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Objective  To evaluate and compare the organization of descending motor pathways to upper extremity muscles 
among healthy children.
Method  Th e healthy children were 16 males and 7 females aged 1-19 years (average, 9 years), and eight healthy 
adults were enrolled as the control group. Transcranial magnetic stimulation was applied to bilateral motor 
cortices, and motor evoked potentials (MEPs) were recorded using surface electrodes from the first dorsal 
interossei (FDI), the biceps brachii (BIC), and the deltoid (DEL) muscles. The onset latency, central motor 
conduction time (CMCT), and amplitude were obtained during a relaxed state.
Results  MEPs of FDI were obtained from subjects aged 13 months. Th e frequency of obtaining MEPs in proximal 
and distal muscles increased with age, although there was a less frequent incidence of obtaining MEPs in the 
proximal BIC and DEL muscles compared with those in the distal FDI muscle. MEP amplitudes increased with 
age, whereas latencies were relatively constant. CMCTs showed a similar pattern of maturation, and adult values 
were obtained by 13-years-of-age.
Conclusion  These results suggest that the proximal and distal muscles of the upper extremities show different 
maturation and organization patterns.
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INTRODUCTION

  Motor evoked potential (MEP) studies of the intrinsic 
hand muscles using transcranial magnetic stimulation 

(TMS) is the gold standard method for evaluating 
integrity of the corticospinal tract and estimating 
prognosis of central nervous system (CNS) disorders in 
adult patients.1,2

  In Korea, numerous studies have been conducted 
using MEP in adult patients with CNS disorders, but, 
surprisingly, MEP studies of pediatric subjects are 
extremely rare,3,4 which is in contrast to those conducted 
outside of Korea.5,6 Furthermore, even outside of Korea, 
few studies have investigated the maturation and 
organization of the proximal and distal upper extremity 
muscles using TMS in adult subjects7 and, to our 
knowledge, no studies have investigated the proximal 
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and distal muscles of the upper extremities in pediatric 
subjects. The safety of TMS has been established in 
human and animal models.8-10 Until recently, there 
has been no report on serious adverse events in child-
ren who have received single-pulse TMS. TMS-related 
neurocardiogenic syncope has been reported in child-
ren;11 however, this adverse event can be prevented by 
implementing preventative measures.12

  This study evaluated the age-related changes in the 
corticospinal neurophysiology of the proximal and 
distal upper extremity muscles in healthy children and 
demonstrated diff erences in the maturational changes of 
this motor pathway for each muscle.

MATERIALS AND METHODS

Subjects
  Twenty-three healthy children and eight healthy adults 
in their 20s were enrolled. The subjects were chosen 
by the method suggested by Müller et al.13 All children > 
6-years-of-age and their parents were fully informed 
about the study protocol and gave their consent before 
measurements. The trial was performed under the 
approval of the institutional review board for clinical 
studies.
  Healthy children were aged 9.1±5.0 years (range, 
1-19 years) and included 16 males and seven females. 
The healthy adults were 27.4±1.4 years (range, 26-
29 years) and included six males and two females. In 
previous studies investigating developmental changes 
in corticospinal neurophysiology using TMS, MEP 
at rest was not evoked in children aged ≤5 years, and 
resting central motor conduction time was assessed 
by measuring the latency of MEP in 13-year-old 
children.3,12-14 Based on these fi ndings, the subjects were 
divided into three groups according to their age: group 
A, children ≤5 years (n; 6); group B, children 6-12 years 
(n=10); and group C, children ≥13 years (n=7) (Fig. 1).

