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INTRODUCTION 

Gait impairment is a common consequence of stroke. In the 
United States alone, an estimated 795,000 people suffer from 
stroke every year, and more than 80% of survivors experience 
gait impairment after stroke [1,2]. In order to test new rehabil-
itation therapies that may improve gait, it is important to have 
an objective measure of a patient’s gait. The gold standard for 
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Objective: To confirm that the simplified insole does not affect the gait speed and to identify 
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sessment scales. 
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sure) were calculated and correlated with gait speed and lower extremity Fugl-Meyer (F-M) 
score. 
Results: The insole pressure sensor did not affect gait, as indicated by a strong correlation 
(ρ=0.988) and high agreement (ICC=0.924) between the gait speeds with and without the in-
sole. The parameters that correlated most strongly with highest β coefficients against the 
clinical measures were stance time of the non-hemiplegic leg (β=-0.87 with F-M and β=-
0.95 with gait speed) and heel_on-to-toe_peak time of the non-hemiplegic leg (β=-0.86 with 
F-M and -0.94 with gait speed). 
Conclusion: Stance time of the non-hemiparetic leg correlates most strongly with clinical 
measures and can be assessed using a non-obtrusive insole pressure sensor that does not af-
fect gait function. These results suggest that an insole pressure sensor, which is applicable in 
a home environment, may be useful as a clinical endpoint in post-stroke gait therapy trials. 
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gait assessment is camera-based motion analysis in gait labo-
ratories [3]. However, the relative complexity of the setup and 
the sparsity of gait laboratories in outpatient clinics makes gait 
analysis in a dedicated gait laboratory impractical for large-scale 
clinical trials. Another limitation of testing gait in a laboratory is 
the artificial environment used. As an alternative to formal gait 
testing in gait laboratories, trials have opted to use clinic-based 
assessments, such as the 10-Meter Walk Test (10MWT), as their 
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study endpoint [4]. While these tests are more practical than 
those obtained in gait laboratories, they are more limited in 
scope because they produce only a single dimension temporal 
score, they still require a trained observer, and they are obtained 
in a clinical setting that may not reflect the patient’s gait during 
everyday life [5]. 

Assessing gait using sensors that can be worn during ev-
eryday life could prove more clinically relevant by providing 
multidimensional objective and quantitative outcome data 
without the complexities and time involved with laboratory or 
clinic-based testing. Recent studies have investigated the use 
of accelerometers, gyro sensors, and pressure sensors to assess 
dynamic balance during standing and walking and to assess the 
walking strategies of persons with stroke [6-11]. The parame-
ters analyzed in such studies provide quantitative data such as 
asymmetry, kinematic characteristics, and gait performance. 
However, the clinical relevance of these parameters has not 
been verified. 

To address these limitations, we designed, fabricated, and 
tested an insole pressure sensor to assess gait. The goal of this 
study was to confirm that the simplified insole does not affect 
the gait speed and to identify objective insole sensor-based gait 
parameters that correlate strongly with existing clinical gait as-
sessment scales. 

METHODS 

Insole pressure sensor system 
Pairs of insoles with four pressure sensors were manufactured. 
The sensors were positioned at the plantar aspect of the 1st 
metatarsal head (medial pressure), 3rd metatarsal head (toe 
pressure), 5th metatarsal head (lateral pressure), and the cal-
caneal tuberosity (heel pressure, Fig. 1A). The pressure sensor 
data were acquired every 60 ms (approximately 16.7 Hz) with 
a timestamp and normalized to a 0 to 1 scale. The beginning 
and end of the data acquisition were controlled using a button 
switch. Sensor data from the four sensors on each insole were 
time-synchronized, but the data were not time-synchronized 
between insoles. Thin insoles and simple pressure sensor arrays 
were selected to simplify the device and minimize its effect 
on gait. Multiple insoles were created to ensure proper fit and 
placement of the sensors across a range of foot sizes for both 
male and female. Fig. 1B shows a person wearing a shoe with 
the insole pressure sensor system. 

