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INTRODUCTION

Optic pathway gliomas (OPGs) are insidious, debilitating 
low-grade gliomas (LGGs) that account for 3%–5% of all pe-
diatric brain tumors. Histologically, OPGs are primarily pilo-
cytic astrocytomas (World Health Organization grade I), al-
though pilomyxoid astrocytomas and grade II diffuse fibrillary 
astrocytomas have also been reported [1,2]. They are common 
in patients with neurofibromatosis type 1 (NF1), with up to 
20% developing OPG at a mean age of 4.5–5.0 years [3]. NF1 
is caused by pathogenic variants of the NF1 gene, located on 
chromosome 17q11.2. The NF1 gene encodes the neurofibro-
min protein, a tumor suppressor. Conversely, children without 
NF1 may develop sporadic OPG [4]. The molecular pathogen-
esis of sporadic OPGs is yet to be understood, but the most 
common genetic alteration in sporadic tumors is BRAF du-
plication [5,6]. 

OPGs most commonly arise in the chiasmatic-hypothalamic 
region but can arise anywhere along the optic pathway. Depend-
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ing on their location, OPGs can result in a variety of symptoms 
and signs, including decreased visual acuity (VA), proptosis, 
strabismus, nystagmus, headaches, seizures, and precocious 
puberty. The location of OPGs typically precludes complete 
surgical resection or optimum radiation dosing without incur-
ring an often-unaccepted neurological sequelae. The complexity 
of symptomatology and its close relationship to key structures 
make the treatment of OPG challenging. Treatment decisions 
should consider the patient’s age, presence or absence of NF1, 
and location of the tumor. Therefore, OPGs require multidis-
ciplinary care by neurosurgeons, oncologist, radiation oncol-
ogists, endocrinologists, ophthalmologists, pathologists, ge-
neticists, and health-care professionals, and their management 
should be highly individualized. OPG growth alone may not 
be an indication for treatment, depending on the patient’s cur-
rent vision. Treatment is usually indicated in the case of radio-
logical or clinical progression, such as significant visual dete-
rioration of neurological symptoms. Because, OPG may remain 
stable in volume (presumed to be mostly NF1) or, rarely, re-
gress spontaneously in the case of NF1 associated OPG [7]. 
The unique biology of these lesions results in numerous recur-
rences or progressions in many patients, necessitating addi-
tional therapies and consequent cumulative toxicities [8].

Currently, the focus of ongoing studies on OPG is related to 
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pharmacological agents. This review includes standard and 
emerging therapies for OPGs, with a summary of the roles of 
chemotherapy and molecularly targeted therapies.

STANDARD CHEMOTHERAPY

Despite the benign histological appearance of many OPGs, 
chemotherapy results in high response rate. For this reason, 
chemotherapy is often preferred as an initial treatment because 
surgery is often limited or not feasible owing to the risk of dam-
aging visual, neurological, or endocrine function [9]. Chemo-
therapy can often postpone the need for radiation, a delay that 
may reduce neurocognitive morbidity without compromis-
ing survival. Between 40% and 60% of patients progress dur-
ing or after first-line chemotherapy and successive systemic 
treatments are often necessary. Patients with OPGs in the set-
ting of NF1 often have indolent disease, and fewer patients re-
quire subsequent therapy. Sporadic OPGs confer a significant-
ly higher risk of vision loss than those secondary to NF1. 

Carboplatin-based chemotherapy is often the first-line treat-
ment for patients with progressive disease. In Europe, treatment 
with carboplatin and vincristine over an 18-month period rep-
resents the current first-line strategy in the Societe Interna-
tionale d’Oncologie Pediatrique (SIOP), despite modest visual 
outcomes [10]. For patients with NF1 who received carbopl-
atin and vincristine, the 3- and 5-year progression-free sur-
vival (PFS) rates were 77% and 69%, respectively [11]. In a pro-
spective study comparing post-chemotherapy VA outcomes 
in patients with OPG with and without NF1, there was no dif-
ference between the groups, with 24% improved, 35% remained 
stable, 41% worsened in the NF1 group and 18% improved, 43% 
remained stable, and 39% worsened in the sporadic group [12]. 
This result is similar to those of previous studies [13]. It should 
be noted that there is a poor correlation between radiographic 
and VA results in numerous studies [13,14]. Hence, it is essen-
tial to focus on the clinical effects of therapy on visual function.

