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INTRODUCTION

Metastatic brain tumors are the most common type of ma-
lignant brain tumors in adults [1-3]. The incidence of brain 
metastasis (BM) has recently increased [4,5]. This is because 
of the advancement of cancer therapies, prolonged patient 
survival, and strengthening of screening protocols [4]. Al-
though the exact occurrence of BMs varies slightly in the lit-
erature, it has recently been reported as 10%–40% and up to 
25% in autopsy studies [2,3,6,7]. BM requires aggressive treat-
ment because it not only causes convulsions, paralysis, and 
speech impairment but can also affect patient survival. Even 
in palliative settings, it is crucial to address these symptoms, 
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Brain metastasis (BM), classified as a secondary brain tumor, is the most common malignant central 
nervous system tumor whose median overall survival is approximately 6 months. However, the survival 
rate of patients with BMs has increased with recent advancements in immunotherapy and targeted 
therapy. This means that clinicians should take a more active position in the treatment paradigm that 
passively treats BMs. Because patients with BM are treated in a variety of clinical settings, treatment 
planning requires a more sophisticated decision-making process than that for other primary malignan-
cies. Therefore, an accurate prognostic prediction is essential, for which a graded prognostic as-
sessment that reflects next-generation sequencing can be helpful. It is also essential to understand the 
indications for various treatment modalities, such as surgical resection, stereotactic radiosurgery, and 
whole-brain radiotherapy and consider their advantages and disadvantages when choosing a treat-
ment plan. Surgical resection serves a limited auxiliary function in BM, but it can be an essential thera-
peutic approach for increasing the survival rate of specific patients; therefore, this must be thoroughly 
recognized during the treatment process. The ultimate goal of surgical resection is maximal safe resec-
tion; to this end, neuronavigation, intraoperative neuro-electrophysiologic assessment including evoked 
potential, and the use of fluorescent materials could be helpful. In this review, we summarize the con-
siderations for neurosurgical treatment in a rapidly changing treatment environment.
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and the role of neurosurgery in BM was first demonstrated in 
a randomized controlled study conducted by Patchell et al. [8]. 
For single BM lesions, a study randomized between a radiation-
only group and the surgery with radiation group showed a me-
dian survival of 15 weeks in the former and 40 weeks in the 
latter, indicating a significant survival benefit [8]. Bindal et al. 
[6] showed a statistically significant survival benefit when all 
tumors were surgically removed in multiple BM cases com-
pared to those with residual tumors with a median survival 
similar to that of patients with a single metastasis.

Owing to the nature of the disease, BM can be caused by 
diverse carcinomas and presents different clinical situations 
for each patient. Therefore, building a personalized treatment 
plan is crucial, and physicians must consider the individual 
aspects during this process. These factors are represented by 
clinical variables such as patient age, performance status, BM 
number and size, neurological symptoms, extracranial metas-
tases, and genetic alterations [9]. Surgical resection, radio-
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therapy such as stereotactic radiosurgery (SRS) and whole-
brain radiotherapy (WBRT), and systemic therapies including 
targeted therapy and immunotherapeutic agents, are used to 
treat BM [10,11]. This review summarizes considerations for 
the surgical resection of BM, selection of treatment modali-
ties, and surgical tips.

PREOPERATIVE PROGNOSIS 
ASSESSMENT

Predicting prognosis is among the most important aspects 
of BM treatment [9]. For neurosurgeons, the option of surgi-
cal resection includes general anesthesia; therefore, there must 
be a clear benefit. Surgical resection is generally recommend-
ed for patients with an expected survival period of at least 
three months and should be chosen according to diverse clin-

ical situations [12]. Steady efforts have been made to develop 
a prognostic prediction system (Table 1).

The original work of the prognostic prediction system is a 
recursive partitioning analysis (RPA) of the Radiation Oncol-
ogy Treatment Group (RTOG) published by Gaspar et al. [13], 
and 1,200 patients included in three clinical trials from 1979 
to 1993 were analyzed. According to the RPA tree, age, Kar-
nofsky performance score (KPS), systemic disease status, and 
the presence of extracranial metastasis (ECM) reportedly af-
fect prognosis. In this study, patients with KPS of 70 or high-
er, controlled systemic disease, age <65 years, and no ECM 
were classified as Class I; those with a KPS <70 as Class III; 
and other applicable patients as Class II. This system can eas-
ily stratify patients using simple variables to predict progno-
sis, but it is not currently used and remains a legacy because it 
is not disease-specific, and current systemic therapies are not 

Table 1. Graded prognostic assessments by cancer type

GPA scoring criteria 
0 0.5 1.0 1.5 2.0

Lung cancer (NSCLC)
Age (yr) ≥70 <70 NA
KPS ≤70 80 90–100
ECM Present Absent
No. of BM >4 1–4
Gene status EGFR(-) and ALK(-) EGFR(+) or ALK(+)