Protocol 
This study was approved by the Institutional Review Board of 
Stanford University (IRB No. 32540), and informed consent was 
obtained from all participants. Stroke patients were screened 
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Fig. 1. (A) Schematic image of the 4 insole sensors and their example data. (B) A photo of a person wearing the shoe with the insole 
pressure sensor system is shown.
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for this study in the Ambulatory Stroke Clinic of the Neurology 
Department of Stanford University. Participants were eligible 
for the study if they were determined to have gait impairment 
secondary to stroke by the attending neurology clinician, but 
were able to ambulate without the assistance of a person. The 
use of a cane, walker, and/or ankle-foot orthosis was permitted. 
At baseline, demographic data including age, sex, height and 
weight, hemiplegic side, and the National Institutes of Health 
Stroke Scale (NIHSS) and lower extremity Fugl-Meyer (F-M) 
scores were obtained. The F-M assessment was performed by 
a physical therapist for the lower extremities using the stan-
dard protocol at the time of enrollment to the study [12]. The 
participants performed the 10MWT for three trials with and 
three trials without instrumented insoles [13]. Participants were 
instructed to walk at their normal comfortable speed and were 
informed that they could stop or rest at any time. To mitigate 
the effects of fatigue on determining whether the device itself 
affected gait, the order of performing the 10MWT with or with-
out the device was first randomized. Gait speed was measured 
manually in all trials, following the standard scoring procedures 
of the 10MWT.  

Sensor-derived parameters  
Based on the pressure data from the four sensors, more than 10 
consecutive effective steps were extracted (average of approx-
imately 12 steps), and the timestamps of heel_on, heel_peak, 
toe_peak, and toe_off were determined. From these timestamps, 
six gait parameters were calculated for both the non-hemi-
plegic and hemiplegic lower extremities: (1) stance time, (2) 

heel_on-to-heel_peak time, (3) heel_on-to-toe_peak time, (4) 
heel_peak-to-toe_peak time, (5) toe_peak pressure before nor-
malization, and (6) stance ratio, calculated as non-hemiplegic 
stance time divided by hemiplegic stance time (Fig. 2A). 

Statistical analysis 
A Spearman’s rank correlation analysis, linear regression, and 
inter-rate correlation coefficient (ICC) calculation were per-
formed between gait speed without the device and gait speed 
with the device to assess the impact of the device on gait. Spear-
man’s rank correlation coefficients were calculated between the 
sensor-derived parameters and two clinical measures (lower 
extremity F-M score and gait speed). Based on the correlation 
analysis, univariate linear regression analyses were performed 
for each variable. IBM SPSS 25.0 (IBM Corp.) was used for all 
statistical analyses. p-value was set at p<0.05. 

RESULTS 

Participants 
Ten participants with stroke were enrolled in this study. In two 
participants, the right sensor malfunctioned and did not col-
lect sufficient data for analysis, leaving eight participants for 
the analyses. These subjects consisted of 4 participants with 
left hemiplegia and 4 with right hemiplegia. The mean age was 
61±15 years, and there were 6 male and 2 female. Assistive de-
vices such as a cane, walker, and ankle-foot orthosis were used 
by four participants during gait testing. The demographic data 
of the participants are presented in Table 1. Disability levels 
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Fig. 2. (A) Definitions of main parameters in this study are visually shown based on toe and heel pressure sensor data. (B) An 
example of toe and heel pressure sensor data pattern in a participant with severe ankle spasticity.
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among the participants ranged from moderate to no significant 
disability, with NIHSS scores ranging from 1 to 7 and lower ex-
tremity F-M scores ranging from 20 to 34. 