Alternative therapies such as the thioguanine, procarbazine, 
lomustine, vincristine (TPCV) showed a nonsignificant trend 
toward improved event-free survival when compared with car-
boplatin/vincristine in patients with NF1 [15]. The combina-
tion of cisplatin and etoposide has also been evaluated in the 
treatment of OPGs, with a 3-year PFS rate of up to 78% [16,17]. 
However, this regimen should be used cautiously because of 
the risk of secondary leukemia associated with etoposide and 
ototoxicity associated with cisplatin. Vinblastine monotherapy 
is a commonly accepted chemotherapy for OPG. In a phase 
II study of vinblastine monotherapy for children with recur-
rent pediatric LGGs, there was 36% response rate, including 
“minor responses” which was defined as shrinkage between 
25% and 49% [18]. The 5-year PFS rate in this study was 42.3% 

[18]. In recent years, monotherapies with temozolomide and 
vinorelbine have also been used for progressive or refractory 
disease with positive results and low toxicity. In a phase II study 
of temozolomide in children with progressive OPG and pilo-
cytic astrocytoma, the best responses were partial response 
(PR) in 11%, minor response in 4%, stable in 38% [19]. There 
have been reports of secondary acute leukemias after a short 
latency period following temozolomide in adult patients who 
received temozolomide concurrently with radiotherapy [20]. 
Concerns could be raised regarding the long-term complica-
tions of using a DNA-methylating agent in patients with an in-
herent genetic predisposition to tumors, especially leukemia. 
A summary of clinical data of chemotherapies for OPGs is 
present in Table 1.

ANTI-VASCULAR ENDOTHELIAL 
GROWTH FACTOR AGENT

The anti-vascular endothelial growth factor (VEGF) agent 
bevacizumab was introduced in 2009 as the next line treatment 
for progressive OPG, as angiogenesis plays an important role 
in the growth of LGG [21]. Increased microvascular density 
in OPGs has been associated with worse PFS [22]. VEGF in-
duces neovascularization and is abnormally expressed in glial 
neoplasm [23]. By inhibiting VEGF, tumor growth and vas-
cular permeability are reduced. 

Treatment outcomes show a rapid radiological response with 
anecdotally profound visual improvement [24,25]. Bevacizum-
ab-based therapy has achieved objective responses and rapid 
improvement in visual symptoms in up to 86% of refractory 
cases [26]. Combination therapy with bevacizumab and irino-
tecan achieved a 2-year survival rate of 47.8% in patients with 
recurrent LGGs [27]. Bevacizumab monotherapy did not ap-
pear to decrease the efficacy of treatment and reduced toxici-
ty when compared with combination therapy [26]. According 
to Hwang et al. [26], approximately 86% of patients achieved 
an objective response with a median time to maximal response 
of 9 weeks. Bevacizumab monotherapy is also effective in im-
proving visual deterioration without tumor progression and 
the visual field improved by bevacizumab could be indepen-
dent of imaging changes [28].  

Recurrence or progression after discontinuation of bevaci-
zumab is frequent, with a relapse rate of 15%–83% within 6 
months after cessation [25,29]. However, retreatment with bev-
acizumab after relapse can achieve good responses [25,30]. An 
ongoing study (NCT02840409) enrolled newly diagnosed pa-
tients with LGGs, including those with NF1, treated with vin-
blastine alone or vinblastine plus bevacizumab. The hypoth-
eses underlying this approach are that bevacizumab will result 
in a greater occurrence of visual and neurological improve-
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vated protein kinase (MAPK) pathways on LGG is being in-
creasingly studied in terms of dose, treatment duration, effec-
tiveness, and toxicity. It is now well understood that abnormal 
activation of MAPK signaling pathways, such as Ras and Raf 
is the most frequent genetic aberration observed in progres-
sive LGGs, most commonly resulting from activation of the 
BRAF oncogene [31,32]. The two most common aberrations 
of BRAF are tandem duplication, resulting in KIAA1549-BRAF 
fusion, and an activating point mutation, BRAFV600E. Regard-
ing other gene mutations, gene mutations and fusion gene 
formation in FGFR1 and fusion gene formation in the NTRK 
family have been reported. These abnormalities activate the 
MAPK/ERK signaling pathway [33]. 

In cases of NF1, the NF1 gene controls the RAF-MEK-ERK 
signaling pathway downstream by controlling RAS, thus acti-
vating ERK, which is a typical signaling pathway of the MAPK 

ment, whereas vinblastine will result in longer disease con-
trol after 6 months of treatment compared with the historical 
experience with bevacizumab alone.

The most common side effects of bevacizumab include hy-
pertension, fatigue, joint pain, bleeding, and proteinuria. How-
ever, these effects are usually reversible after the discontinuation 
of bevacizumab. Given the good visual outcomes of bevaci-
zumab-based therapy, it could be an option for patients with 
refractory diseases. The optimal duration of therapy has not 
been defined; however, it seems plausible to consider longer 
courses of therapy if tolerated.

