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Gliomas are the most frequently occurring primary brain tumors in adults. Although they exist in differ-
ent malignant stages, including histologically benign forms and highly aggressive states, most gliomas
are clinically challenging for neuro-oncologists because of their infiltrative growth patterns and inherent
relapse tendency with increased malignancy. Once this disease reaches the glioblastoma multiforme
stage, the prognosis of patients is dismal: median survival time is 15 months. Extensive genetic analy-
ses of glial tumors have revealed a variety of deregulated genetic pathways involved in DNA repair,
apoptosis, cell migration/adhesion, and cell cycle. Recently, it has become evident that epigenetic al-
terations may also be an important factor for glioma genesis. Of epigenetic marks, histone modification
is a key mark that regulates gene expression and thus modulates a wide range of cellular processes.
In this review, | discuss the neuro-oncological significance of altered histone modifications and modifi-
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INTRODUCTION

Epigenetics can be defined as mitotically heritable changes
in gene expression that are not due to changes in the primary
DNA sequence. Epigenetic mechanisms, including those in-
volving enzymatic modifications to DNA or histone proteins,
thereby regulating gene expression, are increasingly recog-
nized as a source of phenotypic variability in biology. The dis-
covery of altered epigenetic profiles in human neoplasia has
been a major factor in constructing a new paradigm, in which
epigenetic variability contributes significantly to human dis-
ease. Because of their reversible nature and their role in gene
expression and DNA structure, epigenetic alterations, espe-
cially those related to changes in histone acetylation, are a
current focus for therapeutic drug targeting in clinical trials.

Covalent modifications of DNA and amino acids on his-
tones are two major mechanisms of epigenetic gene regulation
(Fig. 1). First, DNA methylation results from the addition of a
methyl group to cytosine thereby creating 5-methylcytosine.
In mammals, this almost always occurs at the 5-CpG-3’ di-
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ers in glioma patients while briefly overviewing the biological roles of histone modifications.
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nucleotide, though occasionally methylation is also observed
at CpNpGs [1]. DNA methylation is controlled by DNA
methyltransferases (DNMT) that create (DNMT3A, DN-
MT3B) or maintain (DNMT1) patterns of methylation [2].
DNA methylation is required to silence genes on the inactive
X chromosome [3] or for the allele-specific expression of some
imprinted loci [4]. Methylation is also required to silence
transposable elements, to maintain genomic stability [5] and
is a critical regulator of genes that contribute to cell pluripo-
tency [6].

Another major epigenetic mechanism is the post-transla-
tional modification of the N-terminal tails of histone proteins
by acetylation, methylation, phosphorylation, ubiquitylation,
sumoylation, ADP ribosylation, biotinylation and other po-
tential modifications [7]. Several families of enzymes catalyze
post-translational modifications of histones, including acetyl-
transferases and deacetylases, methyltransferases and demeth-
ylases. Additionally, multiple types of modifications can take
place on a single histone molecule, increasing combinatorial
complexity. In addition, each amino acid residues can be
modified in different states, such as mono-, di-, or tri-methyl-
ation at lysine residues.

In addition to DNA methylation and histone modifica-
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tions, there are other potential epigenetic mechanisms that
include specific deposition of histone variants, noncoding
RNAs, chromatin remodeling, or nuclear organization of
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Fig. 1. Three major mechanisms of inheritable epigenetics. Mam-
malian gene expression is tightly controlled by genetic as well as
epigenetic mechanisms. Epigenetics modifies the phenotype with-
out altering the genotype of a cell. Shown here are some well-de-
fined epigenetic mechanisms that include histone modifications,
DNA methylation, and the noncoding RNA-mediated modulation of
gene expression. Some of these mechanisms are inheritable through
successive cell divisions and contribute to the maintenance of cel-
lular phenotype. Recent studies show that the association of com-
ponents of transcriptional regulatory machinery with target genes
on mitotic chromosomes is a novel epigenetic mechanism that
poises genes involved in key cellular processes, such as growth,
proliferation, and lineage commitment, for expression in progeny
cells (adapted by Zaidi et al. Mol Cell Biol 2010;30:4758-66 [87],
and modified by author).

DNA. The interplay between histone modifications and other
chromatin modifications leads to the dynamic regulation of
chromatin structure and thereby affects several relevant cellu-
lar processes including transcription, DNA replication, DNA
repair, and genomic stability [8]. Together, these add addi-
tional layers to the regulation of gene expression in both nor-
mal and diseased states.

HISTONE MODIFICATIONS

Chromatin is the condensed combination of DNA and his-
tones within the nucleus of a cell. The structural and func-
tional unit of chromatin is the nucleosome, which consists of
a disc-shaped octamer composed of two copies of each his-
tone protein (H2A, H2B, H3, and H4), around which 147
base-pairs of DNA are wrapped twice (Fig. 2A) [9]. Electron
microscopy studies have revealed that organization of nucleo-
somal arrays structurally resembles a series of “beads on a
string’, with the “beads” being the individual nucleosomes
and the “string” being the linker DNA [3]. Linker histones,
such as histone H1, and other non-histone proteins interact
with the nucleosomal arrays to further package the nucleo-
somes into higher-order chromatin structures [8].

