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Objective  To investigate intrinsic viscoelastic changes using shear wave velocities (SWVs) of spastic lower 
extremity muscles in patients with early spinal cord injury (SCI) via acoustic radiation force impulse (ARFI) 
imaging and to evaluate correlation between the SWV values and spasticity.
Methods  Eighteen patients with SCI within 3 months and 10 healthy adults participated. We applied the ARFI 
technique to measure SWV of gastrocnemius muscle (GCM) and long head of biceps femoris muscle. Spasticity of 
ankle and knee joint was assessed by original Ashworth Scale.
Results  Ten patients with SCI had spasticity. Patients with spasticity had significantly faster SWV for GCM and 
biceps femoris muscle than those without spasticity (Mann-Whitney U test, p=0.007 and p=0.008) and normal 
control (p=0.011 and p=0.037, respectively). The SWV values of GCM correlated with the ankle spasticity (Spearman 
rank teat, p=0.026). There was significant correlation between the SWV values for long head of biceps femoris 
muscle and knee spasticity (Spearman rank teat, p=0.022).
Conclusion  ARFI demonstrated a difference in muscle stiffness in the GCM between patients with spastic SCI and 
those without spasticity. This finding suggested that stiffness of muscles increased in spastic lower extremity of 
early SCI patients. ARFI imaging is a valuable tool for noninvasive assessment of the stiffness of the spastic muscle 
and has the potential to identify pathomechanical changes of the tissue associated with SCI.
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INTRODUCTION

Spasticity is generally conceptualized as a symptom of 
the upper motor neuron lesion. It is characterized by an 
exaggeration of the stretch reflex, spasms and resistance 
to passive movement across a joint, secondary to the hy-
perexcitability of spinal reflexes [1-6]. A complete loss of 
descending corticospinal projections is rare in patients 
with clinical signs of spasticity after spinal cord injury 
(SCI). Preserved propriospinal and supraspinal input to 
a given segmental level may explain why spasticity is a 
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frequent consequence in SCI [1]. One hypothesis on the 
pathophysiology of spasticity highlights the important 
role of long-term reductions in segmental inhibition 
rather than primary increases in excitation.

Precise evaluation of spasticity is crucial to establish 
the efficacy of medical and physical therapeutic inter-
ventions. Various diagnostic methods are available to in-
vestigate specific influences of spasticity on muscles. The 
most obvious diagnosis of spasticity is based on the clini-
cal assessment of muscle tone by a physician or physio-
therapist, such as the Original Ashworth Scale (AS) [5] 
and the Modified Tardieu Scale. Spasticity has a neural 
component that is evoked by a velocity-dependent phe-
nomenon. It also has a biomechanical component, such 
as soft-tissue compliance, i.e., stiffness [6]. Many studies 
showed that stiffness increased in spastic muscles due to 
changes in fiber type transformation. Morphometric and 
histochemical investigations show changes in mechani-
cal muscle-fiber properties that might contribute to spas-
tic muscle tone [7-12]. Changes in biomechanical condi-
tions of a muscle might also have an important effect on 

the spasticity in people with SCI.
Acoustic radiation force impulse (ARFI) imaging uti-

lizes ultrasound elastography technology, hence it is an 
ideal tool to noninvasively estimate the clinical field tis-
sue stiffness. ARFI is achieved by mechanically exciting 
tissues with a localized impulsive radiation force. This 
results in shear wave propagation away from the region 
of excitation [13]. Shear wave velocity (SWV) is directly 
correlated with tissue stiffness. In general, greater SWV 
correlates with stiffer tissue. ARFI imaging has been used 
to study a variety of tissues, including liver [14], breast 
[15], kidney [16], spleen [17], prostate [18], pancreas [19], 
testes [20], thyroid [21], and muscle and tendon [22]. The 
most notable application of ARFI is the detection of liver 
fibrosis [23,24], because the fibrous tissues are usually 
stiffer than the surrounding tissues [25]. However, there 
is a lack of ARFI application to the spasticity of musculo-
skeletal tissues.

The aim of this study was to investigate intrinsic vis-
coelastic changes using SWV of spastic lower extremity 
muscles in patients with early SCI via ARFI and to evalu-

Table 1. Characteristics of groups A and B

Patient 
no.