Methods
  The Medtronic Keypoint® (Medtronic Inc., Skovlunde, 
Denmark) was used as an electrodiagnostic device. 
The sensitivity was adjusted to range from 50 μV-1 mV 
per division. The filter setting was 2-2,000 Hz, and the 
sweep rate was 50 ms. The subjects were tested with 
their eyes open in a relaxed supine position. We did not 

use the facilitation method even if we could not observe 
the evoked potential. Electromyographic activity was 
recorded from both sides with surface electrodes. MEPs 
were examined in the first dorsal interossei (FDI), the 
biceps brachii (BIC), and the deltoid (DEL) muscles. We 
attached active electrodes on the belly of each muscle. 
Reference electrodes were placed at a distance of at least 
1 cm from the active electrode. Th e ground electrode was 
placed on the sternum. We applied TMS to each cerebral 
hemisphere in turn.
  TMS was performed with a Medtronic Magpro® (Med-
tronic Inc., Skovlunde, Denmark) stimulator with a 
diameter of 70 mm and a butterfly-shaped coil on the 
right and left optimal stimulus positions. The coil was 
held tangential to the scalp, with the handle angled 
backwards and 45° away from the midline. Th e stimulated 
scalp sites were identifi ed using a fi tting cap, pre-marked 
with sites at an 1 cm spacing in the latitude-longitude 
coordinate system. The inter-stimulus interval was a 
minimum of 10 seconds. We maintained coil temperature 
to not exceed 35°C. The threshold was defined as the 
minimum stimulation intensity required to evoke a 
peak-to-peak amplitude of >50 μV in at least five of ten 
consecutive trials. The threshold was determined using 
5% increases of stimulator output from 30% maximal 
stimulus intensity. The latency and the amplitude were 
gathered by averaging the values from four stimuli at 
110% of threshold. 
  The MEP frequency was defined as the number of 
subjects undergoing MEP analysis divided by the 
total subjects on trial. To evaluate the central motor 
conduction time (CMCT) of the FDI, the cervical spine 

Fig. 1. Demographics of the 23 healthy children.
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was magnetically stimulated using a 140 mm diameter, 
round coil with the same stimulator used for transcranial 
stimulation. Stimulation was performed until we 
identified the maximal FDI response. The CMCT was 
defined as the differences between the MEP latency for 
FDI while stimulating the motor cortex and the cervical 
spine.

Statistics
  SPSS version 13.0 for Windows (SPSS Inc., Chicago, USA) 
was used for the statistical analysis. We used the chi-
square test to compare the frequency of induced MEPs 
by age in each muscle. We used the Wilcoxon signed-
rank test to compare the latency, CMCT, amplitude, and 
the frequency of obtaining MEPs among each muscle. A 
p<0.05 was considered statistically signifi cant.

RESULTS

MEP frequency and parameters in healthy children
  MEP frequency: MEPs were recorded from the FDI in all 
23 healthy children aged 13 months-19 years. MEPs were 
evoked in 16 (70%) and 12 (52%) of the 23 subjects on the 
BIC and DEL, respectively. Th e MEPs of the BIC and DEL 
were less frequently observed that those of the FDI.
  Th e frequency of MEPs for the BIC and DEL was higher 
in groups B and C than that in group A. However, MEPs 
for the BIC and DEL tended to be less frequently observed 

in group C compared with those in group B. MEPs were 
obtained for all examined muscles in all subjects in the 
adult group (Table 1). 
  MEP parameters: MEP latency did not show signifi cant 
differences according to age in each of the examined 
muscles (Table 2). 
  When we compared the CMCT of the children 1-12- 

Table 1. Number of Subjects with Motor Evoked Potentials

Recording site Group (age)
Number of subjects with MEP/

total subjects (%) χ2 sig.

FDI A (1-5) 6/6 (100%)

B (6-12) 10/10 (100%)

C (≥13) 7/7 (100%)

Adults 8/8 (100%)

BIC A (1-5) 3/6 (50%)

B (6-12) 8/10 (80%) 1.571 0.242

C (≥13) 5/7 (71%) 0.168 0.559

Adults 8/8 (100%)

DEL A (1-5) 2/6 (33%)

B (6-12) 7/10 (70%) 2.049 0.182

C (≥13) 3/7 (43%) 1.252 0.268

Adults 8/8 (100%)

FDI: First dorsal interossei, BIC: Biceps brachii, DEL: Deltoid, sig.< 0.05: Signifi cantly increased or decreased com-
pared to previous age group