Histones are highly conserved across species. These pro-
teins contain a conserved globular domain, which mediates
histone-histone interactions within the octamer (Fig. 2A) [9].
In addition, there are two small tails protruding from the
globular domain: an amino (N)-terminal domain, constituted

Histone tail
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Fig. 2. Schematic representation of the nucleosome and mammalian core histone modifications. A: Histones provide the basis for the nu-
cleosome, the basic unit of chromatin structure, as seen as “beads-on-a-string” structures on electron micrographs. The nucleosome core is
comprised of a histone octomer [(H2A-H2B)x2, (H3-H4)x2]. The DNA double helix is wrapped around (~1.7 times) the histone octomer. With
nuclease digestion, 146 bps of DNA are tightly associated with the nucleosome but ~200 bps of DNA in total are associated with the nucleo-
some (modified image which was obtained at the website of http://www.mun.ca/biology/desmid/brian/BIOL2060/BIOL2060-18/18_21.jpg
[88]). B: N- and C-terminal histone tails extend from the globular domains of histones H2A, H2B, H3, and H4. DNA is wrapped around the nu-
cleosome octamer made up of two H2A-H2B dimers and an H3-H4 tetramer. Post-translational covalent modifications include acetylation,
methylation, phosphorylation, and ubiquitylation. Human histone tail amino acid sequences are shown. Lysine positions 56 and 79 on his-
tone H3 are located within the globular domain of the histone (adapted by Mercurio et al. Epigenetics in human disease 2012 [89], and

modified by author).
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by 20-35 residues that are rich in basic amino acids, and a
short, protease accessible carboxy (C)-terminal domain [9].
Histone H2A is unique among the histones due to its posses-
sion of an additional 37 amino acids in the carboxy-terminal
domain that protrudes from the nucleosome [9]. Additional
histone variants have been identified [10].

In particular, their tails can be subject to a remarkable num-
ber of modifications, although examples of modifications
within the globular domain have also been identified. Histone
modifications include acetylation, methylation and phos-
phorylation, but also some less-studied modifications such as
ubiquitylation, sumoylation, ADP ribosylation, deamination
and proline somerization (Fig. 2B) [9,11,12]. Each of these
histone modifications directly or indirectly affect chromatin
structure, thereby leading to alterations in DNA repair, repli-
cation and gene transcription (Table 1). The effect of histone
modifications on gene transcription can broadly be catego-
rized into active versus passive marks. Moreover, numerous
studies have reported the presence of site-specific combina-
tions and interdependence of different histone modifications,
which may be interpreted as the so-called “histone code”. The
role of histone modifications and their crosstalk in different
cellular processes will be described in the following two sec-
tions. In particular, I will focus on discussing the two well-
studied histone marks: histone acetylation and methylation
[12,13].

Histone acetylation

Acetylation is a reaction based on the introduction of an
acetyl functional group into a chemical compound. More
specifically, it is a reaction between the hydrogen atom of a
hydroxyl group and an acetyl group (CH,CO). Lysine acetyla-
tion refers to the a-amino group of a lysine residue, which is a
reversible modification referred to as N*-acetylation. N*-
acetylation is different from the N*-acetylation, which is an
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acetylation of the N-terminal a-amine of proteins and a com-
mon modification in eukaryotes [14].

In 1964, Allfrey first discovered that histone proteins exist in
an acetylated form [14]. Lysine acetylation is controlled by two
types of histone acetyltransferases (HATs), which require ace-
tyl-CoA to be specifically recognized and bound by the Arg/
Gln-X-X-Gly-X-Gly/Ala segment of HATSs, which then allows
for the transfer of an acetyl group to the a-amino groups on
the N-terminal tails of histones [15]. Histone deacetylases
(HDAC:S) reverse this modification [16]. Soon after the dis-
covery of the first HATs and HDACs in the mid-1990s, iden-
tification of a large number of HATS followed, resulting in a
surge of interest in histone acetylation. Most HATs come in
the form of large, multi-protein complexes. The different
components of HAT complexes ensure locus targeting and
chromosomal-domain and substrate-specificity. Based on se-
quence similarity, HATS can be organized into families, which
seem to exhibit different mechanisms of histone-substrate
binding and catalysis [17]. The dynamic equilibrium of lysine
acetylation in vivo is governed by the opposing actions of
HATs and HDACs. Similar to acetyltransferases, the HDACs
are also part of large, multi-protein complexes [18].

Lysine acetylation is believed to neutralize the positive
charge of histone tails, weakening histone-DNA [19] or nu-
cleosome-nucleosome interactions [20], and inducing an
open (euchromatin-like) conformational change (Fig. 3) [21].
This results in destabilized nucleosomes and chromatin struc-
ture, thus facilitating access to the DNA for different nuclear
factors, such as the transcription complex. Conforming to this
model, hyper-acetylation of histones is now considered a hall-
mark of transcriptionally active chromatin. Deacetylation of
histones by HDAC:s results in a decrease in the space between
the nucleosome and the DNA, leading to a closed (hetero-
chromatin-like) chromatin conformation that diminishes ac-
cessibility for transcription factors (Fig. 3).

Table 1. Different classes of histone modifications and its regulated biological functions

Chromatin modification Residues modified Function regulated
Acetylation Lysine Transcription, DNA repair,
replication and condensation
Methylation (lysine) Lysine mel, me2, me3 Transcription, DNA repair

Methylation (arginine)

Arginine-me2s

Phosphorylation

Ubiqutination Lysine
Sumoylation Lysine

ADP ribosylation Glutamic
Deimination Arginine
Proline isomerization P-cis, P-trans

Arginine-mel, Arginine-me2a,

Serine, Threonine, Tyrosine

Transcription

Transcription, DNA repair
and condensation
Transcription, DNA repair
Transcription
Transcription
Transcription
Transcription
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Fig. 3. Schematic diagram illustrating euchromatin and heterochromatin. Heterochromatin on the left is characterized by DNA methylation and
deacetylated histones, is condensed and inaccesible to transcription factors (closed chromatin conformation), which is repressive regulation of
transcription. On the contrary, euchromatin on the right is in a loose form and transcriptionally active; DNA is unmethylated and histone tails
acetylated (open chromatin conformation), which is active regulation of transcription (adapted by Hatzimichael et al. J Drug Deliv 2013;

2013:529312 [90], and modified by author).

Histone methylation

Protein methylation is a covalent post-translational modifi-
cation that commonly occurs on carboxyl groups of glutamate,
leucine, and isoprenylated cysteine, or on the side-chain ni-
trogen atoms of lysine, arginine, and histidine residues [22].
As described in 1964, histones have long been known to be
substrates for methylation [23]. For histones, methylation oc-
curs on the side chain nitrogen atoms of lysines and arginines.
The most heavily methylated histone is histone H3, followed
by histone H4.