Sex
Age
(yr)

AIS 
score

Time since 
injury (mo)

AS score of ankle 
plantar flexor

AS score of 
knee flexor

Group Aa) 1 M 49 C 2.3 1 2

2 M 72 C 2.1 2 2

3 F 55 C 3.5 1 1

4 M 22 C 2.1 1 3

5 F 75 D 3.2 0 1

6 M 72 C 1.5 2 1

7 F 50 D 2.0 2 1

8 F 62 C 3.3 1 1

9 F 50 C 2.2 2 3

10 M 49 D 2.1 2 2

Group Bb) 1 M 52 C 1.1 0 0

 2 M 74 C 2.2 0 0

3 F 52 D 2.3 0 0

4 M 22 D 1.2 0 0

5 F 55 D 3.2 0 0

6 M 68 C 2.5 0 0

7 M 47 C 3.3 0 0

8 F 50 D 1.2 0 0

AIS, American Spinal Injury Association impairment scale using the International Standards for Neurological Classifi-
cation of Spinal Cord Injury; AS, original Ashworth Scale.
a)Patient with spinal cord injury and spasticity. b)Patient with spinal cord injury and no spasticity.
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ate correlation between the SWV values and spasticity.

MATERIALS AND METHODS

Subjects
Eighteen patients undergoing rehabilitation treatment 

after having finished the acute stage of treatment for 
SCI were recruited. This study was limited to subjects 
with cervical spinal injury. Disease duration was within 
3 months in all included patients since the focus of the 
study was early intrinsic viscoelastic changes of spastic 
lower extremity muscles in patients with SCI. Patients 
were divided into 2 groups, group A (mean age, 53.6±22.7 
years; 5 males, 5 females; mean height, 163.7±9.1 cm; 
mean weight, 62.4±8.26 kg) included patients with spas-
ticity and group B (mean age, 52.5±15.5 years; 5 males, 
3 females; mean height, 167.7±12.1 cm; mean weight, 
64.9±11.2 kg) included patients without spasticity (Table 
1). Exclusion criteria were 1) previous botulinum toxin 
type A injection to the medial gastrocnemius muscle 
(GCM) or the long head of the biceps femoris muscle 
(BFLH), 2) fixed ankle or knee contracture, or 3) previous 
surgery of the lower limbs. Ten healthy adults without 
neurologic or musculoskeletal disabilities were included 
as a control group (group C; mean age, 42.7±14.2 years; 
6 males, 4 females; mean height, 170.8±6.21 cm; mean 
weight, 66.9±8.1 kg) (Table 2).

Method
We applied the ARFI technique and measured the SWV 

of the GCM and the BFLH. We used the AS to assess the 
spasticity of the ankle and knee joints.

ARFI technique
The examination started with a conventional ultra-

sound followed by ARFI. One experienced physician per-
formed examination with a ACUSON S2000 ultrasound 
system (Siemens Healthcare, Erlangen, Germany) with 
linear probes (9L4). The positioning of the patients for 
imaging was identical to that used for standard clinical 
scanning. Scans of the short axis of the GCM and BFLH 
were performed with minimal compression applied with 
the transducer weight, bilaterally. 

Three trials of ARFI imaging were performed and the 
mean of 3 SWVs was used. All subjects were scanned on 
an examination platform in the prone position with feet 
hanging over the edge. Ultrasound were repeatedly per-
formed at the fixed point of the medial GCM, which was 
located at the middle of 2 reference points (1 point was 
located at the proximal one third of a longitudinal line 
from midway between the medial and lateral malleoli to 
midway between the medial and lateral epicondyles; the 
other point was located at the medial end on a transverse 
line perpendicular to the point on the longitudinal line) 
and performed at the BFLH, which was located at the 
midpoint between ischial tuberosity and lateral condyle 
of tibia. Scanning was discontinued whenever reflexive 
or voluntary contraction of the lower limb muscles was 
visually apparent. The target muscle was displayed in B-
mode and the region of interest (ROI) was subsequently 
identified in the muscle. ARFI technology uses short-
duration acoustic radiation forces to generate localized 
tissue displacement, which results in shear-wave propa-
gation [7]. The ROI is characterized by a box with a fixed 
dimension of 0.5 cm2 for ARFI measurements during 
real-time B-mode imaging. The shear waves propagate 
perpendicular to the acoustic pulse, away from the target 
ROI. The velocity of the shear wave speed is expressed in 
m/s (Fig. 1).

