34-36]. This seems to indicate 
that one clinical implication of a genetic prediction model of 
incident T2DM lies with the reclassification of the at-risk pop-
ulation, not with lifting overall prediction performance.

When we divided the total population into three groups 
(normal, overweight, and obese), the results of prediction 
analysis for incident T2DM differed in the obese group com-
pared with the other groups. The AUC and NRI changed 
slightly in the normal and overweight groups, but the perfor-
mance measures showed greater changes in the obese group. 
Although the AUC of the prediction model with genetic infor-
mation showed nonsignificant change, the magnitude of the 
change of the AUC was greater than for the other subgroups 
(Fig. 2). Moreover, the NRI was highly significant and far 
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greater than the NRI of the other subgroups. The change of 
prediction performance in different subgroups of a population 
have been reported in many GWASs. In particular, such results 
were found in BMI subgroups. Previous studies reported simi-
lar findings in terms of different association and prediction 
performance in BMI subgroups. Morris et al. [38] found that 
rs4506565 near transcription factor 7-like 2 (TCF7L2) had dif-
ferent associations in a nonobese group (BMI ≥30; OR, 1.54) 
and an obese group (BMI >30; OR, 1.20). In another GWAS 
for T2DM using BMI subgroups [39], rs8090011 in LAMA1 
had genome-wide significance in lean individuals (BMI <25; 
P=8.4×10–9) and not in obese individuals (BMI ≥30; P=0.04). 
Timpson et al. [40] also reported that rs8050136 of fat mass 
and obesity-associated protein (FTO) gene was detectable in 
the obese group (BMI ≥30.2; P=1.3×10–13), while the signifi-
cance disappeared in the nonobese group (BMI <30.2; P= 
0.19). Besides significance, prediction performance differs ac-
cording to the BMI subgroups. In the prediction analysis of 
T2DM with GRS of 65 common variants, samples of the lowest 
tertile (BMI <24.5) had an NRI of 27.6%, while those of the 
upper tertile (BMI >27.5) had an NRI of 2.6% [35]. Previous 
studies showed that the prediction model with GRS outper-
formed in the lean body group than in the obese group, but 
our result was different. The difference of AUC and magnitude 
of reclassification was greater in the obese group. While 
GWASs have been identifying susceptible loci for diabetes, 
previous studies have shown that integration of genetic infor-
mation or GRS from GWAS results increased the performance 
of diabetes prediction marginally [33]. However, we found that 
the prediction performance increased in obese group more 
than in whole population. In the obese group, the clinic-genet-
ic prediction model increased AUC marginally, but cNRI sig-
nificantly (P=8.00×10–5). Moreover, permutation test revealed 
that the AUC of prediction model of obese group is significant 
(Supplementary method). These results indicate that the clin-
ic-genetic model of obese group increased overall prediction 
performance marginally, but re-assign risk probability to pa-
tients more accurately. Clinically, it would be helpful when pa-
tients need to be matched to a preventive protocol because risk 
assessment is more accurate. Considering obese group had lim-
ited number of population in general, it might be cost-effective 
to apply such model to the specific subgroup of population.

These seemed to indicate that the genetic information may 
be more valuable predictor of diabetes in a specific subpopula-
tion. The identification of such groups should be investigated 

in further research. In addition, each loci showed the same 
tendency of high performance of prediction in obese group 
(Supplementary Table 4). This might result from our use of ex-
onic variants in the prediction model. We thought that the 
change of prediction accuracy between BMI subgroups results 
from epigenetic change of the loci. It is reported that the 
KCNQ1 gene of blood cells is hyper-methylated in obese popu-
lation [37]. If so, it is also possible that KCNQ1 gene of diabe-
tes-related cells can be hyper-methylated, which might result 
in change of KCNQ1 gene expression, and prediction accuracy 
of the loci eventually. Considering that KCNQ1 contains two 
loci of the significant results in this analysis, it is possible that 
higher AUC is associated with methylation change, and the 
other loci might also have the methylation changes nearby the 
loci, which affect the prediction accuracy in obese group.

In summary, we found significant exonic variants for T2DM, 
which were previously identified or newly detected. Genetic 
prediction using the loci showed a mild but significant increase 
of AUC and NRI. We found that the variants had higher perfor-
mance in the obese group than in the normal and overweight 
groups. We believe that our results provide clues to reveal the 
genetic architecture of T2DM in the Korean population.