Arginine can be either mono- or di-methylated, with the
latter in symmetric or asymmetric configuration [24]. Protein
arginine methyltransferases (PRMTs) are the enzymes that
catalyze arginine methylation. PRMTs share a conserved cata-
lytic core but are very different on the N- and C-terminal re-
gions, which likely determine substrate specificity [25]. There
are two types of PRMTs: type I enzymes catalyze mono and
asymmetric di-methylation of arginine and type II enzymes
catalyze mono- and symmetric di-methylation of arginine
[26]. Several studies have suggested that certain arginine
methyltransferases, such as PRMTS5, may repress the expres-
sion of genes involved in tumor suppression [26].

Similar to arginine methylation, lysine methylation can oc-
cur in mono-, di-, and tri-methylated forms. Some of the ly-
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sine residues methylated in histones H3 and H4 are also
found to be substrates for acetylation. The enzymes that cata-
lyze methylation on lysine residues have been grouped into
two classes: lysine-specific, SET [Su(var), Enhancer of Zeste,
and Trithorax] domain-containing histone methyltransferas-
es (HMTs) share a strong homology with a 140-amino acid
catalytic domain known as the SET domain, and non-SET
containing HMTs. It is important to note that not all SET do-
main-containing proteins are HMTs nor are all HMT activi-
ties mediated by SET domains [27].

The consequences of lysine methylation are extremely di-
verse. Depending upon a particular lysine, methylation may
serve as a marker of transcriptionally active euchromatin or
transcriptionally repressed heterochromatin [28]. For in-
stance, methylation of histones H3K9, H3K27, and H4K20
are mainly involved in formation of heterochromatin (closed
chromatin conformation). On the other hand, methylation of
H3K4, H3K36, and H3K79 are correlated with euchromatin
(open chromatin conformation) (Table 2). Moreover, it seems
that H3 clipping, a mechanism involving the cleavage of 21
amino acids of histone tails following the induction of gene
transcription and histone eviction, occurs on histone tails that
carry repressive histone marks [29].

Until very recently, the dogma was that methylation was an



irreversible process. With the identification of the first lysine
demethylase, lysine-specific demethylase 1 (LSD1) in 2004,
the view of histone methylation regulation became much
more dynamic, opening the way for identification of many
more histone demethylases [30]. LSD1 demethylates both
mono- and di-methylated K4 on H3 [30]. In 2006, the protein
JHDMI1A was identified as the first jumonji-domain-contain-
ing histone demethylase that removes methyl groups from
mono- and di-methyl H3K36 [31]. The jumonji (JmjC)-do-
main-containing proteins belong to the deoxygenase super-
family and use a demethylation mechanism distinct from that
of LSD1/KDMI [32]. These enzymes can demethylate tri-
methylated lysine residues. The JMJD2/KDM4 demethylases
are tri-methyl demethylase families that were reported soon
after the first JHDM1A was discovered [33]. Over the past
few years, a series of studies have identified additional jumon-
ji-domain-containing families that have methylated substrates

Table 2. Major modifications of histone and their genetic regulations
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K4, K9, K27, and K36. Despite the tremendous and exciting
progress in the last few years, the field of histone demethylases
is still in its early days and our knowledge of the biological role
of these enzymes is still rather limited.

Histone code

Over the past few years, the field of epigenetics has provid-
ed a great deal of evidence arguing that histone modifications
act in a combinatorial and consistent manner, leading to the
concept of the “histone code” (Table 3) [34]. Different histone
modifications present on histone tails generate a “code’, which
can be read by different cellular machineries thereby dictating
different cellular outcomes, such as activation or repression of
transcription, DNA replication, and DNA repair (Fig. 4) [34].
The histone code hypothesizes that the transcription of genet-
ic information encoded in DNA is in part regulated by chem-
ical modifications to histone proteins, primarily on their un-

Modification of histone Mono-methylation Di-methylation Tri-methylation Acetylation
H2AKS Activation
H2AK7 Activation
H2AK9 Activation
H2AK13 Activation
H2BK5 Activation
H2BK12 Activation
H2BK15 Activation
H2BK20 Activation
H2BK120 Activation
H3R2 Activation
H3K4 Activation Activation Activation
H3K9 Activation/repression Repression Activation/repression
H3K14 Activation
H3R17 Activation
H3K18 Activation
H3K23 Activation
H3R26 Activation
H3K27 Activation Repression Repression Activation
H3K36 Activation Activation
H3K56 Activation
H3K79 Activation Repression Repression
H3K115 Activation
HA4R3 Activation
HA4K5 Activation
H4K8 Activation
H4K12 Activation
H4K16 Activation
H4K20 Activation/repression Repression Repression Activation
HA4K59 Repression
H4K91 Activation

1"
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Table 3. Two major histone modifications driving histone code hypothesis

Modification Histone Residue Enzyme Possible role
Acetylation H2A K4 Esal TA
K5 Tip60, Hat1, p300/CBP TA,RA
K7 Hatl, Esal TA
H2B K5 ATF2 TA
K11 Genb TA
K12 ATF2, p300/CBP TA
K15 ATEF2, p300/CBP TA
K16 Gcen5, Esal TA
K20 p300 TA
H3 K4 Esal, Hpa2 TA
K9 Gcen5, SRC-1 TA,RA
K14 Gcen5, PCAE Tip60, SRC-1, hTFIIIC90, TAF1, TA, RA, RE
p300/Genb, Esal, Elp3, Hpa2, TAF1, Sas2, Sas3
K18 p300, CBP/Gcen5 (SAGA) TA,RA
K23 p300, CBP/Gen5 (SAGA), Sas3 TA, RA
K27 Gcenb TA, RA
H4 K5 Hat1, Tip60, ATF2, p300/Hat1, Esal, Hpa2 TA, RA, RE
K8 Gen5, PCAE Tip60, ATF2, p300/Esal, Elp3 TA, RA, RE
K12 Hatl, Tip60/Hatl, Esal, Hpa2 TA, RA, RE
K16 MOF, Gen5, Tip60, ATF2/Gen5, Esal, Sas2 TA,RA
Methylation H1 K26 EZH2 TR
H3 R2 CARM1 TA
K4 MLLA4, SET1, MLL1, SET7/9, MYD3/Set1 TA
R8 PMRT5 TR
K9 SUV39h1, SUV39h2, ESET, G9A, EZH2, TA, TR
Eu-HMTasel/Clr4, S.p. Clr4
R17 CARM1 TA
R26 CARM1 TA
K27 EZH2, G9A TA, TR
K36 HYPB, NSD1/Set2, S.c. TA
K79 DOT1L/S.c. Dot-1 TA, TR, RA
H4 R3 PRMT1, PRMT5 TA
K20 PR-SET7, SUV4-20/SET9 TA, TR, RA

