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Abstract 

Blood cancers, including leukemia, multiple myeloma, and lymphoma, pose significant challenges owing to their 
heterogeneous nature and the limitations of traditional treatments. Precision medicine has emerged as a transforma-
tive approach that offers tailored therapeutic strategies based on individual patient profiles. Ex vivo drug sensitivity 
analysis is central to this advancement, which enables testing of patient-derived cancer cells against a panel of thera-
peutic agents to predict clinical responses. This review provides a comprehensive overview of the latest advance-
ments in ex vivo drug sensitivity analyses and their application in blood cancers. We discuss the development of more 
comprehensive drug response metrics and the evaluation of drug combinations to identify synergistic interactions. 
Additionally, we present evaluation of the advanced therapeutics such as antibody–drug conjugates using ex vivo 
assays. This review describes the critical role of ex vivo drug sensitivity analyses in advancing precision medicine 
by examining technological innovations and clinical applications. Ultimately, these innovations are paving the way 
for more effective and individualized treatments, improving patient outcomes, and establishing new standards 
for the management of blood cancers.
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Introduction
Blood cancers, including leukemia, multiple myeloma 
(MM), and lymphoma, represent a significant burden on 
global health and affect several million patients world-
wide [1]. Traditional treatment approaches for these 
malignancies, such as chemotherapy and radiation, often 
have limitations because of their lack of specificity and 
associated toxicities. In recent years, precision medicine 
has emerged as a transformative approach in oncology, 

offering the promise of more effective and personalized 
treatments tailored to individual patient profiles [2–4]. 
Central to this approach is the use of genotyping analy-
sis to reveal the trait(s) of each patient’s tumor. More 
recently, the development and use of ex  vivo drug sen-
sitivity analysis have been reported, which allows the 
testing of patient-derived cancer cells against a panel of 
therapeutic agents to predict clinical responses [5–10]. 
This technology not only aids in identifying the most 
effective treatments for individual patients but also helps 
to understand resistance mechanism(s), thereby pav-
ing the way for more targeted and successful therapeutic 
strategies.

A critical challenge in ex  vivo drug sensitivity analy-
sis is to keep patient-derived cells alive and functionally 
intact outside the human body. Initial applications of this 
technology in blood cancers, particularly acute myeloid 
leukemia (AML), have demonstrated promising results 
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with the successful development of media that maintains 
cells viable for assaying [10–12]. The relative homogene-
ity of leukemic cells when sampled, compared to the het-
erogeneous cell populations found in solid tumors, also 
contributed to the success of the approach. These early 
studies highlight the potential of ex vivo assays to accu-
rately predict patient responses to various treatments, 
offering a glimpse into the future of personalized medi-
cine. However, significant variability in assay protocols 
and results across different institutions underscores the 
need for standardized methodologies to ensure repro-
ducibility and reliability.

Recent advancements in ex vivo drug sensitivity analy-
sis have focused on refining the metrics used to describe 
drug response curves, moving beyond simple IC50 val-
ues to include more comprehensive indices such as the 
area under the curve (AUC) and drug sensitivity scores 
(DSS) [13–16]. The integration of machine learning algo-
rithms has further revolutionized the field, enabling the 
analysis of complex datasets to identify patterns and 
predict patient responses with a  greater accuracy [17–
20]. Machine learning models can incorporate a wide 
range of variables, including genetic and molecular pro-
files, to enhance the predictive power of ex vivo assays. 
Additionally, a growing emphasis has been observed on 
analyzing drug combinations, recognizing that combi-
nation therapies often yield superior results compared 
with single-agent treatments. By systematically evaluat-
ing multiple drug combinations ex vivo, researchers can 
identify synergistic interactions and optimal therapeutic 
strategies for individual patients, further advancing the 
precision medicine approach for treating blood cancers 
[16, 21–23].

This review aims to provide a comprehensive overview 
of the latest advances in ex  vivo drug sensitivity analy-
sis (Fig. 1) and its applications in precision medicine for 
blood cancers. We will explore technological innovations 
that have enhanced the predictive accuracy and clinical 
utility of ex  vivo assays, with a particular focus on leu-
kemia, MM, and lymphoma. In addition, we discuss the 
integration of mathematical modeling methods and the 
evaluation of drug combinations, highlighting how these 

approaches improve prediction of  treatment outcomes. 
By examining both the current state and future potential 
of ex vivo drug sensitivity analysis, this review describes 
its critical role in advancing personalized oncology. Ulti-
mately, we aim to illustrate how these innovations are 
paving the way for more effective and tailored therapies 
for blood cancer patients.

