
Highlights
•� �There are many unresolved clinical problems about mild traumatic brain injury (mTBI) such 

as a low sensitivity of standard neuroimaging studies, and absence of reliable predicting 
models.

•� �It is very difficult to diagnose mTBI in symptomatic patients in the absence of witnesses, 
clear signs of head trauma, and abnormalities on neuroimaging.

• Blood proteins have great potential as diagnostic and prognostic biomarkers of mTBI.
• �Technological advances in the targeted proteomics are expected to realize the clinical 

potential of blood-based protein biomarkers.
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ABSTRACT
The current understanding of the pathophysiology of mild traumatic brain injury (mTBI) 
is, without doubt, incomplete. Nevertheless, we tried to summarize the state-of-the-art 
explanation of how the brain is continuously injured even after a single impact. We also 
reviewed the real struggle of diagnosing mTBI, which culminated in showing the potential of 
blood-based biomarkers as an alternative or complementary way to overcome this difficulty. 
Pathophysiology of mTBI is subdivided into primary and secondary injuries. Primary injury 
is caused by a direct impact on the head and brain. Secondary injury refers to the changes 
in energy metabolism and protein synthesis/degradation resulting from the biochemical 
cascades as follows; calcium influx, mitochondrial dysfunction, fractured microtubules, and 
Wallerian degeneration, neuroinflammation, and toxic proteinopathy. Since the diagnosis 
of mTBI is made through the initial clinical information, it is difficult and inaccurate to 
diagnose mTBI without the absence of a witness or sign of head trauma. Blood-based 
biomarkers are expected to play an important role in diagnosing mTBI and predicting 
functional outcomes, due to their feasibility and the recent progress of targeted proteomics 
techniques (i.e., liquid chromatography tandem mass spectrometry [LC-MS/MS]).
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INTRODUCTION

Traumatic brain injury (TBI), which is known as a “silent epidemic,” is no longer silent. The 
report to Congress on TBI in the United States estimated that > 2 million people with TBI in the 
United States visit the emergency department each year [1]. Although there is no corresponding 
national statistic yet, according to the “2009 Trauma Statistics” published by the Centers for 
Disease Control and Prevention (CDC) of Korea, approximately 160,000 people experience TBI 
in South Korea annually. Mild TBI (mTBI), which accounts for approximately 80%–90% of all 
the traumatic brain damage, is also called concussion and is reported to occur in approximately 
100–300 per million population worldwide [2]. However, considering that many patients with 
mTBI do not seek medical attention [3], the actual incidence of mTBI should be much more 
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than 300 per million each year [2], even greater than 3 times the incidence of breast cancer 
[4]. Although the after-effects of mTBI are often mild, it has tremendous significance in public 
health. Some researchers report that approximately 44% of the medical expenditures associated 
with TBI are due to mTBI. The incidence of TBI, especially mTBI, is on the rise owing to an 
increase in fall cases among the elderly, increased accidents secondary to an increase in leisure 
sports, and an increase in regional tension and terrorism worldwide [5].

However, studies on the pathophysiology and long-term complications of mTBI are still at 
the infancy stage. The reasons are varied, but above all, most patients with mTBI appear 
almost completely recovered within a few months. A considerable number of persons with 
mTBI experience persistent symptoms after trauma for months, or even years. Patients with 
sequelae lasting > 1 year account for approximately 15% of all mTBI cases [6]; however, there is 
no reliable model to predict which patients will continue to have symptoms. Moreover, recent 
studies have shown that mTBI could be a risk factor for neurodegenerative diseases in the 
long term; hence, there is an increasing need for a prediction model [7-9]. The fact that it is 
difficult to assess functional decline and recovery in patients with mTBI also hampers research 
[10]. There is also a lack of sensitive and feasible tools for the measurements of mild cognitive 
impairment, decrease in thought speed, and change in behavior, which are the frequent 
complaints of patients with mTBI. Repeated measurements with typical neurocognitive tests 
provide the most sensitive results; however, these tests are expensive and require much effort.