TA: transcriptional activation, TR: transcriptional repression, RA: DNA repair, RE: DNA replication

structured ends. Along with similar modifications such as
DNA methylation, it is part of the epigenetic code. Many of
the histone tail modifications are associated with chromatin
structure, and both histone modification state and chromatin
structure are correlated with gene expression levels. The his-
tone code hypothesis is that histone modifications serve to re-
cruit other proteins by specific recognition of the modified
histone via specialized protein domains, rather than through
simply stabilizing or destabilizing the interaction between a
histone and the underlying DNA. These recruited proteins
then act to actively alter chromatin structure or to promote
transcription. The combinatorial nature of different histone
marks therefore adds a layer of complexity in recruiting epi-
genetic modifiers and regulating cellular processes. For in-

12 Brain Tumor Res Treat 2014;2(1):7-21

stance, Msk1/2-mediated H3S10 phosphorylation enhances
binding of GCN5, which leads to acetylation of H3K14,
methylation of H3K4, and inhibition of H3K9 methylation,
the sequence of which results in open chromatin conforma-
tion [35]. Moreover, phosphorylation of H3S10 favors H3K9
acetylation since Aurora-B kinase can only bind unmodified
or acetylated histone H3K9, thus preventing SUV39H1 bind-
ing and histone H3K9 methylation [36]. On the other hand,
histone H3K9 methylation inhibits H3S10 phosphorylation
and represses gene transcription [35]. Recently, phosphoryla-
tion of histone H3T6 by protein kinase C beta I was shown to
be a major event in preventing LSD1 from demethylating his-
tone H3K4 during androgen receptor-dependent gene activa-
tion [37].
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Fig. 4. lllustration of histone code according to active and repres-
sive markers. DNA is wrapped around histone octamer of the four
core histones H2A, H2B, H3, and H4. Histone H1, the linker pro-
tein, is bound to DNA between nucleosomes. Different amino acids
constituting histone tails are represented along with the different
covalent modification specific of each residue. Active marks are
represented in the upper part of the figure and repressive marks
are represented in the lower part of the figure. Lysine (K), arginine
(R), serine (S), and threonine (T) (adapted by Sawan et al. Adv Gen-
et 2010;70:57-85 [91], and modified by author).

Furthermore, this histone modification crosstalk can occur
between different histones. Methylation of H3K4 and H3K?79,
which are involved in transcriptional activation, depend on,
and are regulated by, H2BK123 ubiquitination [38]. The com-
bination of specific histone modifications is due to the speci-
ficity of histone-modifying enzymes to a specific residue on
their target substrate. Epigenetic marks on histone tails pro-
vide binding sites for specific domains of effector proteins
[34]. For instance, bromodomains recognize and target acety-
lated residues, whereas chromo domains recognize methyla-
tion marks [39]. Together, the combinatorial and sequential
modifications of histone tails provide a promising field of re-
search that will allow for a better understanding of different
cellular processes.
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ROLE OF HISTONE MODIFICATIONS
IN CELLULAR PROCESSES

Covalent modifications on histone tails are now established
as key regulators of chromatin-based processes. This section
discusses the role of different histone modifications in the
regulation and coordination of transcription, DNA repair,
and DNA replication (Fig. 5).

Transcription

In response to different stimuli, the regulation of gene ex-
pression in eukaryotes requires certain chromatin modifiers
and specific histone modifications that allow for an “oper’,
permissive chromatin (Fig. 3). These epigenetic modifiers fa-
cilitate and open the way for transcription factors to bind the
DNA and activate a cascade of events resulting in gene tran-
scription. On the contrary, other histone modifications and
modifiers can result in transcriptional repression by inducing
a condensed chromatin state and closing DNA accessibility to
transcription factors. Thus, histone modifications dictate
whether the chromatin state is transcriptionally permissive or
not (Fig. 3).

Histone lysine acetylation has long been associated with
transcriptional activation. Through decreasing histone charge,
acetylation is believed to weaken histone-DNA interaction,
relaxing the chromatin structure and opening the way for
transcription machinery [40]. Moreover, acetylated histones
may serve as docking sites for the recruitment of other tran-
scriptional regulators that influence additional histone modi-
fications [34]. Histone acetylation influences gene transcrip-
tion at two levels; while global histone acetylation correlates
with general transcriptional activity [41], specific promoter
acetylation controls the activity of corresponding genes. It
should be noted however, that specific promoter acetylation
occurs in a context of global acetylation and deacetylation
that regulates basal transcription levels to facilitate rapid tran-
scriptional repression [42]. Reversal of acetylation is associat-
ed with transcriptional repression and the enzymes that carry
out histone deacetylation are present in numerous repressive
complexes [43].

As mentioned earlier, histone methylation plays two differ-
ent roles in gene transcription. COMPASS-catalyzed histone
H3K4 methylation is associated with RNA polymerase II in
its initiating form. Methylated histone H3K36 is found at the
3’ end of active genes in combination with the elongating
form of RNA polymerase II [44]. Similar to the above mecha-
nisms, methylated histone H3K4 may provide docking sites
for downstream effectors that are involved with transcription-
al activation, thus affecting gene expression [45]. Conversely,
the methyltransferase for H3K9, H4K20, and H3K27 leads to

13
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Fig. 5. Summaries of cellular role of histone modification. Functional implications in transcription regulation (A-C), DNA damage response (D)
and DNA replication (E) are illustrated. The labels “Ub”, “Ac”, “Me”, and “P” refer to mono-ubiquitination, acetylation, di- and trimethylation, and
phosphorylation respectively (adapted by Vissers et al. Cell Div 2008;3:8 [92], and modified by author).

a repressive effect on gene transcription. Chromatin modifi-
ers that mediate these methylation marks function by induc-
ing a repressive chromatin state and recruiting repressive
complexes to transcription sites [45]. Lysine demethylation
usually antagonizes the effect of methylation at the specific
sites [46].