Feasibility data (gait speed with vs. without insole  
pressure sensor) 
Gait speed while wearing shoes with the insole pressure sen-
sors inside the shoes and gait speed without the insole pressure 
sensors showed a strong linear relationship (ρ=0.988, p<0.001) 
with a slope near 1 (β=0.95) and near-zero y-intercept (0.04), 
with an ICC of 0.924 (p=0.002), showing high agreement of the 
independently measured speeds. This suggests minimal influ-
ence of the insole pressure sensor on gait speed and that it is 
appropriate to use for gait measurements (Fig. 3). 

Correlation analysis and univariate linear regression of 
sensor data and clinical measures 
The Spearman’s correlation coefficients and β coefficients of 
univariate linear regression model between sensor-based pa-
rameters and clinical measures (lower extremity F-M score and 
gait speed) are listed in Table 2. The sensor-based data that cor-
related most strongly with highest β coefficient with the lower 
extremity F-M score were stance time of the non-hemiplegic 
leg (ρ=-0.99, β=-0.87), followed by heel_on-to-toe_peak time 
of the non-hemiplegic leg (ρ=-0.75, β=-0.86) and heel_on-to-
heel_peak time of the non-hemiplegic leg (ρ=-0.78, β=-0.78). 
The same three parameters also showed highest β coefficient 
with gait speed (β=-0.95 for non-hemiplegic stance time; β=-
0.94 for non-hemiplegic heel_on-to-toe_peak time; β=-0.84 

for non-hemiplegic heel_on-to-heel_peak time). Among the 
toe_peak pressure parameters, hemiplegic toe_peak pres-
sure showed significant correlation with gait speed (ρ=-0.79, 
β=0.71). Stance ratio did not show significant correlation with 
the clinical measures. Univariate linear regression results with 
highest β coefficients are shown in Fig. 4. Sensor-based param-
eters with high β coefficients were chosen because higher abso-
lute value of β suggests higher prediction. 

DISCUSSION 

This study demonstrated that insoles with pressure sensors can 
be used to evaluate gait function in patients with stroke. The 
insole pressure sensor did not alter the subjects’ natural walking 
speeds (Fig. 3). Several of the sensor-based measures correlat-
ed strongly with gait speed and lower extremity sensorimotor 
impairment; stance time of the non-hemiplegic foot was the 
sensor-based measure that correlated most strongly with these 
clinical outcome measures. In addition to the stance time of 
the non-hemiplegic limb, the heel_on-to-toe_peak time of the 
non-hemiplegic foot also demonstrated good correlations with 
lower extremity F-M and gait speed. This is intuitive because 
the heel_on-to-toe_peak time is closely related to the stance 
time; heel_on-to-toe_peak time equals the stance time minus 
the short period from toe_peak-to-toe_off (Fig. 2A). 

Table 1. Demographic data of the study subjects 

Variable Value (n=8)
Age (yr) 61±15
Sex (male/female) 6/2
Height (m) 1.72±0.13
Weight (kg) 74.4±20.4
Hemiplegic side (left/right) 4/4
Duration since stroke onset (yr) 2.95±2.39
NIHSS score 4.5±2.3
Lower extremity F-M score 25.6±5.45
No. of subjects with assistive device
  Cane 2
  Ankle-foot-orthosis 1
  Walker 1
  None 4

Values are presented as mean±standard deviation or number only.
NIHSS, National Institutes of Health Stroke Scale; F-M, Fugl-Meyer.

