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Purpose: Bone age (BA) is needed to assess developmental status and growth 
disorders. We evaluated the clinical performance of a deep-learning-based BA 
software to estimate the chronological age (CA) of healthy Korean children.
Methods: This retrospective study included 371 healthy children (217 boys, 154 
girls), aged between 4 and 17 years, who visited the Department of Pediatrics 
for health check-ups between January 2017 and December 2018. A total of 553 
left-hand radiographs from 371 healthy Korean children were evaluated using a 
commercial deep-learning-based BA software (BoneAge, Vuno, Seoul, Korea). The 
clinical performance of the deep learning (DL) software was determined using the 
concordance rate and Bland-Altman analysis via comparison with the CA.
Results: A 2-sample t-test (P<0.001) and Fisher exact test (P=0.011) showed a 
significant difference between the normal CA and the BA estimated by the DL 
software. There was good correlation between the 2 variables (r=0.96, P<0.001); 
however, the root mean square error was 15.4 months. With a 12-month cutoff, the 
concordance rate was 58.8%. The Bland-Altman plot showed that the DL software 
tended to underestimate the BA compared with the CA, especially in children under 
the age of 8.3 years.
Conclusion: The DL-based BA software showed a low concordance rate and a 
tendency to underestimate the BA in healthy Korean children.
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Highlights

·  The feasibility of deep-learning-based bone age software was evaluated using the real-
world data. Despite efforts to improve its performance, the bone age software exhibited a 
low concordance rate and an inclination to underestimate the bone age in healthy Korean 
children. 

Introduction

Growth evaluation is crucial in assessing the health status of children because diseases 
often cause growth attenuation. The bone age (BA) estimation is a time- and cost-effective 
approach to evaluate growth, sexual maturity, treatment follow-up, and adult height prediction, 
particularly for children with endocrine or metabolic disorders.1) 

Since the 1950s, researchers in various fields have evaluated the manners in which artificial 
intelligence can assist human life. Machine learning is a subfield of artificial intelligence in 
which algorithms are based on pattern learning from data. Deep learning (DL), a class of 
machine learning, has recently been applied and has gained success in medical imaging in 
several clinical settings.2,3) 

For over 60 years, the interpretation of hand radiographs has been based on conventional 
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methods. Conventional BA estimation methods include the 
Greulich-Pyle and Tanner-Whitehouse 3 methods.4,5) Both 
of these methods require a considerable amount of time and 
can sometimes be subjective, and the accuracy depends on the 
experience of pediatricians and radiologists. 

Efforts have recently been made to apply DL to hand x-ray 
readings for BA estimation.6) Several studies have assessed 
the efficacy of DL for x-ray interpretation using radiographs 
from children with disorders such as precocious puberty, short 
stature, or delayed puberty. Such studies have investigated the 
clinical performance of DL-based BA software compared to 
that of radiologists. Hence, we aimed to evaluate the clinical 
performance and the accuracy of DL-based BA software in 
healthy Korean children.

Materials and methods

1. Subjects

We reviewed the medical records of 371 healthy children 
(217 boys and 154 girls) aged 4–17 years who visited the 
Pediatric Endocrinology Clinic at Korea University Guro 
Hospital between January 2017 and December 2018 for 
growth evaluation. The children visited the hospital for a health 
checkup without any symptoms of other diseases. Children 
with diseases that can delay or advance BA, such as growth 
hormone deficiency, skeletal dysplasia, or precocious puberty, 
were excluded from the estimation. Of the 6,061 left-hand 
radiographs taken during the study period, 5,508 were excluded 
and 553 were used for analysis. 