MITOGEN-ACTIVATED PROTEIN 
KINASE PATHWAY INHIBITOR

Recently, the effect of targeted inhibition of mitogen-acti-

Table 1. Clinical data of chemotherapies for optic pathway gliomas

Study
Chemotherapy 

regimen
Included 
diseases

No. of 
patients

Response rate Survival Other findings

Gnekow  
  et al. [10]

Vincristine,  
  �carboplatin (VC)  
vs. vincristine,  
carboplatin,  
etoposide (VCE) 

Previously untreated  
  childhood LGG 

VC:  
  n=249
VCE:  
  n=248

Response at 24 weeks:  
  VC 39%, VCE 34% 

VC: 5-yr PFS 46%,  
  5-yr OS 89%
VCE: 5-yr PFS  
  45%, 5-yr OS 89%

Packer  
  et al. [11]

Vincristine,  
  carboplatin

Previously untreated  
  childhood LGG 

n=31 Response in 70% 2-yr PFS: 75%
3-yr PFS: 68%

No difference in  
  �PFS between 
patients with and 
without NF1

Falzon  
  et al. [12]

Vincristine,  
  carboplatin

Previously untreated  
  childhood OPG 

n=90 Improvement in VA:  
  �NF1 OPG 24%,  
sporadic OPG 18%

- No difference in  
  �VA improvement 
between patients 
with and without 
NF1

Ater et al.  
  [15]

Vincristine,  
  �carboplatin (VC)  
vs. thioguianine,  
procarbazine,  
lomustine,  
vincristine (TPCV)

Previously untreated  
  childhood LGG 

VC:  
  n=137
TPCV:  
  n=137

Response at the end  
  �of chemotherapy:  
VC 50%, TPCV 52%

VC: 5-yr PFS 39%
TPCV: 5-yr PFS  
  52%

Massimino  
  et al. [16]

Cisplatin, etoposide Previously untreated  
  childhood LGG 

n=34 Response in 70% 3-yr PFS 78%

Bouffet  
  et al. [18]

Weekly vinblastine Childhood  
  �recurrent/refractory 
LGG 

n=51 Response in 36% 5-yr PFS 42%

Gururangan  
  et al. [19]

Temozolomide Childhood  
  progressive LGG 

n=30 Best responses in  
  �patients with  
OPG/PA (response 
rate: 15%)

4-yr PFS 17%
In OPG/PA  
  �patients, 4-yr PFS 
31%

LGG, low-grade glioma; OS, overall survival; PFS, progression-free survival; NF1, neurofibromatosis type 1; VA, visual acquity; OPG, optic 
pathway glioma; PA, pilocytic astrocytoma
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during NF1 gene mutation. Alterations in the MAPK pathway 
including interactions with aberrations common to NF1, lead 
to propagation of LGG.

Numerous novel agents, especially MEK inhibitors, are cur-
rently in clinical trials targeting the MAPK pathway. MEK in-
hibitors such as selumetinib, refametinib, trametinib, and cobi-
metinib have recently been used in the treatment of progressive 
and recurrent LGGs in children, with a 20-year PFS rate of up 
to 69% [34]. These agents target a downstream mediator in 
the Ras signaling pathway, preventing constitutive MAPK ac-
tivation. Their efficacy is likely to be greatest in patients with 
BRAF mutations [34]. As a MEK1/2 inhibitor, selumetinib 
avoids the adverse event of paradoxical activation of the MAPK 
pathway that occurs when BRAF-KIAA1549 aberrant pediatric 
LGGs are treated with direct BRAF inhibitors [35]. In a phase 
II trial of selumetinib in children with recurrent OPGs with-
out NF1, the 2-year PFS rate was 78% [36]. Imaging responses 
were PR in 24%, stable in 56%, and progression in 20%. In terms 
of visual outcomes, 21% and 68% of patients improved and 
were stable, respectively. Another phase II trial of selumetinib 
in pediatric patients with BRAF-aberrant or NF1-associated 
recurrent LGGs reported a 40% response rate, stable-to-im-
proved VA in patients with OPG, and a 2-year PFS rate of 96% 
[37]. Selumetinib is an oral agent that requires fewer clinic vis-
its. According to the Pediatric Brain Tumor Consortium (PBTC) 
phase II trial of selumetinib, patients were seen monthly [36]. 
Common toxicities include creatinine phosphokinase eleva-
tion, anemia, diarrhea, headache, fatigue, and rash, which are 
relatively tolerable. Considering manageable toxicities, fewer 
clinic visits, and the absence of a central line/intravenous ac-
cess would favorably affect a patient’s quality of life compared 
to standard chemotherapy. 