Fig. 3. Gait speed without insole sensor vs. gait speed with 
insole sensor are plotted for all 8 study subjects, which show 
strong linear relationship (ρ=0.988, p<0.001) with an inter-rater 
correlation coefficient of 0.924 (p=0.002).
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Table 2. Mean values of the sensor-based parameters and their relationship between lower extremity F-M score and gait speed 

Gait parameter Mean±SD (s)
Lower extremity F-M score Gait speed (m/s)
ρ (p)a) β (p)b) ρ (p)a) β (p)b)

Hemi_stance time 0.97±0.36 -0.99 (<0.01*) -0.74 (0.03*) -0.91 (<0.01*) -0.76 (0.03*)
Hemi_heel_on-to-heel_peak time 0.24±0.20 -0.57 (0.14) -0.66 (0.08) -0.69 (0.06) -0.71 (0.05*)
Hemi_heel_on-to-toe_peak time 0.73±0.28 -0.84 (0.01*) -0.72 (0.04*) -0.76 (0.03*) -0.70 (0.06)
Hemi_heel_peak-to-toe_peak time 0.49±0.36 -0.59 (0.12) -0.23 (0.59) -0.38 (0.35) -0.18 (0.68)
Hemi_toe_peak pressure 309.8±138.1d) 0.66 (0.07) 0.50 (0.21) 0.79 (0.02*) 0.71 (0.05*)
Non-hemi_stance time 1.09±0.40 -0.99 (<0.01*) -0.87 (<0.01*) -0.91 (<0.01*) -0.95 (<0.01*)
Non-hemi_heel_on-to-heel_peak time 0.29±0.27 -0.78 (0.02*) -0.78 (0.02*) -0.79 (0.02*) -0.84 (<0.01*)
Non-hemi_heel_on-to-toe_peak time 0.95±0.31 -0.75 (0.03*) -0.86 (0.01*) -0.67 (0.07) -0.94 (<0.01*)
Non-hemi_heel_peak-to-toe_peak time 0.67±0.22 -0.24 (0.57) -0.72 (0.07) -0.17 (0.69) -0.80 (0.03*)
Non-hemi_toe_peak pressure 424.6±120.4d) -0.24 (0.61) -0.15 (0.75) 0.11 (0.82) 0.02 (0.96)
Stance ratioc) 1.12±0.12 -0.37 (0.36) -0.50 (0.20) -0.38 (0.35) -0.59 (0.13)

SD, standard deviation; F-M, Fugl-Meyer.
a)Spearman’s correlation analysis (ρ indicates coefficient of Spearman’s correlation).
b)Univariate linear regression analysis (β indicates beta coefficient of linear regression model).
c)Stance ratio=non-hemi_stance time/hemi_stance time (no dimension).
d)Presented in sensor value recorded from the insole pressure sensor.
*p<0.05 were considered statistically significant.

Fig. 4. Univariate linear regression analyses with non-hemiplegic stance time and non-hemiplegic heel_on-to-toe_peak time as 
independent variables, and lower extremity Fugl-Meyer score (A, B) and gait speed (C, D) as dependent variables are shown. All 
results indicate significant negative linear relationships. L/E, lower extremity.
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Several systems have been developed for the gait evaluation of 
various neurological and musculoskeletal diseases [14]. Cam-
era-based gait analysis systems provide detailed, multifaceted, 
and accurate information but require abundant space, sufficient 
manpower, time, and costs. These limitations are particularly 
burdensome when repeated measurements are required, such 
as is often the case in a longitudinal follow-up study of gait 
function after stroke. Inertial measurement unit (IMU)-based 
sensor systems that can measure step time or stride time exist; 
however, these systems may not be accurate in patients with 
stroke who often have abnormal gait patterns. We aimed to 
address these limitations by developing a pressure-based sensor 
system that can automatically detect and analyze discrete and 
easily identifiable events such as heel strike and toe push-off 
[15,16]. The pressure sensor insole system developed and tested 
in this study consists of a simple pair of insoles that are highly 
portable and can be used in laboratory, clinic, or home settings. 