Advances in drug sensitivity metrics
Ex vivo drug sensitivity analysis was performed by incu-
bating patient-derived cells with the drug(s) of interest 
and measuring changes in growth and/or viability with 
respect to various drug concentrations. The resultant 
data are often called dose–response curves and are typi-
cally fitted using logistic regression or Hill’s equation [13, 
24]. From the latter, a parametric value known as the IC50 
can be estimated, which has traditionally been used to 
represent sensitivity to a given drug. The parameter rep-
resents the concentration at which the growth or viability 
is inhibited or reduced by half. The IC50 values of drugs 
against cell lines have commonly been reported in the lit-
erature, including those of anti-cancer drugs  against cell 
lines mimicking blood cancers, such as HL-60 and DS 
[25–27].

The popularity of IC50 stems from its simplicity and 
ease of derivation from dose–response curves, which is 
a standard method in pharmacological studies [13, 24, 
28]. However, it also has limitations, primarily because 
of its inability to fully represent the characteristics of 
the respective drug sensitivity analysis results, including 
the slope and maximal effect. Attempts have been made 
to develop and apply other metrics that capture charac-
teristics not fully described by the IC50 values (Table 1). 
The AUC and Emax were proposed, followed by the DSS 
[13, 14]. These metrics provide a more holistic view by 
considering the entire dose–response relationship and 
integrating multiple data points for computation. The dif-
ferential drug sensitivity score (dDSS) is the latest metric 
that enhances DSS by identifying cancer-selective drugs, 
thereby aiding the personalization of cancer treatment 
[14, 34]. dDSS considers not only the efficacy of a drug 
across a range of concentrations but also its differential 

Fig. 1  Schematic of ex vivo drug sensitivity analysis using the patient-derived cells
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effects on cancer versus non-cancerous cells, allowing for 
more precise therapeutic targeting​.

Recent studies have illustrated how drug sensitiv-
ity metrics can be used to predict treatment outcomes 
in blood cancer patients treated with their respective 
drug(s). For example, Park et al. showed that the Emax of 
venetoclax can be used to predict early death in AML 
patients treated with venetoclax plus a hypomethylating 
agent [29]. In contrast, AUCs measured during ex  vivo 
sensitivity analyses are reportedly associated with bio-
markers of poor prognosis and later relapse in patients 
with MM [32]. Yadav et  al. suggested that dDSS can be 
used to compare the efficacy of anti-cancer drugs for a 
given AML patient based on the pioneering study involv-
ing 16 patients [14]. The ability to compare drugs based 
on sensitivity analysis is crucial for identifying the most 
effective drug(s) for a given patient. These promising 
results invite further research to understand the applica-
bility of this metric in large cohorts.

Analysis of sensitivities to drug combinations
The use of drug combinations in cancer treatment is 
crucial for enhancing drug sensitivity and maximizing 
therapeutic outcomes because they can leverage multi-
ple therapeutic mechanisms to target various pathways 
within cancer cells. This strategy is particularly effective 
in overcoming drug resistance, reducing treatment fail-
ures, and improving overall efficiency compared with 
single-agent therapies. As such, most therapies that 
blood cancer patients receive to date are based on drug 
combinations, such as venetoclax plus a hypomethylating 
agent for AML [35–37], rituximab plus vincristine plus 
cyclophosphamide plus doxorubicin plus prednisone 
for diffuse large B-cell lymphoma [38], or bortezomib 
plus lenalidomide plus dexamethasone for MM [39, 40]. 
These examples reflect the emerging need to evaluate the 

effectiveness of drug combinations in ex vivo sensitivity 
assays, particularly if the results are to be used to support 
personalized treatment.

Over the past decade, multiple pioneering attempts 
have been made to analyze patient-derived cell sensi-
tivity to drug combinations (Table  2). The pioneering 
method in this area is the Chou-Talalay method, which 
evaluates the additivity, synergism, or antagonism of drug 
combinations using combination indices [21]. The latest 
methods have attempted to overcome the limitations of 
the Chou-Talaly method by adopting more quantitative 
and/or advanced models or by enabling an exhaustive 
search of two or more drug combinations. For example, 
Synergy Finder Plus utilizes a greater variety of models, 
such as Loewe additivity (LOEWE) and Bliss independ-
ence (BLISS), to provide a more comprehensive analysis 
of drug combinations [41]. Chen et al. employed artificial 
intelligence (AI) methods to train models that predict 
synergism between drugs based on datasets of 583 differ-
ent drug combinations tested against 39 human cancer 
cell lines [45]. More recently, researchers tested combi-
nations of three drugs against patient-derived cells and 
identified the most effective combination based on the 
overall response within a composite design space [22]. 
The authors used these results to optimize drug combi-
nations for relapsed/refractory non-Hodgkin lymphoma 
(NHL) and reported an enhanced response rate and sur-
vival. Future clinical studies employing these novel meth-
ods to identify optimal drug combinations may provide 
evidence to revolutionize cancer treatments.