Assessment of spasticity 
The spasticity of the ankle plantar flexor muscles in pa-

tients with spasticity was measured as the degree of resis-
tance to passive movement felt by the physical therapist 

Table 2. Characteristics of the subjects

Group Aa) Group Bb) Group Cc)

Sex

   Male 5 5 6

   Female 5 3 4

Age (yr) 53.6±22.7 52.5±15.5 42.7±14.2

Height (cm) 163.2±9.1 167.7±12.1 170.8±6.21

Weight (kg) 62.4±8.26 64.9±11.2 66.9±8.1

AS score

   Ankle PF 1.35±0.67 0 0

   Knee flexor 1.55±0.94 0 0

Values are presented as number or mean±standard de-
viation.
AS, original Ashworth Scale; PF, plantar flexor. 
a)Patient with spinal cord injury and spasticity. b)Pa-
tient with spinal cord injury and no spasticity. c)Healthy 
adults.
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using the AS, with a rating from 0 to 4 (0, hypotonic; 4, 
extreme resistance).

Statistical analysis
One-way analysis of variance (ANOVA) was used for 

comparison of SWV among the 3 groups (patients with 
spasticity, patients without spasticity and healthy sub-

jects), whereas Tukey Honestly Significant Difference 
(HSD) was used for multiple comparisons. Between-
group comparisons for continuous data were assessed 
with Mann-Whitney U test when appropriate. We evalu-
ated correlation of spasticity with SWV by assessing the 
Spearman rank correlation coefficients. The interclass 
correlation coefficient was used to examine intra-rater 

A B

C D

E F

Fig. 1. B-mode ultrasound image of medial gastrocnemius (GCM) (A) and the long head of biceps femoris (BFLH) 
muscle (B). Shear wave velocity of medial GCM and the BFLH with spasticity (C, D) and without spasticity (E, F).
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reliability of repeated ARFI.
Data were expressed as the mean±standard deviation. 

Statistical significance was set at p<0.05. All statistical 
tests were conducted using the SPSS ver. 18.0 (SPSS Inc., 
Chicago, IL, USA).

RESULTS

SWV
Patients with spasticity had significantly faster SWV for 

GCM and BFLH than those without spasticity (Mann-
Whitney U test, p=0.007 and p=0.008) and normal control 
(p=0.011 and p=0.037, respectively) (Fig. 2). The SWVs 
of the GCM (1.15±0.45 m/s) and BFLH (1.43±0.76 m/s) 
in spastic patients was significantly higher, as compared 
with that of patients without spasticity (GCM, 0.66±0.08 

m/s; BFLH, 0.73±0.19 m/s) and healthy subjects (GCM, 
0.74±0.13 m/s; BFLH, 0.77±0.18 m/s). Interclass correla-
tion coefficient for GCM was 0.85 and interclass correla-
tion coefficient for BFLH was 0.79, respectively.

Correlation between SWV and spasticity 
The SWV values for the GCM correlated with ankle 

spasticity (Spearman rank test, p=0.026). There were 
significant correlations between the SWV values for the 
long head of biceps femoris muscle and knee spasticity 
(Spearman rank test, p=0.022) (Table 3). 

DISCUSSION

We examined the correlation between the speed of the 
SWV and spasticity in patients with SCI. We assumed that 
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Fig. 2. Shear wave velocity (SWV) of medial gastrocnemius muscle (A) in 3 groups and the long head of biceps femoris 
muscle (B) in 3 groups. *p<0.05 in Mann-Whitney U test.

Table 3. Correlation of spasticity and SWV

SWVs of GCM AS score of ankle SWVs of BFLH AS score of knee
SWVs of GCM r 1 -  - -

p - - - -

AS score of ankle r 0.498* 1 - -

p 0.026 - - -

SWVs of BFLH r 0.239 0.354 1 -

p 0.309 0.126 - -

AS score of knee r 0.086 0.470* 0.510* 1

p 0.72 0.037 0.022 -

SWV, shear wave velocity; GCM, gastrocnemius muscle; AS, original Ashworth Scale; BFLH, long head of biceps femo-
ris muscle.
*p<0.05 by Spearman rho test.
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the SWV of spastic muscle would be fast, as compared 
with patients without spasticity, these assumptions were 
established based on the knowledge that the SWV reflects 
the extent of hardness or stiffness, because GCM and 
BFLH in patients with spasticity become hard and stiff 
[8,10,12,26,27]. The SWVs of the BFLH and GCM with 
spasticity in patients who had SCI were statistically sig-
nificantly faster, as compared with healthy adults. This 
result indicated that spastic muscle was hard and stiff, 
as compared with non-spastic muscles, because SWV is 
proportionate to tissue hardness. These findings sup-
ported the hypothesis that the degree of elasticity of tis-
sue changes after SCI and the muscles become stiffer in 
SCI patients who have spasticity. 