2. Methods

Data regarding chronological age (CA), sex, weight, height, 
and body mass index (BMI, kg/m2) and left-hand radiographs 
of each child were collected. The weight, height, and BMI were 
expressed as the standard deviation score (SDS) for Korean 
children based on their age and sex using the 2017 Korean 
growth standard. A total of 553 left-hand radiographs (332 
radiographs of boys and 221 radiographs of girls) from 371 
healthy Korean children were independently evaluated by 
pediatricians (pediatric endocrinologists) and radiologists 
(musculoskeletal radiologists). The DL-BA software was 
evaluated using the Greulich-Pyle method. The pediatricians 
and radiologists estimated the BA without knowledge of the 
CA. 

A commercial DL-based BA software (BoneAge ver. 1.0.3, 
VUNO Med, Seoul, Korea) was used. This software was 
developed according to a convolutional neural network and 
gained approval from the Korean Ministry of Food and Drug 
Safety in 2018. The software displays the 3 most likely estimated 
BAs along with their corresponding probabilities (Fig. 1). In Fig. 
1, the software analyzed left-hand radiographs of a girl whose 
CA was 12 years and 0 months. Based on its analysis, it generated 
an attention map using the shape and density of each bone and 

(A) (B)

(C)

10y 0 mo

11y 0 mo

12y 0 mo

Fig. 1. Bone age estimations by the deep-learning-based bone age 
software. (A) Left-hand radiographs. (B) Attention map. (C) Three 
most likely estimated bone ages.
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then displayed the 3 most likely estimated BAs along with their 
corresponding probabilities. The first-rank BA of this girl was 
11 years and 0 months with a probability of 88.39%. We used the 
CA as the reference value. The difference between the CA and 
BA (CA–BA) for each child was calculated by subtracting the 
BAs (that were estimated by a pediatric endocrinologist and a 
radiologist) from the corresponding CA value estimated by the 
software. Therefore, positive values indicated a BA delay, while 
negative values indicated BA maturation.

3. Statistical analysis

All statistical analyses were performed using R software ver. 
3.6.1 (R studio, Boston, MA, USA). The 2-sample t-test and 
Fisher exact test were used to compare the CAs with the BAs 
estimated by the DL software. Pearson correlation coefficient 
and the root mean squared error (RMSE) were used to evaluate 
the clinical performance of the software by comparing the CAs 
with each BA estimated by the pediatricians, radiologists, and 
software. The RMSE is the square root of the average of squared 
errors; the smaller is the RMSE, the closer are the CA and the 
estimated BA.7) Pearson correlation coefficient and the RMSE 
were also evaluated for the BAs estimated by the pediatricians, 
radiologists, and software for each child. The intraclass 
correlation coefficients for the pediatricians, radiologists, and 
software were calculated to assess interobserver reliability. The 
concordance rate based on a 12-month cutoff was used to assess 
the accuracy. One-way analysis of variance was performed to 
compare the differences according to the CA. Furthermore, the 
Bland-Altman plot was used to assess differences between the 
CA and the estimated BA for each pediatrician, radiologist, and 
the software. All statistical analyses were performed separately 
for boys and girls. The data are expressed as mean±standard 
deviation. P-values < 0.05 were considered to be statistically 
significant.

4. Ethics statement

The Institutional Review Board (IRB) of the Korea University 
Hospital (IRB No. 2019GR0045) reviewed and approved this 
study protocol. Informed consent was waived because the data 
in this study were collected retrospectively.

Results

1. Patient Characteristics

A total of 553 left-hand radiographs was obtained from 
371 healthy Korean children. Their mean CA was 9.8±2.8 
years (10.1±3.0 years for boys and 9.4±2.4 years for girls). The 
mean height, weight, and BMI SDSs were -0.8±0.8, -0.6±1.0, 
and -0.3±1.0 for boys, respectively, and -0.9±0.9, -0.8±0.9, and 
-0.5±1.0 for girls (Table 1).