In this article, we reviewed the pathophysiology of adult mTBI and the unresolved issues that 
arise from the clinical course of this condition, and subsequently explored the potentials of 
blood-based biomarkers in contributing to coping with these challenges. In children, mTBI is 
very common and involves unique clinical problems that differ from those in adults; however, 
they are beyond the scope of this review.

DEFINITION AND DIAGNOSTIC CRITERIA FOR MILD TBI

Clinical criteria should be used to diagnose mTBI because objective tests such as computed 
tomography (CT) and blood tests usually do not show any abnormal findings. Although the 
definition of mTBI is still controversial, the most widely accepted diagnostic criteria are those 
proposed by the American Congress of Rehabilitation Medicine (ACRM), which are used by 
the Centers for Disease Control and Prevention and the World Health Organization (WHO) 
[11] (Table 1). In short, mTBI is defined in terms of the duration of the initial Glasgow coma 
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Table 1. The mTBI diagnostic criteria proposed by ACRM [11]
Diagnostic criteria A patient with mTBI is a person who has had a traumatically induced physiological disruption of the brain function, as manifested by one or 

more of the following conditions:
- Any period of loss of consciousness for up to 30 min
- Any loss of memory for events immediately before or after the accident for up to 24 hr
- Any alteration of the mental state at the time of the accident (e.g., feeling dazed, disoriented, or confused)
- Focal neurological deficit(s) that may or may not be transient

Exclusion criteria However, the severity of the injury should not exceed the following conditions:
- Loss of consciousness exceeding 30 min
- PTA longer than 24 hr
- A GCS score that falls below 13 after 30 min
   • Such anomalies should not be due to alcohol, recreational drugs, medications, systemic diseases, or extracranial damage
   • There should be no abnormality on imaging modalities such as CT or MRI (DVA and DoD guidelines)

mTBI, mild traumatic brain injury; ACRM, American Congress of Rehabilitation Medicine; PTA, post-traumatic amnesia; GCS, Glasgow coma scale; CT, computed 
tomography; MRI, magnetic resonance imaging; DVA, Department of Veterans Affairs; DoD, Department of Defense.

http://e-bnr.org


scale (GCS) score, duration of loss of consciousness, and post-traumatic amnesia (PTA). The 
WHO task force team added the exclusion criteria that these abnormalities should not be due 
to alcohol or other recreational drugs, medications, systemic diseases, or extracranial injuries 
[12]. According to the US Department of Veterans Affairs (DVA) and the Department of Defense 
(DoD) guidelines, lesions identified by using structural imaging modalities such as magnetic 
resonance imaging (MRI) or CT suggest that the condition is more severe than mild [13].

PATHOPHYSIOLOGY

In mTBI, neurological abnormalities, such as changes in consciousness or memory loss, appear 
immediately after the injury and improve within a relatively short period. Symptoms such as 
dizziness and impaired concentration mostly disappear within 1–2 weeks [14]. Clinically, the 
symptoms improve within 1–2 weeks, but 30–45 days are required for a complete recovery based 
on neuropsychological tests [15]. Nevertheless, it does not necessarily mean that the brain 
physiology recovers to normal. Many studies on the pathophysiology of brain damage have been 
conducted in animal models; however, they considered moderate to severe brain injury, and 
hence, not much is known about the pathophysiology of mTBI.

In general, the pathophysiology of brain damage is usually distinguished based on whether 
the injury is primary or secondary. A primary injury results from a direct impact to the 
head. Primary injuries consist of contact loading and inertial loading, characterized by the 
acceleration and rotation of the brain parenchyma in the cranium. Occasionally, an inertial 
load alone can cause brain damage without a contact load. A typical example is that of a 
passenger wearing a seatbelt, who sustains brain damage during an automobile rollover 
without direct impact to the head. Secondary injury is a result of the biochemical cascade 
following the primary injury in TBI, due to changes in the energy metabolism and protein 
synthesis/degradation [16].