DNA repair

Eukaryotic cells continuously face numerous endogenous
and exogenous genotoxic stresses that can cause deleterious
DNA lesions, including DNA double-strand breaks (DSBs).
To combat these threats, cells have evolved mechanisms of
DNA damage repair to maintain genomic stability and pre-
vent oncogenic transformation or development of disease
[47]. Compacted chromatin can be a major obstacle in the
orchestration of DNA repair and other chromatin-based pro-
cesses. After the induction of DNA damage, chromatin must
first be relaxed to give repair proteins access to the site of
breaks. Biochemical and molecular studies have revealed the
link between different histone modifications and DNA repair
highlighting the major role of chromatin-remodeling enzymes
in repair mechanisms [48]. For efficient repair, chromatin
structure needs to be altered and access to the break sites
must be available; both of which require post-translational his-
tone modifications, adenosine triphosphate-dependent nu-
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cleosome mobilization, and exchange of histone variants. In
this section, we focus on the role of post-translational histone
modifications in DNA repair.

One of the earliest events in DSB signaling is the phosphor-
ylation of H2AX, a variant of H2A. This phosphorylation is
carried out by the phosphatase inositol-3 family of kinase and
is spread over kilo-bases (in yeast) and mega-bases (in mam-
mal cells) from the break site [49]. This modification is re-
quired for retention and accumulation of repair proteins to
damaged sites [50]. Moreover, it has been shown that H2AX
phosphorylation is required for the recruitment of HATs to
break sites. The recruitment of HATs is mediated by Arp4 and
leads to acetylation of the chromatin surrounding the breaks,
thereby relaxing the chromatin and facilitating access for re-
pair proteins [50]. Binding of NuA4 HAT complexes and the
subsequent acetylation of H4 is concomitant with H2AX phos-
phorylation [51]. Moreover, defects in H3 acetylation results in
sensitivity to DNA damaging agents, which is consistent with
its importance in DNA repair [52]. Related to the important
role of histone acetylation in DNA repair, a recent study pro-
vided evidence that TRRAP/TIP60 is essential for the recruit-
ment and loading of repair proteins to the site of breaks [53].

The role of histone methylation in DNA repair has recently
received considerable attention. Methylation of histone H4K20
in fission yeast was shown to be essential for the recruitment



of Crb2, a checkpoint adaptor protein with homology to
53BP1I, to sites of DNA breaks to insure proper checkpoint
activation in response to DNA damage [54]. In human cells,
53BP1 may function in a very similar manner [55]. Interest-
ingly, TIP60 binds to the heterochromatic histone mark
H3K9me3, triggering acetylation and activation of DNA DSB
repair. Although H3K9me3 is not required for the recruit-
ment of TIP60 to sites of DNA damage, the interaction of
TIP60/ATM with the MRN complex is sufficient for chroma-
tin localization. However, the interaction with H3K9me3 is
essential for TIP60 HAT stimulation and the initiation of
downstream repair events [56].

DNA replication

DNA replication occurs during the S phase of the cell cycle
and it is initiated at discrete sites on the chromosome called
origins of replication. DNA replication is a delicate process
for cells since it requires a high fidelity during the duplication
of DNA sequences and maintenance and propagation of chro-
matin states. This cellular process involves several critical
steps: access to DNA for the replication machinery, disrup-
tion of the parental nucleosomes ahead of the replication fork,
nucleosome assembly on the daughter duplex of DNA, and
propagation of the epigenetic state. All of these events are reg-
ulated by a network of histone-modifying complexes that con-
trol access to DNA and nucleosomal organization. Although
the role of chromatin modifications in DNA replication re-
mains poorly understood, several studies have provided evi-
dence that histone post-translational modifications can con-
trol the efficiency and timing of replication origin activities
[57]. As compacted chromatin can limit and prevent access
for replication machinery to the DNA, it can be hypothesized
that histone modifications play a critical role in setting the
chromatin status for both early and late origins of DNA repli-
cation. Related to this idea, it has been shown in yeast that
histone acetylation in the vicinity of the origin of replication
affects replication timing. Indeed, higher levels of histone
acetylation coincide with earlier induction of replication at an
origin [57]. In humans, acetylation of histone tails has also
been demonstrated to correlate with replication timing [58].
Consistent with the idea that acetylation opens the way for
DNA replication machinery, several studies have shown that
HAT HBOL is associated with both replication factor, MCM2
and the origin recognition complex 1 subunit of the human
initiator protein. These findings suggest that the targeting of
histone acetylation to the origin of replication establishes a
chromatin structure that is favorable for DNA replication
[59]. Interestingly, ING5-containing HBO1 HAT complex as-
sociates with MCM2-7 helicase and appears to be essential for
DNA replication in humans, which is consistent with the find-
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ing that depletion of either ING5 or HBO1 impairs S phase
progression [60]. Recent studies in S. cerevisiae showed a dy-
namic regulation of acetylation of H3 and H4 around an ori-
gin of replication [61]. Further studies are needed to examine
the exact mechanisms and implications of other histone modi-
fications such as methylation, phosphorylation, and ubiqui-
nation. It is likely that histone phosphorylation, similar to
acetylation, could also play roles in making DNA accessible to
DNA replication machinery and in restoring chromatin to a
compact configuration after DNA replication is completed.