The mean BA assessed by the pediatricians was 9.6±3.1 years 
(9.7±3.4 years for boys and 9.4±2.7 years for girls), and the CA–

BA was 2.6±4.1 months (4.6±4.8 months in boys and -0.3±3.4 
months in girls). The mean BA assessed by the radiologists was 
9.6±3.1 years (9.8±3.4 years for boys and 9.3±2.6 years for girls), 
and the CA–BA was 2.3±3.4 months (3.1±4.0 months in boys 
and 1.1±2.6 months in girls). Finally, the mean BA assessed 
by the software was 9.1±3.4 years (9.2±3.6 years for boys and 
8.9±2.9 years for girls), and the CA–BA was 8.5±6.8 months 
(10.2±7.2 months in boys and 6.1±6.5 months in girls) (Table 1).

2. Clinical performance of the software for children

There was a significant difference between the CAs and 
the software-estimated BAs in the 2-sample t-test (P<0.001) 
and Fisher exact test (P=0.011). There was a good correlation 
between the CAs and the software-estimated BAs (r=0.957, 
P<0.001); however, the RMSE was the highest (15.4 months), 
and the concordance rate was the lowest (58.8%) using a 
12-month cutoff. Notably, only the software showed a difference 
of more than 12 months (P=0.771).

The intraclass correlation coefficient was the highest 
for the software and pediatricians, with a value of  0.981 
(95% confidence inter val [CI], 0.977–0.984; P<0.001) 
for the total group of children. The RMSE was the lowest 
between pediatricians and radiologists (7.6 months), and the 
concordance rate was the highest (95.3%) with a 12-month 
cutoff (data not shown) (Fig. 2).

There was a good correlation between the CAs and the 
software-estimated BAs for both boys and girls (r=0.961, 
P<0.001 and r=0.852, P<0.001, respectively). However, the 
RMSE was the highest, at 16.6 months and 13.3 months, and 
the concordance rate was the lowest, at 53.0% and 67.4%, with 
a 12-month cutoff for boys and girls, respectively. In girls, 
the CA–BAs estimated by pediatricians, radiologists, and 
the software were within 12 months (P<0.001, P<0.001, and 
P=0.003, respectively); in contrast, in boys, the software showed 
differences of more than 12 months (P=0.998) (data not shown). 

The intraclass correlation coefficient was the highest for the 
software and the pediatricians, with values of 0.984 (95% CI, 

Table 1. The characteristics of total children
Variable Total (n=553) Boys (n=332) Girls (n=221)
Chronological age (yr) 9.8±2.8 10.1±3.0 9.4±2.4
Height SDS -0.8±0.8 -0.8±0.8 -0.9±0.9
Weight SDS -0.7±1.0 -0.6±1.0 -0.8±0.9
Body mass index SDS -0.4±0.1 -0.3±1.0 -0.5±1.0
Bone age by software (yr) 9.1±3.4 9.2±3.6 8.9±2.9
Bone age by pediatrician (yr) 9.6±3.1 9.7±3.4 9.4±2.7
Bone age by radiologist (yr) 9.6±3.1 9.8±3.4 9.3±2.6
CA–BA by software (mo) 8.5±6.8 10.2±7.2 6.1±6.5
CA–BA by pediatrician (mo) 2.6±4.1 4.6±4.8 -0.3±3.4
CA–BA by radiologist (mo) 2.3±3.4 3.1±4.0 1.1±2.6
Values are presented as the mean±standard deviation.
SDS, standard deviation score; BA, bone age; CA, chronological 
age; CA–BA, difference between the chronological age and the 
bone age.
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0.980–0.987; P<0.001) for boys and 0.974 (95% CI, 0.966–0.980; 
P<0.001) for girls. The RMSE values were the lowest between 
pediatricians and radiologists, at 7.5 months and 7.7 months 
for boys and girls, respectively. The concordance rates were the 
highest, at 94.9% and 95.9%, with a 12-month cutoff for boys 
and girls, respectively (Table 2).