From a neurophysiological point of view, mechanical load can induce a stretching load on the 
axons that constitute the white matter, leading to diffuse axonal injury. The pathophysiology 
of secondary injury to the axons caused by an excessive stretching load has been described in 
many studies (Fig. 1).

Calcium influx
A physical load on the axons is known to cause the elevation of intracellular Ca2+ ions 
via multiple pathways. One such pathway is through the inflow of Na+ via voltage-gated 
channels and the subsequent reversal of the Na+/Ca2+ exchanger that results in an increase 
in the intracellular Ca2+ concentration [17]. Another pathway of calcium influx is via 
“mechanoporation.” Mechanoporation is the term used to describe an opening in the 
axolemma caused by a stretch load on the axon [16]. The increase in intracellular calcium 
concentration is known to activate calpain, a Ca2+-activated protease, leading to proteolysis 
of structural proteins such as neurofilaments [18]. Calpain is also known to be involved in the 
later stages of Wallerian degeneration in the peripheral and central nervous systems [18].

Mitochondrial dysfunction
To compensate for the disturbance in intracellular ionic currents, various membrane ion 
pumps are recruited. During this process, glucose metabolism increases, resulting in the 
depletion of intracellular adenosine triphosphate (ATP) and the introduction of calcium into 
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the mitochondria, leading to increased oxidative stress [19,20]. In addition, the influx of 
calcium triggers the formation of mitochondrial permeability pores on the inner mitochondrial 
membranes, promoting the migration of molecules (< 1.5 kDa) into the mitochondria. This 
process ultimately leads to the swelling and death of mitochondria [21,22].

Fractured microtubules and Wallerian degeneration
Increased intracellular oxidative stress increases intracellular lactate levels and causes cell 
edema [23]. Axon swelling is known to cause neurofilament accumulation and microtubule 
dysfunction and fracture [24]. This results in impaired axonal transport leading to the 
accumulation of synthesized proteins. Consequently, axonal bulbs are formed as they 
accumulate at specific sites, and in severe cases, the axons are cut at these sites [25]. This 
is mainly observed at the cortical-subcortical boundary. Fractured microtubules will be 
unable to carry nicotinamide mononucleotide adenylyltransferase-2 (NMNAT2), resulting in 
Wallerian degeneration, mediated by sterile alpha and toll/interleukin-1 receptor (TIR) motif-
containing protein 1 (SARM1) proteins via the intracellular signaling pathways [26,27].

Phagocytosis and neuroinflammation
Following axonal damage, phosphatidylserine residues on the cell membrane translocate 
out of the cell. Activated microglia recognize the corresponding residue, the so-called “eat-
me” signal, and proceed with phagocytosis [28]. Activated microglia were found to become 
activated even after the acute phase [29,30]. Ongoing activation of microglia has also been 
reported post-mortem in patients with TBI [31]. Activated microglia promote inflammation 
by releasing cytokines and chemokines. Proinflammatory cytokines are known to cause 
caspase-mediated proteolysis and microglia recruitment [16].
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Fig. 1. Pathophysiology occurring in the stretched axon. 
APP, amyloid-β precursor protein; NMNAT2, nicotinamide mononucleotide adenylyltransferase-2; ROS, reactive oxygen species.
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Toxic proteinopathies and neurodegeneration
Dysfunction of axonal transport, caused by microtubule disruption, results in the accumulation 
of amyloid-β precursor protein (APP) [24]. This APP is cleaved into amyloid-β peptides, which 
aggregate into amyloid plaques, the pathological hallmark finding in Alzheimer's disease (AD). 
Tau, a microtubule-stabilizing protein, has been shown to accumulate perivascularly during the 
disruption of microtubules [32], suggesting that TBI may be associated with neurodegenerative 
diseases such as AD [16].

The pathophysiological changes in the axons as described above may persist for years after 
the injury. It has been reported that the neurofibrillary tangles seen in AD are also seen in the 
brains of boxers and football players who have had repeated concussions [33]. Recent studies 
have shown that cis-phosphorylated tau protein levels increase throughout the mouse brain 
after moderate to severe TBI or mTBI. Monoclonal antibodies to cis-phosphorylated tau 
protein appeared to improve the pathophysiology and behavioral outcome, thus displaying 
therapeutic potential [34].