Table 2. Latency of Motor Evoked Potentials

Recording site Group (age) Latency (ms)
FDI A (1-5) 21.6±3.5 (n; 6)

B (6-12) 19.8±3.4 (n; 10)

C (≥13) 20.9±1.1 (n; 7)

1-19 20.6±2.9 (n; 23)

Adults 20.9±0.8 (n; 8)

BIC A (1-5) 12.0±1.7 (n; 3)

B (6-12) 13.0±2.9 (n; 8)

C (≥13) 12.1±1.9 (n; 5)

1-19 14.0±4.7 (n; 16)

Adults 13.8±0.7 (n; 8)

DEL A (1-5) 12.9±0.9 (n; 2)

B (6-12) 13.3±1.6 (n; 7)

C (≥13) 13.4±1.0 (n; 3)

1-19 14.0±2.8 (n; 12)

Adults 14.4±0.9 (n; 8)

FDI: First dorsal interossei, BIC: Biceps brachii, DEL: 
Deltoid
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years-of-age, with the CMCT of those >12 years and 
normal adults in their 20s, children >12 years showed a 
statistically signifi cant decrease in the CMCT compared 
to that in the other groups (p<0.05). The CMCT of 
children >12 years and that of normal adults aged in their 
20s was not statistically diff erent (Table 3).
  MEP amplitude increased signifi cantly with age for the 
FDI (p<0.05). MEP amplitude of the BIC and DEL tended 
to increase with age. A significant increase in group B 
compared with that in group A was observed for the MEP 
amplitude of the BIC. A significant increase in the MEP 
amplitude of the DEL muscles was observed in group C 
compared with that in group B.  
  These results showed that MEP amplitude increased 
at an early age in the BIC rather than that in the DEL 
(p<0.05). Additionally, the MEP amplitudes of all 
examined muscles increased significantly in group C 

compared to those in group A (p<0.05) (Table 4). 

Adverse eff ect of TMS
  Known adverse events following TMS such as syncope, 
seizure, headache, hearing problems, or changes in 
emotion were not observed in this study.15

DISCUSSION

  MEPs of the FDI were observed in a 13-month-old 
subject at rest. Th e age of this child was younger than that 
reported in earlier studies. Previous studies demonstrated 
that MEPs are observed in relaxed abductor digiti minimi 
of children >8 years by Koh and Eyre14 and in a relaxed 
FDI of a 2-year-old child by Nezu et al.4

  In every age group, a less frequent incidence of obtain-
ing MEPs in the BIC, DEL, and the proximal muscle 
group was observed, compared to that in the FDI, a distal 
muscle group. In distal muscles of the upper extremities 
(e.g., FDI), MEPs were observed in every age group 
beginning at 13 months. However, in contrast with the 
MEP response evoked in distal muscle, MEPs were not 
elicited in proximal muscles of the upper extremities 
(BIC and DEL) under maximal stimulation intensity in 
some children aged ≥12 years. Th e oldest age of a subject 
with no MEP was 16 years. But, MEPs were observed in 

Table 3. CMCT of the First Dorsal Interossei Muscle

Age (years) CMCT (ms)
≤12 10.4±4.0

≥13 7.8±0.9

1-19 9.6±3.5

Adult 7.6±0.9

CMCT: Central motor conduction time

Table 4. Amplitude of Motor Evoked Potentials

Recording site Age (years) Amplitude (μV) p
FDI A (1-5) 419.4±348.9 (n; 6)

B (6-12) 1,071.9±585.4 (n; 10) 0.002* (compared to 1-5 years)

C (≥13) 2,363.1±1,238.2 (n; 7) 0.003* (compared to 6-12 years)

1-19  1,314.4±1,098.3 (n; 23)

Adults 3,443.8±1,190.5 (n; 8) <0.001* (compared to 1-19 years)

BIC A (1-5) 332.8±122.3 (n; 3)