Selective type 1 B-Raf competitive small-molecule enzyme 
inhibitors including vemurafenib and dabrafenib recognize and 
bind to the ATP-binding domain of BRAFV600E-mutants. This 
interrupts the B-Raf/MEK step in the B-Raf/MEK/ERK path-
way, which drives tumorigenesis in BRAFV600E-mutant LGGs. 
Vemurafenib has shown some promise for the treatment of 
BRAFV600E-mutant LGGs [38]. Of the seven patients who were 
treated with vemurafenib for BRAFV600E-mutated LGGs, the 
best responses to treatment were as follows: 1 complete re-
sponse (CR), 3 PR, 1 stable and 1 progression, respectively. 
Treatment was well tolerated, with dermatological toxicity be-
ing the main concern [38].

 
MAMMALIAN TARGET OF RAPAMYCIN 
INHIBITOR

The mammalian target of rapamycin (mTOR) serves as a 
pivotal signaling pathway that regulates key cellular processes, 

including metabolism, protein synthesis, cell cycle progression, 
angiogenesis, and apoptosis [39]. Both NF1-associated and 
sporadic LGGs have demonstrated abnormal signaling up-
stream of mTOR through mutations in receptor tyrosine ki-
nase, or more commonly in sporadic LGG, through alterations 
in BRAF [5,40]. Everolimus is a macrolide derivative of rapamy-
cin that selectively inhibits mTOR. It can be orally administered 
and has been used extensively in both adults and children, in-
cluding prolonged use in organ transplant recipients and chil-
dren with subependymal giant cell astrocytoma [41]. Given 
the well-tolerated toxicity profile of everolimus and the cen-
tral role of the Ras/Raf/mTOR pathway in pediatric LGGs, 
everolimus is being investigated for the treatment of LGGs. 

In a phase II study of everolimus in 23 recurrent and/or 
progressive pediatric LGGs including six OPGs, responses to 
treatment by week 48 were as follows: 2 PR, 10 stable, and 11 
progression, respectively [42]. In a recently published Neuro-
fibromatosis Clinical Trials Consortium phase II trial of evero-
limus, 23 patients with LGGs were enrolled, including 13 with 
OPGs. Fifteen (68%) patients demonstrated a response (1 CR, 
2 PR, and 12 stable) [43]. The favorable toxicity profile ob-
served in NF1 populations did not significantly differ from 
that in other populations [44]. Regarding VA, Ullrich et al. [45] 
reported that the majority of children with NF1-OPG exhib-
ited stabilization of their VA after everolimus treatment with 
4/25 eyes improved, 19/25 eyes stable, and 2/25 eyes worsened.  

Currently, many new agents for LGG target the BRAF/MEK/
ERK pathway, RAS pathways, angiogenesis, immunomodula-
tion, and the tumor microenvironment. A summary of other 
new agents under investigation is present in Table 2.

FURTHER CONSIDERATION FOR 
TREATMENT

Several important issues in treating OPGs remain uncertain. 
One of the most important considerations is regarding the nat-
ural history of OPG and prediction of outcome. Tools to pre-
dict the clinical course and long-term outcomes of patients 
with OPGs are lacking. It is controversial which outcome mea-
sures should be used. Commonly used oncological outcome 
measures, such as overall survival and radiological PFS, may 
not be the most appropriate for evaluating OPGs. Survival rate 
and tumor shrinkage are not as important as functional out-
comes, especially given the excellent overall survival children 
with OPGs. Visual function, endocrine/hypothalamic dysfunc-
tion, and quality of life measures should be considered when 
measuring the outcomes. In the same context, newer drugs, in-
cluding molecular targeting agents, should be used earlier in 
the disease process, compared with standard chemotherapies, 
and be assessed for efficacy not only for radiological response 
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and survival, but also for functional outcomes. Furthermore, 
the optimal timing of therapy initiation and its influence on 
the overall outcomes are not fully known. It will also be im-
portant to not only focus on functional outcomes but also bet-
ter understand the length of therapy required, duration of re-
sponse/stability, and late effects of treatment [46,47].  

 
CONCLUSION

The management of OPGs remains challenging and our un-
derstanding of their behavior continues to evolve. Treatment 
is usually unnecessary for OPGs that do not cause visual im-
pairment. When patients manifest a decline in VA, visual field 
or significant radiological progression, chemotherapy with vin-
cristine and carboplatin remains the first-line treatment. New-
er molecular targeting agents such as anti-VEGF agents, MEK 
inhibitors, and mTOR inhibitors, have shown promising out-
comes in relapsed and progressive cases. With improvements 
in molecularly targeted therapies, the long-term impact and 
visual morbidity will be reduced for patients with OPG.
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