Our findings were consistent with other studies, which 
found that the degree of ankle spasticity was correlated 
with stiffness of the medial GCM in children with spastic 
cerebral palsy [28]. The SWV of the GCM in the group 
with spastic cerebral palsy was significantly higher than 
that in the group without neurologic and musculoskeletal 
disabilities [28].

We found a statistically significant positive correlation 
between SWVs and the AS score of spastic muscles. This 
indicated that SWV is fast when spasticity is high. Many 
studies reported that the total amount of collagen content 
and expression of genes that are involved in the conver-
sion of collagen from the tissue, such as LH2b and TGF-

β1were increased in spastic muscle; and muscle fiber 
type transformation was observed in the post SCI patient 
group [29-31]. Based on these studies, we could predict 
that the degree of stiffness was increased in spastic mus-
cle and we can measure the spasticity by SWV with ARFI, 
indirectly.

Most research on skeletal muscle spasticity has focused 
on the neural changes. It is reasonable because the pri-
mary cause leading to spasticity is located in the central 
nervous system [12]. In our study, 3 patients who had SCI 
showed low SWV (0.72, 0.71, and 0.65 m/s) although they 
had spasticity (AS grade of GCM was 1 and 2). Muscle 
and neural changes are usually related, but probably to 
differing extents, depending on the particular disease 
state, patient age, and time since injury. We thought that 
3 patients had more neural changes, such as neurally 
mediated reflex stiffness, and less structural change. The 
other 7 patients showed high SWV in spastic GCM and 
BFLH that may be reflect more structural change such as 

stiffness and hardness than neural changes.
Scelsi [31] reported that muscle atrophy and muscle fi-

ber type transformation in their fundamental properties 
occur in early SCI supporting the presence of progressive 
changes in muscles probably occurring early after cord 
injury. In our study, the ARFI-SWV values of spastic mus-
cle were estimated as high in the early stage of SCI. This 
result indicating that increased muscle stiffness could oc-
cur at early stages post SCI was consistent with the previ-
ous study.

A greater number of test subjects will be required in 
future studies to evaluate spasticity by SWV adding to AS, 
the continuous variables (e.g., Spinal Cord Assessment 
Tool for Spastic Reflexes) as an accessory measurement 
of spasticity for neural and structural change in SCI pa-
tients.

ARFI is a convenient tool and has the advantage of be-
ing able to quantify the structural change such as stiff-
ness and hardness of the tissue by measuring the SWV. 
It will therefore be a useful tool to measure the degree of 
stiffness of muscles with spasticity. Guzman-Aroca et al. 
[32] noted that SWV measured by ARFI has high intra-
examiner reliability and high reproducibility.

Our study had limitations. Firstly, the number of sub-
jects was small so statistical power was low and we were 
not able to perform a double-blind study to evaluate 
spasticity by the AS score and ARFI. Secondly, it was not 
possible to examine the relationship between the change 
in hardness and elasticity of the muscles and disease du-
ration because SCI patients in our study were diagnosed 
within 3 months. Finally, only 1 observer performed 1 
session for each compression condition. More investiga-
tions are needed to establish the inter-observer reliability 
of the SWV measurements. 

However, this study is the first study to investigate spas-
tic muscles in SCI patients using ARFI and SWV detection 
and evaluate correlation between the SWV values and 
spasticity in SCI patients. It has not been conducted in 
other clinical studies.

We focused on reducing muscle stiffness by stretching 
for treatment of the spasticity especially on muscle with 
estimated high SWV via ARFI. Further study with a larger 
sample size and an evaluation of the correlation between 
the SWV of muscle and the disease period of SCI is need-
ed to confirm the validity of these study results. 

In conclusion, this study proves the feasibility of quan-
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tifying spastic muscle stiffness with ARFI in SCI patients. 
ARFI demonstrated a difference in muscle stiffness be-
tween patients with spasticity and those without spas-
ticity in SCI. These findings suggested that stiffness of 
muscles could be increased in spastic lower extremity of 
early SCI patients as well as chronic SCI patients. 

ARFI imaging performed by an expert physiatrist is a 
valuable tool that can be used to noninvasively evalu-
ate the spasticity of the muscle in SCI patients with AS. 
Furthermore, it has the potential to identify structural 
changes of the tissue associated with spasticity.
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