SUPPLEMENTARY MATERIALS

Supplementary materials related to this article can be found 
online at https://doi.org/10.4093/dmj.2019.0163
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Supplementary Method

Permutation test of area under the curve
We performed permutation test of area under the curve (AUC) of clinic-genetic model in obese group to identify whether the 
AUC is valid or not. First, we permutated diabetes status of obese group and estimated AUC of the data with the permutated dis-
ease status 1,000 times. Second, we randomly sampled the same number of obese group from normal and overweight group, and 
permutated diabetes status. The P value of the permutation test is                                                                                                                             

P=
n(permAUC>oriAUC)

                                                                                                                                  nPerm                
where permAUC is a AUC with permutated diabetes status, and oriAUC is AUC of clinico-genetic model in obese group. n() is 
number of permAUC>oriAUC, and nPerm is number of permutation (1,000). 

Supplementary Table 1. Comparison of sex, age, and BMI between normal and diabetes group

Total Control DM P value

Sex 6,438/7,588 5,382/6,652 1,056/936 7.27E-12

Age, yr 54.22±9.23 53.77±9.2 56.95±8.31 2.57E-52

BMI, kg/m2 24.35±3.09 24.18±3.03 25.38±3.22 1.53E-52

BMI, body mass index; DM, diabetes mellitus.



Cho SB, et al.

Diabetes Metab J 2021;45:231-240  https://e-dmj.org

Supplementary Table 2. Result of meat-analysis with our data and genome-wide association study catalog

Chr BP SNP A1 A2 P.FE OR.FE Q I

  6 20688121 rs10440833 A T 3.29E-27 1.2497 0.9853 0

10 114754088 rs7901695 G A 5.00E-25 1.3531 0.1672 47.59

  6 20657564 rs4712523 G A 6.86E-23 1.2552 0.5603 0

  6 20661250 rs7754840 C G 1.37E-18 1.1991 0.2851 12.49

  6 20657865 rs4712524 G A 2.20E-16 1.2281 0.7947 0

11 2857194 rs2237895 C A 1.25E-14 1.2626 0.6013 0

  3 185529080 rs1470579 C A 1.72E-14 1.1644 0.4303 0

  6 20661034 rs10946398 C A 2.45E-14 1.1923 0.1729 46.17

  6 20652717 rs9295474 G C 6.98E-13 1.197 0.2171 34.36

13 33554302 rs576674 G A 3.96E-12 1.0715 0.5165 0

  2 161171454 rs7593730 A G 8.85E-12 1.1041 0.2747 16.19

11 17409572 rs5219 A G 1.16E-11 1.1277 0.2851 12.47

10 94465559 rs5015480 G A 6.70E-11 1.1767 0.7479 0

11 92673828 rs1387153 A G 1.27E-09 1.0891 0.8863 0

17a 36098040 rs4430796 G A 3.65E-09 1.132 0.1743 45.82

15a 80432222 rs11634397 G A 3.95E-09 1.061 0.5825 0

  2a 227093745 rs2943641 A G 1.20E-08 1.1753 0.2832 13.18

  9a 136155000 rs635634 A G 1.34E-08 1.0843 0.4732 0

  3a 185511687 rs4402960 A C 3.40E-08 1.1404 0.9856 0

  9a 4292083 rs10758593 A G 5.40E-08 1.0795 0.9431 0

12a 55098996 rs1153188 A T 4.87E-07 1.0794 0.762 0

11a 17418477 rs757110 C A 5.15E-07 1.0731 0.6318 0

15a 77832762 rs7177055 A G 6.74E-07 1.0724 0.2404 27.45

Chr, chromosome; BP, base position; SNP, single nucleotide polymorphism; A1, minor allele; A2, major allele; P.FE, P value of fixed effect mod-
el; OR.FE, odds ratio of fixed effect model; Q, P value of Cochrane Q statistic; I, I2 heterogeneity index. 
aChromosome indicates that the variant is significant in exome-wide association analysis. 
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Supplementary Table 3. Genome-wide association study catalogue data of rs2237892, rs2237895, rs2237896, and rs2237897

PubMed 
ID Initial sample size Replication sample size Chr POS

Strongest 
SNP-risk 

allele

Risk allele 
frequency P value OR or 

beta
95% CI 
(text)

Platform 
[SNPs 

passing QC]

Mapped_
trait

28869590 6,353 South Asian 
ancestry cases, 
7,179 South Asian 
ancestry controls, 
3,871 European 
ancestry cases, 
16,427 European 
ancestry controls, 
34,840 cases, 
114,981 controls

7,888 South Asian  
ancestry cases, 20,679 
South Asian ancestry 
controls, 387 European 
ancestry cases, 2,092 
European ancestry 
controls, 19,998 East 
Asian ancestry cases, 
30,983 East Asian  
ancestry controls

11 2818521 rs2237892-T 0.0626 2.00E-63 0.215 0.19–0.24 
unit  
decrease

Affymetrix, 
Illumina 
[NR]  
(imputed)