UNRESOLVED CHALLENGES OF MTBI: THE NEED FOR 
BIOMARKERS
Diagnosis
As mentioned earlier, patients with mTBI do not have any abnormality on standard 
neuroimaging; hence, the diagnosis is based mainly on the patient's symptoms and signs and 
the testimony of witnesses. This reiterates the essential limitation that it is very difficult to 
diagnose mTBI in patients who present to the emergency department without any objective 
evidence, such as recorded image data, and in those with confusion or disorientation without 
any trace of head trauma. The problem becomes more complicated, especially when issues of 
litigation or secondary gain are involved.

In addition, the diagnostic criteria, including imaging techniques, need more clarification. 
The criterion of “no abnormality on CT or MR imaging” recommended by the US DVA/DoD 
guidelines is too ambiguous to be applied in clinical practice because MRI sequences are 
very diverse and not specified. Microbleeding, which is not clearly detected with traditional 
methods, may be detected by using modern sequences such as susceptibility-weighted 
images. It is necessary to modify the diagnostic criteria in light of recent advances in modern 
medicine with new equipment and imaging techniques being developed rapidly.

There are several other problems associated with the ACRM diagnostic criteria for mTBI. The 
upper limits of the duration of loss of consciousness or memory loss after trauma are specified 
as 30 minutes and 24 hours, respectively, with no mention of the lower limits. Consequently, 
patients who had loss of consciousness for 20 minutes and 10 seconds are both classified into 
one category. There is also a claim that patients with GCS scores of 13 have a different clinical 
course from those with scores of 14 and 15 [35]. Further studies are needed to overcome these 
limitations. Thus, it is difficult to diagnose mTBI in a symptomatic patient in the absence 
of witnesses, signs of head trauma, and abnormalities on neuroimaging. Despite these 
difficulties, efforts have been made to accurately diagnose mTBI. Magnetoencephalography 
(MEG) and electroencephalography (EEG) have been explored as part of such efforts. In a 
recently published case-control study, it has been found that the control and mTBI groups could 
be distinguished with 100% accuracy by using MEG [36]; therefore, the application of these 
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modalities is being actively researched. Additionally, EEG is also being studied as a diagnostic 
tool for mTBI. Recent studies have shown that the EEG slow wave quantity is a sensitive 
indicator in the diagnosis and prognosis of mTBI [37]. Recently, blood-based biomarkers that 
can be measured easily and quantitatively have been recognized as useful in the diagnosis of 
mTBI. Recent studies have shown glial fibrillary acidic protein (GFAP) and ubiquitin carboxy-
terminal hydrolase-L1 (UCH-L1) as emerging biomarker candidates for diagnosing TBI [38].

Prognosis
A typical mTBI is known to resolve within 24 hours of visiting the emergency department, 
and symptoms such as headaches, dizziness, loss of concentration, and body and cognitive 
symptoms disappear within 12 weeks. However, studies have shown that 50% of patients remain 
symptomatic even after 3 months [39]. In addition, approximately 15% of patients continue 
to have neurological disorders or symptoms even after 1 year, which is sometimes referred to 
as post-concussion syndrome (PCS) [40]. Although various studies have been performed to 
detect PCS subgroups early, there is no reliable clinical model predicting progression to PCS 
[41]. In addition, a prognostic model with clinical variables for moderate to severe brain injury 
has been proposed; however, but its prediction accuracy is low [42]. Therefore, if a body fluid-
based biomarker is developed to predict the prognosis of mTBI, it is expected to help in clinical 
decision-making. In addition, there are a few predictive models currently available for long-
term complications such as chronic traumatic encephalopathy (CTE); however, in the future, 
biomarkers in blood are expected to be used in making such predictive models.