Melanoma
Age (yr) ≥70 <70
KPS ≤70 80 90–100
ECM Present Absent
No. of BM >4 2–4 1
Gene status BRAF(-) or NA BRAF(+)

Renal cell carcinoma
KPS <80 80 90–100
ECM Present Absent
No. of BM >4 1–4
Hgb ≤11 11.1–12.5 >12.5

Gastrointestinal cancer
KPS <80 80 90–100
Age (yr) ≥60 <60
ECM Present Absent
No. of BM >3 2–3 1

Breast cancer
Age (yr) ≥60 <60
KPS ≤60 70–80 90-100
ECM Present Absent
No. of BM >1 1
Subtype Basal Luminal A HER2, luminal B

GPA, graded prognostic assessment; NSCLC, non-small cell lung cancer; KPS, Karnofsky performance score; BM, brain metastasis; EGFR, epi-
dermal growth factor receptor; ALK, anaplastic lymphoma kinase; ECM, extracranial metastasis; Hgb, hemoglobin; HER2, human epidermal 
growth factor receptor-2
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reflected [9]. 
Sperduto et al. [9] retrospectively analyzed 3,940 patients 

with newly diagnosed BM and published diagnosis-specific 
graded prognostic assessment (GPA) scores. Following this, 
specific GPAs for each cancer type were announced in the 
following order: breast cancer (breast-GPA) [14], lung cancer 
(lung-molGPA) [15], melanoma (melanoma-molGPA) [16], 
renal cell carcinoma (renal-GPA) [17], and gastrointestinal 
cancer (GI-GPA) [18]. Prognostic factors were evaluated us-
ing weights through multiple Cox regression analysis and 
RPA methods, and the largest change was that genetic altera-
tions were included [14]. Genes associated with prognostic 
factors differ among cancer types and include non-small cell 
lung cancer (epidermal growth factor [EGFR] or anaplastic 
lymphoma kinase [ALK] alteration), breast cancer (estrogen 
receptor [ER], progesterone receptor [PR], human epidermal 
growth factor receptor 2 [HER2]), and melanoma (BRAF) [14-
16]. This shift is attributed to the development of effective tar-
geted therapies for specific gene abnormalities for each carci-
noma, which has a substantial impact on patient prognosis. 
Immunotherapy has recently become popular and is widely 
applied, especially for lung cancer and melanoma. Predictive 
factors in immunotherapy can also be included as prognostic 
factors in the future [19,20]. This prognostic prediction sys-
tem will be updated continuously. Therefore, neurosurgeons 
should apply these changes with sensitivity when treating pa-
tients or designing clinical studies.

TREATMENT MODALITY CHOICE

As mentioned above, combined with systemic chemother-
apy, localized therapies for BM include surgical resection, 
SRS, and WBRT [12]. The most important factors in deter-
mining the treatment method are the number of BM and per-
formance status. In a single metastasis situation, if the tumor 
is accessible and the patient has RPA Class I or II, surgical 
treatment and adjuvant WBRT or adjuvant SRS are recom-
mended [12,21]. In cases of RPA Class III, SRS or WBRT 
without surgical treatment is recommended [12,22,23]. If the 
tumor location is not accessible, SRS is recommended for RPA 
Class I or II, and WBRT is preferred for RPA Class III [12]. 
In cases of multiple BM, treatment methods are largely clas-
sified based on BM number (n>4), and surgical treatment is 
recommended only when the tumor causes a mass effect and 
is located in an accessible lesion [12,21]. SRS or WBRT is rec-
ommended if the patient’s performance is unsatisfactory and 
the BM does not cause a mass effect. In some cases, SRS fol-
lowed by WBRT can be considered [12]. Due to the similarity 
between clinical variables used to determine treatment mo-
dality and prognostic prediction systems such as GPA, it is 

easy to become confused. However, the decision flow of the 
two systems is entirely distinct, so it is essential to fully com-
prehend it.

Since surgical treatment can bring rapid resolution of the 
mass effect in tumors larger than 3–4 cm, it has the advantage 
of being able to drastically reduce the steroid requirement and 
minimize radiation necrosis that may occur after radiation 
[5]. However, SRS can be applied to relatively small tumors 
and has the advantage of being delivered on an outpatient ba-
sis or during a short hospital stay without requiring general 
anesthesia [5]. In addition, although WBRT appears effective 
in almost all tumors, the neurocognitive decline that may oc-
cur after treatment has recently attracted attention [24,25]. A 
large meta-analysis by Tallet et al. [26] reported decreases in 
neurocognitive function of 31%–57% within 3 months and 
48%–89% in 1 year. This study reported that radiation expo-
sure to hippocampal lesions and the temporal lobe could re-
duce a patient’s intelligence quotient and capacity to generate 
new memories. To avoid this cognitive decline, hippocampal 
preservation or prophylactic administration of memantine 
may be used [27,28].