EPIGENETIC ROLE OF HISTONE
MODIFICATION IN GLIOMA

According to the nationwide, hospital-based cancer regis-
try, as reported by the Korean Ministry of Health and Welfare
in 2010, there were 10004 newly diagnosed brain tumors in a
population of 49.9 million in 2010 [62]. Among them, most of
the neuroectodermal tumors were gliomas (91.7%), which
accounted for 15.1% of all primary brain tumors. Glioblasto-
ma accounted for 5.2% of all primary tumors and 34.4% of all
gliomas. Among histologically confirmed cases, glioblastoma
accounted for 40.6% of all gliomas [62]. Despite recent ad-
vances in surgery, radiotherapy; and chemotherapy, survival of
glioma patients remains poor. The 5-year survival rate of pa-
tients with low-grade gliomas is 30% to 70% depending on
histology, and the median survival time is only 12 to 15 months
for the most frequent malignant glioma, glioblastoma multi-
forme (GBM) [63].

Besides genetic alterations, epigenetic modifications are
critical to the development and progression of cancer. The
best-known epigenetic marker in gliomas is DNA methyla-
tion. Hypermethylation of the CpG island promoter can in-
duce silencing of genes affecting the cell cycle, DNA repair,
metabolism of carcinogens, cell-to-cell interaction, apoptosis,
and angiogenesis, all of which may occur at different stages in
glioma development and interact with genetic lesions [64]. In
addition to DNA promoter hypermethylation, epigenetic al-
terations of histone modification patterns have the potential
to affect the structure and integrity of the genome and disrupt
normal patterns of gene expression, which may also contrib-
ute to carcinogenesis [13]. These modifications occur in dif-
ferent histone proteins, histone variants, and histone residues,
involve different chemical groups, and have different degrees
of methylation.

Alterations of histone modifications in glioma
genesis

Mounted evidence from recent data shows that alterations
at the histone level may also play a role in glioma genesis.
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These alterations encompass a globally deregulated expres-
sion of genes involved in histone modifications as well as
changes in the histone modification pattern of individual
genes (Table 4). Global aberrations at the histone level result
from mutations in regulatory genes, as detected in a large-
scale genomic analysis of GBM samples, including HDACs
(HDAC2 and HDACY), histone demethylases (JMJD1A and
JMJD1B), and histone methyltransferases (SET7, SETD?7,
MLL3, and MLLA4) [64]. Furthermore, altered expression lev-
els of HDACs, due to reasons that have yet to be defined, have
been linked to tumor recurrence and progression (HDACI,
HDAC?2, and HDAC3) [65]. Histone modifications regulating
individual genes have been reported in several studies. For
example, a repressed expression of the tumor suppressor
RRP22 and the cell cycle regulator p21, combined with an en-
hanced expression of the pro-proliferative transcription factor
HOXAQ9 have been linked to alterations in histone modifica-
tion patterns [66]. However, the actual functional roles of his-
tone modifications in gliomas, and their potential to serve as
biomarkers and/or therapeutic targets, still remain to be fully
elucidated. Additionally, in order to determine the exact inci-
dence and characteristic patterns of these alterations of his-
tone modification in human gliomas, there is a necessity of
further study and more analysis.

Alterations of histone modifications in GBM

As previously mentioned, epigenetically silenced loci, in
addition to being hypermethylated DNA, are characterized
by aberrant patterns of histone modifications. Silenced CpG
island promoters are characterized by increased histone
H3K9 methylation and loss of H3K9 acetylation. In embry-
onic stem (ES) cells, the dual presence of deactivating H3K27
methylation and activation-associated H3K4 methylation,
called bivalent domains, is thought to create a “poised” chro-
matin state for developmentally regulated genes, allowing for
silencing in ES cells and subsequent transcriptional activation

Table 4. Major epigenetic alteration of histone modification in hu-
man gliomas

Mutation

HDAC2, HDAC9

JMJD1A, JMJD1B

SET7, SETD7, MLL, MLL3,
MLL4

Histone deacetylase
Histone demethylase

Histone methyltransferase

Altered expression level

Histone deacetylase HDACI, HDAC2, HDAC2
Modification of individual genes

RPR22 Repression expression

P21 Repression expression

HOXA9 Enhanced expression
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or repression in differentiated cells [67]. Bivalent domains,
along with additional repressive marks (dimethylated H3K9
and trimethylated H3K9), are found in embryonic carcinoma
cells in genes that are frequently silenced by DNA hypermeth-
ylation in adult human cancer cells. These histone modifica-
tions are hypothesized to predispose tumor suppressor genes
to DNA hypermethylation and heritable gene silencing [68].
There are many instances of genetic alterations and/or de-
regulated expression levels of genes encoding for histone-
modifying enzymes. In acute leukemias for example, it is
common to observe translocations involving the mixed lin-
eage leukemia (MLL) gene, encoding for H3K4 methyltrans-
ferase [69]. These translocations result in MLL fusion proteins
that have lost H3K4 methyltransferase activity. Mutations re-
sulting in altered histone HAT activity also occur in cancer
related diseases: CAMP response element (CRE) binding
protein-binding protein mutations, abolishing HAT activity,
cause Rubenstein-Taybi syndrome, a developmental disorder
that is associated with a higher risk of cancer [70]. In GBM,
there is also some preliminary evidence for the deregulation
of genes controlling histone modifications. The gene encod-
ing BMI-1, a member of the polycomb group complex that
regulates histone H3K27 methylation, is frequently subjected
to copy number alterations in both low- and high-grade glio-
mas, and BMI-1 deletions are associated with poor prognosis
in patients [71]. It has also been reported that expression lev-
els of some HDAC proteins are altered in GBM. Class II and
class IV HDACs displayed decreased mRNA expression in
GBMs compared to low-grade astrocytomas and normal
brain samples, and overall, histone H3 was more acetylated in
GBMs [72]. Large-scale sequencing of protein-coding genes
in GBMs uncovered mutations in many genes involved in epi-
genetic regulation, including histone deacetylases HDAC2 and
HDACSY, histone demethylases JMJDIA and JMJDIB, histone
methyltransferases SET7, SETD7, MLL3, MLL4, and methyl-
CpG binding domain protein 1 [73]. Screening of a large co-
hort of gliomas of various grades and histologies (n=784)
showed H3F3A mutations to be specific to GBM and highly
prevalent in children and young adults [74]. Furthermore,
the presence of H3F3A/ATRX-DAXX/TP53 mutations was
strongly associated with alternative lengthening of telomeres
and specific gene expression profiles in GBM, which results
explained the recurrent mutations in a regulatory histone
[74]. These intriguing initial studies suggest that alterations
in epigenetic mechanisms could be a major defect in GBM.