3. Differences in BA analysis among pediatricians, 
radiologists, and the software

The Bland-Altman plot revealed a general tendency of 
underestimating the BA with a decrease in the CA. This 
tendency was observed for all pediatricians, radiologists, and 
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Fig. 2 Scatter plot and Bland-Altman plot comparing chronological age and bone age estimated by a pediatrician (A), a radiologist (B), 
and the software (C). BA, bone age; CA, chronological age; Differences, difference between the chronological age and the bone age (CA–
BA); SD, standard deviaton.
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the software. Nevertheless, this trend was more significant 
with the software than it was with the pediatricians and 
radiologists. The software estimated the BA to be much lower 
than the CA, especially for children under the age of 8.3 years 
(mean difference, 14.3 months; P<0.001). The pediatricians 
and radiologists also estimated the BA to be lower than the 
CA in children under the age of 5.0 years (mean difference, 6.9 
months; P<0.001; and mean difference, 5.6 months; P=0.001; 
respectively) (Fig. 3).

Discussion

This retrospective study investigated the accuracy of the 
BA software compared to that of estimations performed by 
pediatricians and radiologists via the Greulich-Pyle method. 
The CA estimates correlated well with the 3 BAs estimated by 
pediatricians, radiologists, and the software. The software was 
upgraded with improved accuracy after conducting preliminary 
research. Despite efforts to improve its performance, the BA 
software exhibited a low concordance rate and an inclination to 
underestimate the BA in healthy Korean children.

DL is the latest manifestation of artificial intelligence. One 
notable aspect of DL is its ability to detect images without 
relying on human performance; consequently, it is widely 
applied to mammograms, computed tomography, and magnetic 
resonance imaging, as well as hand x-rays.8-10)

The BA corresponds to the degree of bone maturation, which 
varies as the bones of the hands change in shape and size as 
children mature.11,12) Many factors influence bone maturation, 
including genes, nutrition, hormones, and diseases. The left 
hand and wrist are the most commonly employed sites for 
BA estimation.13) Hand radiographs have traditionally been 
interpreted using standardized methods. The Greulich-Pyle 
method compares the appearance of the hand with references; 
thus, it is simple, fast, and prevalently used. The Tanner-
Whitehouse 3 method calculates the sum of the radius, ulna, and 
short bone scores; thus, it is more accurate than is the Greulich-
Pyle method but also more time-consuming. Both conventional 

methods were derived primarily based on white American and 
British populations between 1930 and 1990. In Korean children, 
BAs are also accurately estimated using both the Greulich-Pyle 
and Tanner-Whitehouse 3 methods, which correlate well with 
the CAs.14) 

A DL model was also applied to estimate skeletal maturity, 
and its accuracy was similar to that of an expert radiologist.15) 
The RMSE without augmentation was 1.45 years for boys and 
1.51 years for girls based on 8,325 automatically extracted 
radiographs from children aged 5–18 years. Further, the test 
accuracy of DL was 61.40% for boys and 57.32% for girls.16) Kim 
et al.17) reported that the BA software enhanced the efficiency 
(from 63.0% to 72.5% and from 49.5% to 57.5% per reviewer) 
and reduced reading times (by 18.0% and 40.0%), with no 
consideration of the diagnostic accuracy, for 200 children aged 
3–17 years. In our study, there was a good correlation between 
the BAs estimated by the pediatricians, radiologists, and the 
software; however, the RMSE was the highest (15.2 months) and 
the concordance rate was the lowest (58.8%) using a 12-month 
cutoff in the case of the software. Notably, only the software 
showed differences of more than 12 months.