Type 2  
diabetes 
mellitus

28869590 6,353 South Asian 
ancestry cases, 
7,179 South Asian 
ancestry controls, 
3,871 European 
ancestry cases, 
16,427 European 
ancestry controls, 
34,840 cases, 
114,981 controls

7,888 South Asian  
ancestry cases, 20,679 
South Asian ancestry 
controls, 387 European 
ancestry cases, 2,092 
European ancestry 
controls, 19,998 East 
Asian ancestry cases, 
30,983 East Asian  
ancestry controls

11 2818521 rs2237892-T 0.0626 1.00E-09 0.1389 0.094–
0.183 unit 
decrease

Affymetrix, 
Illumina 
[NR]  
(imputed)

Type 2  
diabetes 
mellitus

21573907 1,804 Hispanic  
cases, 780  
Hispanic controls

European ancestry  
individuals

11 2818521 rs2237892-C NR 4.00E-06 1.2 1.11–1.29 Affymetrix 
[315658]

Type 2  
diabetes 
mellitus

18711367 187 Japanese  
ancestry cases, 
1,504 Japanese  
ancestry controls

6,552 East Asian  
ancestry cases, 6,621 
East Asian ancestry 
controls, 2,830  
European ancestry 
cases, 3,740 European 
ancestry controls

11 2818521 rs2237892-C 0.61 2.00E-42 1.45 1.34–1.47 NR [82343] Type 2  
diabetes 
mellitus

19401414 519 Japanese  
ancestry cases, 
503 Japanese  
ancestry controls

5,110 Japanese ancestry 
cases, 6,867 Japanese 
ancestry controls

11 2818521 rs2237892-C 0.59 1.00E-26 1.33 1.27–1.41 Illumina 
[482625]

Type 2  
diabetes 
mellitus

23945395 5,976 Japanese  
ancestry cases, 
20,829 Japanese 
ancestry controls

24,416 East Asian  
ancestry cases, 13,985 
East Asian ancestry 
controls

11 2818521 rs2237892-C 0.61 4.00E-29 1.3 1.24–1.36 Illumina 
[6209637] 
(imputed)

Type 2  
diabetes 
mellitus

22961080 1,839 Han Chinese 
ancestry cases, 
1,873 Han Chinese 
ancestry controls

15,979 East Asian  
ancestry cases, 19,360 
East Asian ancestry 
controls, 794 Malay 
ancestry cases, 1,240 
Malay ancestry  
controls, 159 Filipino 
ancestry cases, 1,624 
Filipino ancestry  
controls

11 2818521 rs2237892-C 0.657 1.00E-07 1.32 1.19–1.46 Illumina 
[2234194] 
(imputed)

Type 2  
diabetes 
mellitus

30054458 61,714 European 
ancestry cases, 
1,178 Pakistani 
ancestry cases, 
593,952 European 
ancestry controls, 
2,472 Pakistani 
ancestry controls

NA 11 2818521 rs2237892-T 0.062489595 9.00E-10 0.096 0.065–
0.127 unit 
decrease

NR 
[5035015] 
(imputed)

Type 2  
diabetes 
mellitus

(Continued to the next page)
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Supplementary Table 3. Continued

PubMed 
ID Initial sample size Replication sample size Chr POS

Strongest 
SNP-risk 

allele

Risk allele 
frequency P value OR or 

beta
95% CI 
(text)

Platform 
[SNPs 

passing QC]

Mapped_
trait

20174558 995 Han Chinese 
ancestry cases, 
894 Han Chinese 
ancestry controls

1,803 Han Chinese  
ancestry cases, 1,473 
Han Chinese ancestry 
controls

11 2835964 rs2237895-C 0.33 1.00E-09 1.29 1.19–1.40 Illumina 
[516737]

Type 2  
diabetes 
mellitus

26818947 15,463 Japanese  
ancestry cases, 
26,183 Japanese 
ancestry controls

20,490 East Asian  
ancestry cases, 22,922 
East Asian ancestry 
controls, 38,947  
European ancestry 
cases, 121,903  
European ancestry 
controls, 10,587 South 
Asian ancestry cases, 
14,378 South Asian 
ancestry controls, 
3,848 Mexican/Latino 
cases, 4,366 Mexican/
Latino controls

11 2837210 rs2237896-G NR 3.00E-70 1.32546 1.28479–
1.36741

Illumina 
[7521072] 
(imputed)

Type 2  
diabetes 
mellitus

18711366 194 Japanese  
ancestry cases, 
1,558 Japanese  
ancestry controls

5,324 East Asian  
ancestry cases, 7,037 
East Asian ancestry 
controls, 4,085  
European ancestry 
cases, 5,302 European 
ancestry controls