Global histone modification patterns as prognostic
marker in glioma patients

Liu et al. [75] reported the relationship between multiple
histone modifications and patient prognosis, which was ana-
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Fig. 6. Recursive partitioning analysis (RPA) results individualizing 10 different prognostic groups among the 230 samples from glioma patients
who underwent resection included. Each node, where the branches of the RPA tree bifurcate, divides patients according to whether the value of
a specific feature (predictor) is above or below a selected cutoff value. The first node is represented by the tumor grade. In low-grade glioma
patients, histologic subtype provides the second node, and histone modifications (e.g., the percentage of cells stained positively for H3K9Ac)
provide the third node. High-grade glioma patients were further divided into World Health Organization (WHO) grade 3 and 4 ones. Histo-
logic subtype and pathogenesis provide the third node, respectively, and histone modifications of H3K4me2, H3K18Ac, or H4K20me3 provide

the fourth node (adapted by Liu et al. Cancer Epidemiol Biomarkers Prev 2010;19:2888-96 [75]). GBM: glioblastoma multiforme.

Table 5. Median progression-free survival and overall survival of the different groups of glioma patients established by RPA

Group

Number of patients

Median PFS, month (95% CI)

Median OS, month (95% CI)

1 22
30
52
10
26
16
22
24
18
10

O 0 N1 N U1 o WD

—
(=]

51.8 (46.1-57.5)
36.0 (27.2-44.8)
31.9 (29.4-34.4)
35.9 (29.7-42.1)
14.0 (10.8-17.2)
9.2 (8.3-10.0)
11.6 (7.8-15.4)
7.9 (4.9-10.9)
7.9 (5.1-10.7)
6.2 (4.4-8.0)

52.4 (48.4-56.4)
57.6 (49.9-65.3)
32.0 (21.5-42.5)
28.5(22.2-34.8)
18.6 (15.9-21.3)
11.3 (10.0-12.6)
14.0 (10.9-17.1)
10.1 (9.0-11.2)
9.7 (6.2-13.2)
6.5 (4.6-8.4)

p<0.0001. CI: confidence interval, RPA: recursive partitioning analysis, PFS: progression-free survival, OS: overall survival

lyzed by a recursive partitioning analysis (RPA), with progres-
sion-free survival (PFS) and overall survival (OS) as the pri-
mary end point. An RPA classification was carried out to test
how histone modification might influence prognosis (Fig. 6).
Patients with astrocytoma were classified into two separate
groups based on acetylation of H3K9. Patients whose tumors
expressed H3K9Ac in <88% of tumor cells (group 3) had a
reduced survival rate compared with patients whose tumors
had at least 88% of cells expressing H3K9Ac (group 2). In
World Health Organization grade 3 tumors, patients whose
tumors expressed H3K4diMe in <64% of tumor cells (group
6) had a reduced survival rate compared with patients whose

tumors had at least 64% of cells expressing H3K4me?2 (group

5). Acetylation of H3K18 also significantly influenced the
survival of primary glioblastoma patients. Patients whose tu-
mor expressed lower levels (<74% of tumor cells) of H3K18Ac
(group 7 vs. group 8) experienced a greater survival rate.
Meanwhile, trimethylation of H4K20 significantly influenced
the survival of secondary glioblastoma patients; with a greater
survival for patients whose tumor expressed higher levels
(275% of tumor cells) of H4K20me3 (group 9 vs. group 10).
Conclusively, these data suggest that the 10 groups defined
the terminal classification of the 230 patients and were associ-
ated with significantly different PFS (p<0.0001) and OS (p<
0.0001) (Table 5) [75].
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THERAPEUTIC STRATEGIES
TO OVERCOME HISTONE ALTERATION

Overview of potential epigenetic-based therapies
for GBM

Epigenetic-based therapies, such as the DNMT inhibitor
Decitabine (5-aza-2’-deoxycytidine) and the HDAC;i suberoyl-
anilide hydroxamic acid (SAHA; vorinostat), are currently be-
ing tested in multiple cancers, although only HDACi is in trials
for GBM. In contrast to genetic mutations, which are “hard-
wired” once mutated, epigenetic mutations, such as promoter
hypermethylation and histone acetylation status, are theoreti-
cally reversible through drug treatment or changes in the diet.

A major unresolved issue with epigenetic therapy for can-
cer is target specificity. First, some genes that require DNA
methylation or histone deacetylation for silencing in normal
cells could be unintentionally activated by agents that inhibit
DNMTs or HDAC:s. Second, cancer genomes are character-
ized by both DNA hyper- and hypomethylation. Therefore,
using drugs that reactivate silenced tumor suppressors may
have the undesired effect of further activating oncogenes
through hypomethylation. These problems should be ad-
dressed to gain a more complete understanding of the molec-
ular events that may result from epigenetic-based therapy.

Histone deacetylase inhibitors for GBM treatment

HDACGC: catalyze the deacetylation of lysine residues within
the N-terminal tails of core histones and non-histone pro-
teins. As a result, their effects are complex and involve histone
and non-histone substrates, and the mechanism of specificity
for each HDAC is not well understood. In general, HDACs
promote a closed chromatin structure that represses tran-
scription. There are 18 known HDACs in humans, and they
are divided into 5 main classes with different target specifici-
ties [76]. HDAC:s of Class I (HDACs 1, 2, 3, and 8), Class ITA
(HDACs 4, 5, 7, and 9), Class IIB (HDACs 6 and 10), and
Class IV (HDAC 11) all contain zinc in their active sites and
are inhibited by HDAC inhibitors (HDAC:I) such as tricho-
statin A (TSA) and SAHA (vorinostat). Class IIl HDACs (sir-
tuins) do not contain zinc and are not inhibited by TSA or
SAHA.