Table 2. Clinical performance of software in boys and girls

Variable
Boys Girls

RMSE (mo) Concordance
rate (%) Coefficient (r) ICC (95% CI) RMSE (mo) Concordance

rate (%) Coefficient (r) ICC (95% CI)

BA, software–pediatrician 9.5 81.9* 0.985* 0.984
(0.980–0.987)*

10.0 75.6* 0.978* 0.974
(0.966–0.980)*

BA, software–radiologist 12.0 71.4* 0.975* 0.973
(0.966–0.978)*

11.8 72.0* 0.955* 0.949
(0.934–0.960)*

BA, pediatrician–radiologist 7.5 94.9 0.984* 0.983
(0.979–0.987)*

7.7 95.9 0.972* 0.972
(0.963–0.978)*

CA–BA by software 16.6 53.0 0.961* - 13.3 67.4 0.852* -
CA–BA by pediatrician 12.1 72.6 0.966* - 8.2 91.0 0.970* -
CA–BA by radiologist 11.7 75.0 0.962* - 8.4 86.9 0.965* -
RMSE, root mean squared error; ICC, intraclass correlation coefficient; CI, confidence interval; BA, bone age; CA, chronological age; CA–BA, 
difference between the chronological age and the bone age.
*P<0.001.
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Fig. 3 Differences in bone age analysis among pediatricians, radiologists, and 
the software according to chronological age. Differences, difference between the 
chronological age and the bone age (CA–BA).
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The evaluation of BA radiographs is not only performed in 
healthy children for screening purposes, but also in children 
with endocrine disorders such as precocious puberty, short 
stature, or delayed puberty. Previous studies only evaluated 
radiographs without checking for combined disorders, and 
children with disorders were highly likely to be included.16,17) In 
our study, we only included healthy Korean children ranging 
from preschool age to adolescence. 

The clinical performance of computer-aided detection of 
interstitial lung diseases was as high as 85.5%.18) Another study 
showed that DL could classify 137 pulmonary tuberculosis 
cases from 150 chest radiographs, and a radiologist-augmented 
approach resulted in improved accuracy with a sensitivity of 
97.3% and specificity of 100%.19) In contrast to our expectations, 
the accuracy of a software-based BA estimation based on x-rays 
is low compared to other estimations using different imaging 
modalities. 

It may be necessary to consider sexual maturation and other 
clinical features for accurate BA estimation because skeletal 
maturation is not linear due to rapid changes that occur during 
normal childhood and adolescence.20) Pediatric endocrinologists 
have traditionally analyzed hand radiographs based on the 
belief that radiologists who are unaware of the clinical features 
of the child may inaccurately interpret such radiographs. A 
discrepancy ranging from -1.5 to 3.5 years with a mean of 4±12 
months was observed between a pediatrician and radiologist 
who analyzed 103 hand x-rays.21) In our study, the RMSE was 
the lowest and the concordance rate was the highest between 
pediatricians and radiologists.

In this study, the Bland-Altman plot showed that the 
BAs in children of  younger CAs were underestimated 
by the pediatricians, radiologists, and the software. This 
underestimation was statistically significant under the age of 8.3 
years and was much higher in boys than in girls. This finding 
coincided with the difficulty of performing BA estimations 
for young boys in a clinical setting. Maturation disparities 
are common in healthy children and can lead to clinically 
inaccurate assessments of BA. For instance, Chinese children 
were found to have slower maturation in the metacarpals 
compared to that in the phalanges.22) This discrepancy could 
contribute to an underestimation of BA in young boys. 

Since the BA does not necessarily coincide with the CA 
even in healthy children, our results should be interpreted 
with caution. However, this study may be helpful to identify 
the differences between the BAs estimated by pediatricians, 
radiologists, and software. 

Our study has several limitations. First, radiographs from 
children ages 0–3 years and older than 18 years were excluded 
because they were too few in number and may have caused low 
accuracy. Second, although the Greulich-Pyle method entails 
significant interobserver and intraobserver variability, our study 
did not include intraobserver variability.

In conclusion, the DL-based BA software showed a low 
concordance rate and a tendency to underestimate the BA 

compared to the CA in healthy Korean children. The inclusion 
of more images and development of an improved DL technique 
are required to increase the estimation accuracy.
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