11 2837316 rs2237897-C 0.34 1.00E-16 1.33 1.24–1.41 Affymetrix 
[207097]

Type 2  
diabetes 
mellitus

24390345 3,848 Mexican and 
other Latin  
American ancestry 
cases, 4,366  
Mexican and other 
Latin American 
ancestry controls

896 Mexican American 
cases, 832 Mexican 
American controls, 
2,768 East Asian  
ancestry cases, 2,880 
East Asian ancestry 
controls, 1,082 South 
Asian ancestry cases, 
1,105 South Asian  
ancestry controls, 
1,874 European  
ancestry cases, 1,333 
European ancestry 
controls, 2,127 African 
American cases, 2,103 
African American 
controls, 698 Native 
Hawaiian ancestry 
cases, 579 Native  
Hawaiian ancestry 
controls, 2,009  
Singaporean ancestry 
cases, 1,959 Singaporean 
ancestry controls

11 2837316 rs2237897-C NR 9.00E-15 1.31 1.22–1.41 Illumina 
[9200000] 
(imputed)

Type 2  
diabetes 
mellitus

Note that the rs2237895 was identified as susceptible loci of type 2 diabetes mellitus only in East Asian population. The other trans-ethnic ge-
nome-wide association studies were not able to identify the rs2237895 as susceptible loci to type 2 diabetes mellitus. We curated necessary infor-
mation from original data.
Chr, chromosome; POS, position; SNP, single nucleotide polymorphism; OR, odds ratio; CI, confidence interval; NR, not reported; NA, not 
available.
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Supplementary Table 4. Predictive performances in each subgroup

SNP Normal group Overweight group Obesity group

rs10965250 0.70 (0.68–0.73) 0.71 (0.68–0.73) 0.72 (0.65–0.78)

rs2206734 0.71 (0.68–0.73) 0.71 (0.68–0.73) 0.72 (0.65–0.78)

rs11960799 0.71 (0.68–0.73) 0.71 (0.68–0.73) 0.72 (0.65–0.79)

rs2237895 0.71 (0.68–0.73) 0.71 (0.68–0.73) 0.73 (0.66–0.79)

rs75680863 0.70 (0.68–0.73) 0.71 (0.68–0.73) 0.73 (0.66–0.79)

rs2237892 0.71 (0.68–0.73) 0.71 (0.68–0.73) 0.73 (0.66–0.80)

rs2233580 0.71 (0.68–0.73) 0.71 (0.68–0.74) 0.73 (0.67–0.79)

Values are presented as area under curve (AUC).
SNP, single nucleotide polymorphism.
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Supplementary Fig. 1. Quantile-quantile plot of P values from 
genome-wide association study. 
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Supplementary Fig. 2. Genome-wide association study (GWAS) results of rs2237892 from Korean 
Reference Genome Database (KRGDB). Search result from KRGDB. The original data comes from 
GWAS catalog and genome-wide repository of associations between SNPs and phenotypes (GRASP) 
database. The results from GWAS catalog had genome-wide significance (P<5×10−8), while those 
from GRASP had a range of P value from nominal significance to genome-wide significance.
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Supplementary Fig. 3. Histogram of permutated area under 
the curve (AUC) values. We randomly sampled the same num-
ber of participants with that of obese population (n=295), and 
estimated AUC with the sampled data. We iterated this process 
10,000 times, and there was no permutated AUC value greater 
than AUC of the obese population (0.75). The thick perpen-
dicular line indicates the AUC of the obese population.
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Supplementary Fig. 4. Previous genome-wide association study (GWAS) results in potassium volt-
age-gated channel subfamily Q member 1 (KCNQ1) gene region. As shown, in the KCNQ1 gene re-
gion, there are many genome-wide significant loci for type 2 diabetes mellitus development. HMM, 
hidden Markov model.
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Supplementary Fig. 5. Search result of rs2206734 in Korean Reference Genome Database (KRGDB). 
In the genome-wide association study (GWAS) catalog, there were no significant results for suscepti-
bility to type 2 diabetes mellitus. However, genome-wide repository of associations between SNPs and 
phenotypes (GRASP) shows many nominally or genome-widely significant results in the GWAS for 
type 2 diabetes mellitus and associated trait such as fasting blood glucose and fasting insulin. NCBI, 
National Center for Biotechnology Information.
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Supplementary Fig. 6. Search result of rs10965250 in Korean Reference Genome Database (KRG-
DB). On the variant, there is a genome-wide significant result for type 2 diabetes mellitus develop-
ment in the genome-wide association study (GWAS) catalog. In the genome-wide repository of asso-
ciations between SNPs and phenotypes (GRASP), many results having nominal significance (P<0.05) 
are shown. NCBI, National Center for Biotechnology Information.