BODY FLUID CANDIDATES FOR BIOMARKER RESEARCH 
IN MTBI
Cerebrospinal fluid (CSF)
Theoretically, CSF is the closest body fluid to the target organ, the brain, and is most likely 
to reflect the pathophysiology of TBI [14]. However, in practice, there are various associated 
problems. When the blood-brain barrier (BBB) is damaged along with brain damage, various 
substances are introduced into the CSF from the blood as well as the brain. Comparing this 
with signal processing, the substance introduced from the brain to the CSF would be a signal, 
and the substance introduced from the blood to the CSF would be noise. Hence, the noise in 
CSF can be increased after TBI.

Another limitation is that CSF is difficult to obtain. In patients with moderate to severe TBI, 
who are hospitalized and undergo extraventricular drainage (EVD), it is relatively easier to 
obtain CSF; however, obtaining CSF from mTBI patients is impractical. Patients with mTBI 
are more likely to refuse to undergo the relatively more invasive lumbar puncture, which 
can also aggravate headache. In addition, as there are differences in the components of 
CSF obtained through lumbar puncture and EVD, the interpretation of test results and their 
application to clinical decision making can be complex.

Blood
As blood is the most common body fluid specimen used for various tests in hospitals, it 
is easy to obtain patient's consent. Compared with CSF, it is one step more distal to the 
target organ; however, it has the advantage that the measurement results do not change 
significantly even with BBB compromise. The fact that reference values for various blood 
markers are well known is also an advantage [10].
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A disadvantage of using blood specimens is that biomarkers released from the brain into the 
bloodstream are likely to have low levels in blood. The levels of most candidate protein marker 
levels are in the picogram range (10−12 g/mL); hence, the measurement itself is technically 
challenging. Moreover, to date, the time to detection in blood after the injury is different for each 
biomarker. For example, GFAP levels in the plasma were reported to increase significantly 8 hours 
after the injury, whereas markers such as UCH-L1 increase significantly at baseline and then return 
to normal levels after 12 hours [38]. When the biomarkers are not specific to the brain, blood 
concentration is vulnerable to “noise” from other organs. For example, s100B levels increase in 
blood after a brain injury; however, as it is also produced in tissues other than the brain, its blood 
levels increase even after trauma to other parts of the body without any brain damage [43].

Urine
Urine is a body fluid that can ideally be used when the target organ is the kidney. In TBI, as 
the target organ is the brain, the concentrations of protein markers in urine are likely to show 
smaller changes than in blood. Changes in the femtogram range (10−15 g/mL) are very difficult 
to measure with traditional immunological methods. In addition, in the research stage, it is 
necessary to collect a 24-hour urine sample instead of a spot urine sample at a specific time 
point, and the hassle of obtaining 24-hour urine samples is also a big obstacle.

BLOOD-BASED BIOMARKERS UNDER RESEARCH

The advantages and disadvantages of individual blood-based biomarkers were summarized 
(Table 2). Details of the blood-based biomarkers are shown below.

s100B
s100B is a calcium-binding protein that exists in astrocytes and Schwann cells. It is 
known to affect intracellular calcium homeostasis, and is responsible for intracellular 
signal transduction [44]. Blood and CSF concentrations of s100B increase after trauma, 
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Table 2. Potential blood-based biomarkers
Biomarker Related structure Advantages Disadvantages
s100B Astroglial cells - Hemolyzed samples do not show false positives - �Increase in concentration even in adipocytes, cartilage 

cells, and melanoma
- Specific time window for rise (12–48 hr after injury) - Short half-life (< 2 hr)
- �A significant difference in concentration according to the 

severity of TBI
- �Useful for determining the need for brain CT imaging in 

mTBI patients (Scandinavian CT guidelines)
UCH-L1 Neuronal cytoplasm - High correlation with initial GCS score - �Lower accuracy compared to GFAP in determining the 

need for neurosurgical intervention- �Good correlation with abnormalities on CT (better than 
GFAP and s100B)

SBDPs Neuronal cytoplasm - �Increases within 15 min of TBI, and continues to increase 
until 3–24 hr after TBI