Analysis of sensitivities to advanced therapeutics
Antibody-based therapies  for blood cancers, includ-
ing AML, NHL, and MM have emerged as the corner-
stones for the treatment. These therapies leverage the 
specificity of antibodies against the target cancer cells, 

Table 1  Metrics used to describe drug sensitivity analysis results

a Parameters: y, viability of cells (%); yUL, upper limit of y; yLL, lower limit of y; C, concentration of the drug (nM orµM); m, slope of the dose–response curve at IC50; Ci, 
the lowest concentration of interest; Cf, the highest concentration of interest; z, viability of controls (%)
b Abbreviations: ALL Acute lymphoblastic leukemia, MM Multiple myeloma, NHL Non-Hodgkin lymphoma

Metric Description Applied disease(s) and reference(s)

IC50 The concentration of the drug by which growth or viability is inhibited or reduced by half:
y = yLL +

yUL−yLL

1+( C
IC50

)
m

ALL [5], MM [27], NHL [26]

Emax The (average) remaining viability of cells at maximal concentration(s):
Emax =

n
i=1

yCi

AML [28, 29],
NHL [30]

AUC​ The area under the dose–response curve, usually obtained at a fixed time point like in below:
AUC =

∫ Cf
Ci
ydC

AML [29, 31],
MM [32], NHL [33]

DSS The integral of response over the dose range that exceeds a given minimum activity level (Cmin):
DSS =

∫ Cf
Cmin

(100%− y)dC
AML [14],
ALL [34], MM [6]

dDSS The difference between DSS quantified in patient cells (patient DSS) and the average drug 
response of control samples:
dDSS =

∫ Cf
Cmin

(z − y)dC

AML [14], ALL [34]
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thereby offering a promising avenue for precision medi-
cine. Recently, antibody–drug conjugates (ADCs) and 
cell therapies employing engineered T cells have been 
developed and shown promising results against various 
diseases, including blood cancers. These advanced thera-
peutics (Table 3) cure patients based on complex mecha-
nisms (s) of action (MoAs), wherein non-cancerous cells, 
especially immune cells, contribute to the elimination of 
tumors. Therefore, drug sensitivity assays must be modi-
fied to incorporate additional reagents and/or moieties 
that participate in MoAs.

Drug sensitivity analyses have been instrumental in 
the evaluation and refinement of antibody-based thera-
pies for AML. One notable example is gemtuzumab 
ozogamicin, an anti-CD33 ADC. Early drug develop-
ment research highlighted its potent and selective cyto-
toxic effects on CD33 + AML cells both in  vitro and 
in  vivo [49]. This drug demonstrated significant activ-
ity in preclinical models and early-phase clinical trials, 
ultimately leading to its approval by the Food and Drug 

Administration as the first antibody-targeted chemo-
therapeutic agent for AML. Ex vivo studies demonstrated 
that the addition of granulocyte colony-stimulating fac-
tors enhances the cytotoxicity of the drug against AML 
cells, providing a rationale for its clinical use [61]. Further 
studies comparing the drug with novel therapies, such 
as the TRAIL fusion protein, revealed superior selectiv-
ity and activity [62]. Another promising development is 
the use of bispecific T-cell engagers, such as AMG 330, 
which target CD33 and CD3 to engage T-cells in AML 
therapy. Ex  vivo drug sensitivity analysis showed the 
potent activity of AMG 330 against AML cells, support-
ing its progression into clinical trials [50].

Drug sensitivity analyses have facilitated the develop-
ment of antibody-based therapies for NHL. Obinutu-
zumab, a next-generation anti-CD20 antibody, has been 
tested in  vitro and has been shown to induce greater 
cytotoxicity compared to older antibodies such as 
rituximab, particularly when combined with ibrutinib 
[54]. These results were corroborated by in  vivo studies 

Table 2  The methods reported in the literature for analyzing drug combinations via sensitivity assays

Name and reference Description Applied disease(s) and reference(s)

Synergy finder plus [41] Software for analyzing drug combination synergy 
and sensitivity using models such as HSA, BLISS, 
LOEWE, and ZIP

Various cancer types [41], COVID-19 [42]

Cross-design for drug combination sensitivity score 
and synergy analysis [43]

Evaluation of drug combination sensitivity and syn-
ergy by fixing one drug at a constant concentration 
and varying the doses of another