INNOVATIVE NEUROSURGICAL 
TECHNIQUE

Although the role of surgical treatment in BM treatment is 
limited, it appears to have a clear survival benefit in patients 
with good performance status and single or oligometastases 
[12]. In addition, since performance status is one of the most 
important prognostic factors in patients with BM, the most 
important goal of surgical treatment is maximal safe resection 
without neurological deficits. To achieve this goal, various re-
cently developed neurosurgical modalities can be used.

First, the positional relationship between metastatic brain 
tumors and the functional tract should be investigated using 
neuronavigation and diffusion tensor imaging tractography 
[29]. The corticospinal tract (CST), which can affect motor 
function, is a representative tract requiring preservation (Fig. 1). 
In addition, recent language tracts are related to paraphasia, 
word recognition, and conditional associative tasks such as the 
superior longitudinal fasciculus I, II, III, and uncinate fascicu-
lus, which can also affect language function [30]. It is recom-
mended that we fully understand the three-dimensional ana-
tomical relationship of the language tract during surgery and 
carefully remove the tumor. Tumors invading the temporal 
stem could affect the visual pathway and cause symptoms 
such as hemianopia and quadrantanopia, so this should be 
sufficiently discussed with patients before surgery. One con-
sideration of neuronavigation during surgery is that accuracy 
can change intraoperatively due to brain shifting, shallow an-



J Yoo et al.

167

esthesia, or brain swelling [31]. Therefore, it is necessary to 
compare the depth of the cerebral vein or the brain’s surface, 
which can be landmarks, to evaluate and maintain accuracy 
during surgery. Furthermore, by setting a rescue point during 
the surgery, when shaking occurs, accuracy can be increased 
through re-registration to protect the surgeon from naviga-
tion errors [32].

Since the occurrence of neurological symptoms after sur-
gery could impair the performance status of patients with 
BM, particular attention is needed. Numerous types of sur-
veillance devices can preserve patient functionality, including 
motor evoked potentials (EPs), somatosensory EPs, visual 
EPs, and brainstem auditory EPs [33-36]. EPs can be used to 
compare neurologic deficits after surgery versus before tumor 
removal; however, it has disadvantages in that it is difficult to 
predict the functional tract before tumor removal and diffi-
cult to measure the change in EP in real-time [33]. For simul-
taneous monitoring, subcortical stimulation (SCS) mapping 
can also be used in asleep and awake surgery [37,38]. Since 
the use of SCS during brain surgery was reported by Duffau 
et al. [39,40], it has been widely applied to various patients, 
such as glioma patients, and the intraoperative procedure 
used for SCS has been described in detail elsewhere. SCS is a 
simple method of depolarizing the CST using a monopolar 
stimulator to detect muscle movement with proven safety 
[40,41]. Therefore, SCS-assisted BM resection could help pre-
serve function postoperatively (Fig. 2). Multichannel electro-
myography recordings can increase the sensitivity of detect-
ing muscle movements [42]. Recent studies suggested that the 
current strength (mA) and the distance between the CST (mm) 
correspond almost 1:1 [43,44]. For example, if stimulation is 
sensed at 5 mA before tumor removal, the predicted distance 

between the monopolar stimulator and the CST is approxi-
mately 5 mm. If muscle movement is detected at a lower than 
expected current, the CST may be located closer to that ob-
served during navigation. This method will further reduce 
postoperative complications and contribute to maintaining 
patient performance status.

In addition to the above methods, to increase resection ex-
tent, staining materials that can differentiate between tumor 
and normal tissue, called fluorescence-guided surgery, are used 
(Fig. 3A and B). In particular, sodium fluorescein is highly ac-
cumulated in enhancing lesions where the blood-brain bar-
rier is disrupted, distinguishing it from the normal parenchy-
ma under a yellow 560 nm surgical microscope filter, which 
enables tumor visualization [45,46]. It is usually used at a con-
centration of 5 mg/kg to stain tumors and is administered 
through an intravenous injection after completion of the pro-
cedure under general anesthesia [46]. During resection, the 
operator can view the tumor in real-time at high resolution 
using a microscope. In the course of BM surgery using sodium 
fluorescein, there was a strong correlation between the stained 
area and enhancement on magnetic resonance imaging with 
a reported sensitivity of 91% and specificity of 100% [46]. In 
fact, 5-aminolevulinic acid, which is widely used in glioma 
surgery, is also not widely used because it is expensive and has 
distinct detection rates for different primary cancer types (Fig. 
3C and D). In a prospective study of 157 BMs, fluorescence was 
observed in only 104 patients (66%), and the fluorescence pat-
tern was inconsistent. In particular, fluorescence was observed 
in 73% of breast cancer cases, but fluorescence was observed 
in only 33% of melanoma cases, and there was a statistically 
significant difference between carcinomas, resulting in incon-
sistency [47]. Additionally, in approximately two-thirds of 