In this study, we used two clinical measures as a reference for 
each subject’s functional status: lower extremity F-M score and 
gait speed. The F-M score is the most widely used and verified 
functional evaluation tool in stroke rehabilitation [12]. Gait 
speed is known to best describe general physical performance, 
including walking performance, and is a patient-centered out-
come measure, as it affects patients’ quality of life [14]. Among 
the different sensor-based measures, this study found that the 
stance time of the non-hemiplegic limb had the highest cor-
relation and predictivity with both clinical measures: lower-ex-
tremity F-M score and gait speed (Table 2). The non-hemiple-
gic stance time demonstrated highest β coefficient (-0.87) in 
linear regression model with the clinical measures (Fig. 4), in 
which the absolute value is near 1. This supports the potential 
use of the parameter in a clinical setting because a certain ex-
tent of change in the non-hemiplegic stance time may predict 
meaningful change in the F-M score or gait speed as well. This 
finding is consistent with previous studies that reported that a 
longer stance time of the unaffected limb correlates with worse 
functional outcomes assessed with the Berg Balance Scale and 
gait speed [17,18]. Our findings are also consistent with the 
common clinical knowledge that hemiplegic gait exhibits a rela-
tively short stance time of the hemiplegic limb and a long stance 
time of the non-hemiplegic limb as a result of a prolonged 
swing phase of the hemiplegic side [15]. 

Parameters indicative of gait asymmetry have been investigat-
ed in previous studies, and it has been suggested that the stance 
ratio between the non-hemiplegic and hemiplegic sides may be 

a useful clinical outcome parameter [11,19-22]. In our study, 
this parameter did not show a significant correlation with clin-
ical measures (Table 2). Also, the ratio of peak pressure of each 
sensor did not show significant correlation with clinical mea-
sures (data not shown). While same-side sensors were time syn-
chronized for this study, they were not synchronized between 
sides, which may have influenced the symmetry measures. 
Pressure asymmetry has also been suggested to be a clinically 
meaningful parameter [21]. We confirmed this in our study as 
we showed that decreased toe_peak pressure of the hemiplegic 
side was correlated with slower gait speed (ρ=0.79, Table 2). 
This is explained by weight shifting to the non-hemiplegic side 
and impaired push-off function in the forefoot area of the im-
paired limb during walking in patients with a hemiplegic gait 
[15,23]. 

In most of the cases when the ankle spasticity is not too se-
vere, the pressure data followed similar patterns as shown in 
Fig. 2A. However, in the cases with severe ankle spasticity and 
equinovarus deformity, it showed relatively early toe onset, 
short duration of heel pressure, and significant double peak 
of toe pressure: first on initial contact due to insufficient heel 
strike, and second on push off phase (Fig. 2B). In some steps 
the first peak was higher than the second peak. This pattern 
supports the study results that the heel_on-to-heel_peak time 
average is similar in both sides, but the heel_on-to-toe_peak 
time is apparently shorter in the hemiplegic side. 

This study has some limitations. First, the number of partici-
pants was too small to generalize the results to the entire stroke 
population, and larger follow-up studies are necessary to vali-
date our results. However, some of the sensor-based gait param-
eters correlated strongly with the clinical outcome measures, 
and the results were significant despite the small number of 
participants. Second, the timestamps of the left and right insole 
pressure sensors were not synchronized. Further investigations 
focusing on the pressure relationship between the two limbs 
may provide additional clinically relevant information. Third, 
the sensor did not provide accurate pressure data especially in 
abnormal gait patterns. There are similar issues when using 
IMU sensors for stroke gait analysis, especially when the system 
is intended to be unobtrusive and simple; usually accuracy and 
practical clinical feasibility is in a trade-off relationship [24]. 
Therefore, we aimed to extract a simple sensor-based parameter 
highly correlating with clinical measures. 

In conclusion, the stance time and heel_on-to-toe_peak time 
of the non-hemiplegic foot were the most indicative of gait 
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function in stroke subjects. Insole pressure sensors may be use-
ful by providing clinicians and researchers with simple objective 
outcome measures, which correlates with clinical measures, 
that could be assessed in an unobtrusive way during short gait 
testing in clinics or in the patient’s home environment during 
routine activities. 
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