- Not specific to brain damage

- Good correlation with mortality after TBI
NSE Neuronal cytoplasm - Indicator of post-TBI functional level and mortality - False positives in hemolyzed specimens
GFAP Astroglial cells - Specific for brain damage - Delayed rise (> 8 hr after TBI)

- �Useful for determining the need for brain CT imaging in 
mTBI patients (better than s100B)

- �“Return to work” ratio at 6 mon after TBI cannot be 
predicted

miRNA Unknown - �After brain injury, the miRNA expression levels are 
significantly changed

- Technically challenging

- �Downregulation of miR-23a and miR-27a can be confirmed 
within 4 hr of brain injury

TBI, traumatic brain injury; CT, computed tomography; mTBI, mild TBI; UCH-L1, ubiquitin carboxy-terminal hydrolase-L1; GCS, Glasgow coma scale; GFAP, glial 
fibrillary acidic protein; SBDPs, spectrin breakdown products; NSE, neuron-specific enolase; miRNA, micro RNA.
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and unlike neuron-specific enolase (NSE), its concentration does not change much in 
hemolyzed specimens. Therefore, it has been highlighted as a biomarker of brain damage 
and many studies have been conducted to date [45]. Unfortunately, s100B is also produced 
by oligodendrocytes, neural progenitor cells, adipocytes, cartilage cells, and tumor tissues 
such as melanoma, and its levels may also increase after BBB dysfunction [46-49]. Therefore, 
its concentration increases even in polytrauma without brain damage and may be increased 
by the exacerbation of systemic conditions such as hemorrhagic shock. Furthermore, it is 
known that the darker the skin color, the higher the levels of s100B [50]. Therefore, skin 
color must also be considered when interpreting s100B levels. As s100B is excreted 100% 
through the kidneys, care must be taken while interpreting s100B levels in patients with 
renal insufficiency. However, it is known that there are no significant differences in the blood 
concentrations of s100B in patients with mild to moderate renal dysfunction [51,52].

Several studies have shown the biological half-life of s100B to be 25 minutes to 2 hours, and 
it is difficult to specify a detection time window due to the relatively short half-life. However, 
based on the recently published dynamic model of s100B concentration, it was found that 
the increase in s100B concentration due to brain damage could be specifically confirmed 
12–48 hours after the TBI [53]. In addition, the secondary increase of s100B, confirmed via 
serial sampling, has been shown to reflect secondary brain damage [54-56], increasing the 
expectations of the clinical use of s100B.

s100B showed a significant difference in concentration according to the degree of brain 
damage (mild, moderate, and severe TBI) [57,58], and 2 reviews showed a correlation with 
the GCS scores at admission [59,60]. In addition, a newer version of the Scandinavian CT 
guidelines published in 2013 may help determine whether brain CT scans are needed for 
patients with mTBI visiting the emergency department. If the s100B concentration is < 0.10 
µg/L, measured within 6 hours from the time of injury, brain CT may not be needed [61]. On 
the contrary, the predictive power was not sufficiently high for PCS in children [62].

UCH-L1
UCH-L1 is a cysteine protease present in neurons and accounts for approximately 2% of the 
total soluble protein in the brain [63]. Recent studies have shown that UCH-L1 levels rapidly 
increase in the plasma after brain injury and rapidly decrease subsequently within 36 hours 
[38]. In a recent study involving mild and moderate TBI, UCH-L1 levels were highly correlated 
with the GCS scores and the presence of lesions on brain CT [64]. In another prospective 
study, the UCH-L1 concentration in blood was found to be superior to that of GFAP or s100B 
in predicting the presence of CT lesions within 6 hours after mild and moderate brain injury 
[65]. However, a recently published prospective cohort study confirmed that the accuracy of 
UCH-L1 was lower than that of GFAP in determining the presence of brain damage, presence 
of lesions on CT, and necessity of neurosurgical intervention [38].