A B
Fig. 1. Example of application of neuronavigation and diffusion tensor imaging (DTI) tractography. A: Neuronavigation showing the anatomi-
cal relationship between the tumor and the corticospinal tract (CST). B: Three-dimensional DTI tractography showing an intuitive perspec-
tive of the CST.
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cases, histological analysis of biopsies obtained from residual 
fluorescent areas during BM resection revealed false-positive 
results [48].

The BM was previously thought to be distinct from the sur-

rounding tissues. However, most BMs do not have clear bound-
aries with the surrounding normal parenchyma, and some 
cases show an invasive growth pattern [48-50]. Therefore, af-
ter gross total resection (GTR) has been achieved, the extent 

A

B C
Fig. 2. Subcortical stimulation (SCS) during tumor resection. A: Sample monopolar stimulator for SCS. B: Application of SCS after tumor re-
section to estimate the distance to the corticospinal tract. C: Recording of muscle depolarization caused by SCS.

A

C

B

D
Fig. 3. Tumor resection using sodium fluorescein (A and B). A: Tumor and normal parenchyma under white light. B: Tumor and normal pa-
renchyma under a yellow 560 nm filter. The tumor, where the blood-brain barrier was disrupted, is well stained by sodium fluorescein. Tumor 
resection using 5-aminolevulinic acid (5-ALA) (C and D). C: Tumor and normal parenchyma under white light. D: Tumor and normal paren-
chyma under a blue 400 nm filter. The tumor is well-stained with 5-ALA showing a strong red wavelength. CSF, cerebrospinal fluid.
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of resection can be increased by additional removal of ap-
proximately 5 mm; this method has been named microscop-
ic GTR (MTR) or supramarginal resection [51,52]. This meth-
od is applicable to BM that occurs in non-eloquent areas and 
can be implemented with methods such as functional brain 
mapping using SCS [52]. Yoo et al. [51] observed a local re-
currence rate of 23.3% in the MTR group and 43.1% in the 
GTR group and reported a clear local control effect. The use 
of this strategy for BM in the eloquent area and its contribu-
tion to overall survival are unclear; therefore, this should be 
investigated in greater depth in future research.

NOVEL OPTIONS FOR BM

A novel technique called laser interstitial thermal therapy 
(LITT) was recently reported for its clinical utility since it was 
first applied to BM in 2010 [53-55]. Briefly, LITT is a localized 
minimally invasive method that attempts to kill cancer cells by 
placing a stereotactically placed laser probe on the tumor and 
delivering high thermal energy [55]. It is widely applied in BM, 
with a short recovery term and a relatively simple procedure 
[54]. This is preferred for patients with deeply seated tumors, 
patients with expected high morbidity, a thin scalp, and low-
performance status, meaning that they are not surgical can-
didates, and it can be applied as an adjuvant therapy in radio-
resistant tumors [54].

In addition, some groups are trying neoadjuvant SRS, not-
ing that WBRT or adjuvant SRS, which is performed after sur-
gical resection, reports rates of about 7.5%–14% leptomenin-
geal seeding (LMS) in BM [56]. Conceptually, neoadjuvant 
GKS before surgery is used to reduce viable tumor cells, so 
that even microtumor cells that are invisible during surgery 
overflowing into the surrounding arachnoid space are not ex-
pected to lead to colonization. Asher et al. [56] reported a lo-
cal control rate of 86%, a distant control rate of 38%, and LMS 
of 0% in a study of 47 patients. Thus, it may be an alternative 
to adjuvant GKS or adjuvant WBRT in radio-resistant tumors 
such as melanoma and renal cell carcinoma, but caution is re-
quired for application as no survival benefit has been observed 
in large-scale clinical studies. 

CONCLUSION

BM is clearly a desperate situation for cancer patients; how-
ever, with the development of systemic treatment options, 
more aggressive treatment is recommended. In particular, 
the surgical treatment of BM remains important because it is 
expected to alleviate the patient’s symptoms by immediately 
eliminating the mass effect. For surgical success, neurosur-
geons must decide which patients are appropriate candidates. 

In the rapidly developing neurosurgical armamentarium, the 
application of fluorescein, neuro-electrophysiological surveil-
lance, and neuronavigation systems is expected to make a sig-
nificant contribution to maximal safe resection. Consequent-
ly, successful surgical resection may prolong cancer patient 
survival and provide opportunities for them to benefit from 
novel therapies. 
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