The rationale for using HDACI in cancer therapy is two-
fold: first, HDACi promotes a more open chromatin confor-
mation and might therefore permit better access for DNA-
damaging agents to the chromatin, promoting apoptosis
caused by these agents. Second, HDACi will reverse some of
the aberrant epigenetic gene silencing in GBMs, presumably
leading to cell-cycle arrest and apoptosis due to DNA damag-
ing agents [77]. While it is not clear how consistently HDACi
activates specific pathways from one GBM to the next, HDA-
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Ci do synergize with DNA damaging agents in slowing the
growth, or killing, glioma cells in vitro.

HDAC: are comprised of several classes of compounds, in-
cluding hydroxymates (SAHA, TSA), cyclic peptides (depsip-
eptide), aliphatic acids (valproic acid, butyrate), and benza-
mides. No single HDACiI is effective against all HDACs.
HDACI causes increased acetylation of histones and non-his-
tone proteins and can reactivate p21, which contributes to
cell-cycle arrest [78]. Non-cancerous cells are more resistant
to the effects of HDAC, but the reasons for this selective sen-
sitivity are unclear [79]. HDAC; alters the expression levels of
only a subset of expressed genes in transformed cells (~2-
10%), and both increases and decreases in transcript levels
have been observed [80].

SAHA is currently being tested as a monotherapy, and in
combination with other therapies, in 5 phase I or I-II clinical
trials for gliomas. SAHA targets Class I and Il HDACs at mi-
cromolar concentrations, and preclinical studies found that it
sensitizes glioma cells in vitro, ex vivo, and in vivo to chemo-
therapy and radiation [81]. SAHA treatment increased p21
promoter histone H3 acetylation in the U87 glioma cell line,
and inhibited the proliferation of GL26 glioma cells implant-
ed in mice [78]. Two of the current clinical trials are testing
SAHA in combination with temozolomide; one also includes
radiotherapy. A third trial consists of SAHA, isotretinoin and
carboplatin, a fourth uses SAHA and bortezomib, and a fifth
is testing SAHA as a monotherapy.

Trials are also currently underway for two additional HDA-
Ci, valproic acid (Depakene; Depakote) and depsipeptide
(Romedepsin; FK-228), and there are additional compounds
that remain to be tested in clinical trials. Valproic acid is being
tested against GBM in combination with temozolomide in
addition to radiation, and in a broader second trial against
neuronal tumors and brain metastases in combination with
etoposide. Depsipeptide monotherapy is being tested against
high-grade gliomas in a study that is ongoing, but no longer
recruiting participants. Valproic acid is known to be active
against Class I and IIA HDACs at millimolar concentrations
while depsipeptide is active against Class I HDACs at nano-
molar concentrations. An additional HDACi not yet in clini-
cal trials is pivaloyloxymethyl butyrate (AN-9), a derivative
of butyrate. Butyrate is an aliphatic acid HDACi effective
against Class I and IIA HDACs at millimolar concentrations.
In addition, AN-9 shows efficacy in GBM cell culture and
animal models [82]. AN-9 sensitized mouse GBM xenografts
to radiation and showed decreased tumor growth and in-
creased survival. There are several HDAC; that have shown
efficacy against cancer cells but have not yet been tested for
gliomas, including Panobinostat (LBH589) [83] and Belino-
stat (PXD101) [84]. The discovery and development of new



epigenetic enzyme-targeting compounds is an area of active
research in the pharmaceutical industry.

FUTURE DIRECTIONS FOR EPIGENETIC
HISTONE MODIFICATION IN GBM

Epigenetic studies of GBM are poised to 1) make substan-
tial contributions to the understanding of GBM biology, 2)
identify new predictive biomarkers, and 3) discover novel
targets for therapy. New models, such as GBM patient-de-
rived tumor stem cells grown in neurosphere culture, may be
a valuable addition to epigenetic research into GBM, particu-
larly if the epigenetic profiles of the corresponding primary
tumors are retained, as has been shown in gene expression
patterns and invasive growth patterns of these cells [85]. Epig-
enomic profiling of DNA methylation, histone modifications
and non-coding RNAs (such as microRNAs) in primary tu-
mors, orthotopic xenografts, and tumor neurospheres are
strategies that will likely uncover many additional epigenetic
alterations in GBMs, and potential targets for therapy.

There are still many questions remaining about the role of
epigenetics in GBM. The causes and consequences of epigen-
etic alterations are still mostly unknown, and the relative con-
tributions of genetic and environmental factors to epigenetic
alterations have not been quantified. It is still unclear as to
why some genes or pathways are more affected by epigenetic
alterations than they are by genetic alterations (or vice versa).
It is clear, however, that simultaneously examining both ge-
netic and epigenetic defects, complemented with functional
studies, will be essential in answering these questions. It will
also be important to understand the effects of HDACi on the
entire cancer acetylome to elucidate the molecular conse-
quences of this treatment strategy.

Therapies that combine both DNMT and HDAC inhibitors
may be an effective strategy against GBM. A dual treatment
approach may have a synergistic effect on gene activation, and
could allow lower doses of each drug to be used. Such a strat-
egy is being tested in a clinical trial for myelodysplastic syn-
drome and acute myelogenous leukemia using the DNMT
inhibitor Decitabine with or without valproic acid (clinicaltri-
als.gov ID NCT00414310).

An area that is mostly unexplored in GBM is the develop-
ment and testing of drugs directed against histone modifica-
tions other than acetylation. H3K27 methylation at promoter
regions of silenced tumor suppressors could be targeted to
reactivate these genes by, for example, using the S-adenosyl-
homocysteine hydrolase inhibitor 3-Deazaneplanocin A
(DZNep) [86]. However, it should be noted that the degree
of specificity of DZNep for inhibiting H3K27me3 has not yet
been fully determined because of its strong toxicity. As epi-
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genetic modifications are better understood and more types
are discovered, additional epigenetic drug targets can be test-
ed in GBMs and other cancers.
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