Various cancer types [43],
AML [44]

Multi-task learning-based synergy prediction [45] A multi-task learning and deep neural networks-
based method to predict drug combination synergy 
and monotherapy sensitivity

Various cancer types [45]

Quadratic phenotypic optimization platform (QPOP) 
[46]

Optimizing drug combinations by analyzing drug 
responses using an orthogonal array composite 
design to efficiently test multiple drugs across various 
concentrations

NHL [46],
various cancer types [47–49]

Table 3  Antibodies, antigens, and ex vivo drug sensitivity assays used to test the utility and applicability of the antibodies against the 
targeted diseases

Abbreviations: AML Acute myeloid leukemia, NHL Non-Hodgkin lymphoma, MM Multiple myeloma, NK Natural killer, IFN Interferon

Antibody(s) Antigen(s) Method used to analyze drug sensitivity Applied 
disease(s) and 
reference(s)

Gemtuzumab CD33 Colony formation (ex vivo), cytotoxicity (in vitro) AML [49]

AMG 330 CD33, CD3 Cytotoxicity (ex vivo, in vitro) AML [50]

IMGN632 CD123 Colony formation (ex vivo), cytotoxicity (in vitro), internalization/processing (in vitro) AML [51]

JNJ-67571244 CD33, CD3 Cytotoxicity (ex vivo, in vitro) AML [52]

NKp46-CD16a-NK Cell Engager CD123 Cytotoxicity (ex vivo, in vitro), NK Cell activation (in vitro) AML [53]

Obinutuzumab, Rituximab CD20 Cytotoxicity (in vitro), IFNγ Release (in vitro), B-cell depletion (ex vivo) NHL [54, 55]

STRO-001 CD74 Cytotoxicity (in vitro) NHL [56]

Daratumumab CD38 Cytotoxicity (ex vivo, in vitro), NK Cell expansion (ex vivo) & activation (in vitro) MM [57–59]

Elotuzumab SLAMF7 Cytotoxicity (ex vivo), enzyme-linked Immunosorbent assay (ex vivo) MM [60]
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highlighting the potential for improved patient outcomes 
[55]. Ex vivo drug sensitivity analyses are also pivotal for 
optimizing combination therapies involving antibod-
ies and cytotoxic drugs. Studies have demonstrated that 
rituximab enhances the efficacy of cytotoxic drugs in 
neoplastic lymphocytes, paving the way for combination 
regimens in clinical practice [63]. New developments 
in this field include targeting CD74 in B-cell NHL with 
ADC STRO-001, which has demonstrated promising 
results in recent studies [56].

In MM, drug sensitivity analyses have been instrumen-
tal in assessing the impact of novel antibody therapies, 
such as daratumumab, on natural killer (NK) cells. Dara-
tumumab targets CD38 on myeloma cells and induces 
NK cell fratricide, leading to NK cell depletion. Ex vivo-
expanded autologous NK cells have the potential to over-
come this depletion, thereby enhancing the therapeutic 
efficacy of Daratumumab [57–59]. Moreover, the effects 
of the drug on NK cells are particularly significant in 
patients with relapsed or refractory MM patients, which 
has implications for clinical outcomes [59]. Drug sensi-
tivity analyses have shown that elotuzumab enhances 
NK cell-mediated cytotoxicity against myeloma cells by 
upregulating NK cell-enhancing genes, thereby support-
ing the development of combination therapies for MM. 
The ex  vivo sensitivity profiles of various treatments, 
including proteasome inhibitors and immunomodulatory 
drugs, have also been explored, providing insights into 
the development of drug resistance and the selection of 
subsequent therapies [60]. Kropivsek et al. demonstrated 
the clinical utility of sensitivity profiles for treatment 
optimization in 70 patients with MM [9].

Conclusion
Ex vivo drug sensitivity analysis represents a significant 
advancement in precision medicine for blood cancers, 
particularly AML, MM, and lymphoma. Researchers have 
greatly enhanced the predictive power and clinical utility 
of these analyses by refining the metrics used to describe 
drug response curves and integrating machine learning 
techniques. The ability to evaluate drug combinations 
has opened new avenues for identifying synergistic regi-
mens, which are crucial for overcoming drug resistance 
and improving patient outcomes. Moreover, the ability to 
assess advanced therapeutics, such as ADCs, underscores 
their potential for tailoring treatments based on complex 
MoAs involving the immune system. As the field contin-
ues to evolve, the ongoing development and application 
of ex vivo drug sensitivity analysis are poised to revolu-
tionize precision medicine, ultimately leading to more 
effective and individualized treatments for patients with 
blood cancers and other diseases.
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