Spectrin breakdown products (SBDPs)
Spectrin is a major component of the cytoskeleton, broken down by calpain after brain 
damage, resulting in 2 αII-spectrin fragments: 150 kDa (SBDP150) and 145 kDa (SBDP145). 
The αII-spectrin fragments are present in the axons and pre-synaptic terminals of neurons, 
and caspase-3 again degrades it into 120 kDa (SBDP120) [66]. Although SBDPs reflect the 
necrosis and apoptosis processes in the brain, they are not specific for brain damage. They 
also occur in cerebral ischemia, neurodegenerative disease (i.e., AD), and normal aging 
[67,68]. Increased concentrations of SBDPs occurred within 15 minutes of brain damage and 
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were found to increase significantly from 3 to 24 hours after brain injury [69,70]. The SBDP 
concentrations in the CSF are associated with mortality after brain injury [67]. Although 
techniques to reduce spectrin breakdown by using calpain inhibitors have been introduced, 
their therapeutic effect on axon survival is yet to be determined in brain injury [71,72].

NSE
An enzyme involved in glycolysis, NSE is a marker that reflects apoptosis and is present in the 
neuron cell body [73]. Unfortunately, hemolyzed samples show false positives [74]. Recent 
meta-analyses have shown that NSE can be used as an indicator of functional levels and 
mortality rates after TBI [75].

GFAP
GFAP is a protein found only in the central nervous system and constitutes the cytoskeleton 
of astrocytes. It is known that when astrocytes are damaged, the production of GFAP is 
greatly increased [76]. It is a marker specific to brain damage because it does not increase 
after trauma to other parts of the body; however, after TBI, it takes 8 hours for its blood levels 
to increase [38]. The GFAP blood concentrations in patients with mTBI in the emergency 
department is better than the s100B blood concentrations in predicting the need for brain 
CT. Especially, in cases of extracranial injuries, GFAP blood concentrations were also found 
to have a higher specificity for detecting lesions that could be confirmed with brain CT [77]. 
In addition, in 2 reviews, the concentrations of GFAP correlated with the initial GCS scores, 
as with s100B [59,60]. However, the outcome of patients at 6 months after TBI could not be 
predicted precisely based on the GFAP blood concentrations [45].

Micro RNA (miRNA)
miRNA binds to the 3' untranslated region of messenger RNA (mRNA) and causes 
degradation of mRNA or inhibits mRNA translation. Even a single miRNA is known to 
regulate the entire mRNA network [78], and is expected to be used in therapeutics by 
blocking the pathophysiological cascade after brain injury. In particular, miRNAs are 
abundantly expressed in the brain tissue, and some are known to have brain-specific 
functions [79-81]. After brain injury, miRNA expression levels are known to vary significantly 
[82,83], with the downregulation of miR-23a and miR-27a being confirmed within 4 hours 
of the brain injury. These changes are believed to be related to the increased expression of 
proapoptotic Bcl-2 family members (NoxA, Puma, and Bax) [83].

Other biomarkers
In addition, several studies have shown that other biomarker candidates, including 
inflammatory cytokines, amyloid-related markers, phosphorylated tau, TAR DNA-binding 
protein 43, hormones (steroid and pituitary hormones), neurofilament light chain, and 
myelin basic protein have the potential for diagnosing mTBI.

PROSPECTS AND FUTURE CHALLENGES

Recently, a quantum jump in the technology of protein biomarker development has 
occurred, which involved the mass spectrometry (MS)-based proteomics workflow based 
on high-throughput proteomics by using high-performance MS including Orbitrap® 
liquid chromatography-tandem mass spectrometry (LC-MS/MS; Thermo Fisher Scientific, 
Waltham, MA, USA) and triple quadrupole LC-MS/MS. Those high-performance technologies 
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generated huge amount of proteome information. Subsequently, a bioinformatics algorithm 
was developed for processing large data, which can expedite both the identification and 
quantitation of proteome data sets. In addition, the tools of systems biology guided the 
functional annotation among all bits and pieces of proteome data.

However, the importance of clinical knowledge and experience is more emphasized than ever 
even with the advances in technology because well-designed biorepository and comprehensive 
functional evaluation is the pivotal requirement for biomarker discovery and validation.
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