B (6-12) 692.3±477.4 (n;8) 0.07 (compared to 1-5 years)

C (≥13)  1,552.1±1,473.7 (n; 5) 0.16 (compared to 6-12 years)

1-19   559.1±406.0 (n; 16)

Adults 1,977.2±927.2 (n; 8) >0.05 (compared to 1-19 years)

DEL A (1-5) 327.0±98.8 (n; 2)

B (6-12)  600.5±298.8 (n; 7) 0.17 (compared to 1-5 years)

C (≥13) 1,535.7±646.2 (n; 3) 0.01* (compared to 6-12 years)

1-19   585.4±371.9 (n; 12)

Adults 1,767.6±647.3 (n; 8) >0.05 (compared to 1-19 years)

FDI: First dorsal interossei, BIC: Biceps brachii, DEL: Deltoid
*p<0.05 
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proximal and distal muscles of the upper extremities 
in all subjects in the control group who were in their 
late 20s. This observation implies a difference between 
distal and proximal upper extremity motor neuron 
organization. 
  The lower frequency of obtaining MEPs in proximal 
muscle than distal muscle in healthy children was 
thought to be due to late maturation of the corticospinal 
tract to proximal muscles or a higher cortical excitatory 
threshold resulting in lower excitability.16,17

  The frequency of obtaining MEPs in the proximal 
muscles (BIC and DEL) of children >5-years-of-
age showed an increasing trend compared to that 
between children 1-5 years. However, the frequency 
of obtaining MEPs from the BIC and DEL decreased in 
children >12-years-of-age compared to that in children 
6-12-years-of-age. These findings were also thought 
to be the result of corticospinal tract maturation and 
myelination in the upper extremity proximal muscles 
with aging,14,18 but individual diff erences in corticospinal 
tract maturation pattern can exist in distal muscles.
  In this study, the CMCT of healthy children >12 years 
showed a statistically relevant decrease compared to that 
in healthy children aged 1-12 years. But no statistical 
difference in healthy adults was observed, which 
corresponded with Nezu et al.3 who stated that all MEP 
parameters reach adult levels at the age of 13. Th erefore, 
the CMCT may be useful for investigating maturation 
in the descending motor pathways or the differences 
between motor pathways of each muscle group in healthy 
children.
  Müller et al.19 reported that central motor conduction 
velocity increases as children get older and reaches 
healthy adult levels by the age of 11. In this study, a 
statistically relevant decrease in onset latency was not 
observed, which may have been due to influences of 
increasing nerve conduction velocity, as maturation of 
synapses and decreasing nerve conduction time with 
distance increases as children grow taller. Further studies 
are needed to clarify the relationship between height and 
the CMCT. 
  Although Rothwell et al.20 reported using TMS-MEP 
clinically was hard due to amplitude variability, we 
observed an increase in MEP amplitude as children aged, 
suggesting that the MEP amplitude refl ects corticospinal 
tract maturation and muscle growth as children get older. 

The distal muscle (FDI) showed a statistically relevant 
amplitude increase at an earlier age than that of the 
proximal muscles (BIC and DEL) and continuously 
showed relevant amplitude increases. A statistically 
relevant increase in amplitude was observed in the 
BIC of group B and in the DEL of group C, suggesting 
that the proximal and distal muscles have a different 
neuronal circuit.21 It also suggests that each muscle can 
have a diff erent maturation pattern even within the same 
proximal muscle group. Th erefore, a TMS-MEP study of 
the upper extremities should be conducted in proximal 
muscles as well as distal muscles, and additional TMS-
MEP studies of each muscle should be conducted 

CONCLUSION

  MEPs could be elicited from children aged 13 months 
when muscles were at rest, and no adverse events 
following TMS were observed. Age-related changes in 
MEP latency and amplitude for the FDI, BIC, and DEL 
muscles indicated that a MEP study may provide insights 
into maturation of the motor system in healthy children. 
Based on these results, we suggest that MEP is a useful 
method to investigate motor developmental disorders in 
pediatric patients.22
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