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Activation of the hypothalamic-pituitary-gonadal (HPG) axis happens in 3 phases 
during life. The first phase is during fetal life and is only separated from the second 
phase, called minipuberty, by the high concentration of placental hormones at 
birth. The third period of activation of the HPG axis is puberty and is well-described. 
Minipuberty consists of the neonatal activation of the HPG axis, mainly in the first 
1–6 months, where the resulting high levels of gonadotropins and sex steroids 
induce the maturation of sexual organs in both sexes. With gonadal activation, 
testosterone levels rise in boys with peak levels after 1–3 months, which results 
in penile and testicular growth. In girls, gonadal activation leads to follicular 
maturation and a fluctuating increase in estrogen levels, with more controversy 
regarding the actual influence on the target tissue. The regulation of the HPG axis is 
complex, involving many biological and environmental factors. Only a few of these 
have known effects. Many details of this complex interaction of factors remain to 
be elucidated in order to understand the mechanisms underlying the first postnatal 
activation of the HPG axis as well as mechanisms shutting down the HPG axis, 
resulting in the hormonal quiescence observed between minipuberty and puberty. 
Minipuberty allows for the maturation of sexual organs and forms a platform for 
future fertility, but the long-term significance is still not absolutely clear. However, 
it provides a window of opportunity in the early detection of differences of sexual 
development, offering the possibility of initiating early medical treatment in some 
cases.
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Introduction

The age of pubertal onset has changed markedly over time especially in girls.1,2) Thus, we 
have recently demonstrated in systematic review and meta-analysis a worldwide decline in 
age at thelarche corresponding to 3 months per decade from 1977 to 2013.3) The mechanisms 
behind this secular trend are quite complex and multifactorial. There is a wide interindividual 
variation in the timing of  puberty, which can be partially explained by genetic and 
environmental changes such as nutrition, but most parts remain unexplained. Onset of puberty 
is directly linked to the activation of the hypothalamic-pituitary-gonadal (HPG) hormone 
axis resulting in the development of secondary sexual characteristics and achievement of 
reproductive capacity. The pulsatile hypothalamic gonadotropin releasing hormone (GnRH) 
stimulates the secretion from pituitary gonadotrophs in terms of luteinizing hormone (LH) 
and follicle-stimulating hormone (FSH) into the bloodstream, and subsequent stimulation of 
gonadal hormone production. However, important developmental steps occur much earlier 
during the transient activation of the HPG axis already in fetal life during the second trimester 
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of pregnancy4-8) and again after birth at 1–6 months of postnatal 
age during the so-called minipuberty.8-12) 

Minipuberty has been suggested as a critical window of 
programming with lifelong implications. It has been proposed 
that minipuberty is linked to the timing of puberty and that it 
may be a marker of reproductive capacity in adult life, although 
the physiological role and clinical importance of the elevated 
sex steroids during minipuberty still remain to be elucidated. 
We suggest that minipuberty may be used as an early "window 
of opportunity" to detect and even treat reproductive disorders.

Sexual differentiation

Sexual differentiation is a complex genetic and hormonal 
event starting in early fetal life. Until week 6 of gestation, the 
gonads are indifferent. Genetic sex is determined by the sex 
chromosome constitution (46,XX or 46,XY) and the presence 
or absence of the sex-determining region of the Y (SRY) gene, 
which together with other genes determines the fate of the 

primitive gonad – will it  differentiate into a testis or an ovary? 
In the presence of testes and specific testicular hormones, 
internal and external genitalia will follow the male pathway, 
whereas their absence will direct the development into the 
female pathway.13)

In fetal life, marked changes in the HPG-axis hormone 
activity occur especially in the second trimester of pregnancy, 
with the secretion of pituitary FSH and LH increasing already 
from week 10 of gestation. Peak levels of FSH and LH are seen 
in midgestation followed by a decrease to almost undetectable 
levels at term. In females, the concentration of both LH and 
FSH is significantly higher than in males.7) By contrast, inhibin 
B secretion from gonads are significantly higher in male than 
in female fetuses at gestational age 26 to 28 weeks, although the 
levels decrease with ongoing gestation to similar levels at term.5) 

In the male fetus, the masculinization of  genitalia and 
testicular descent depends on the production of testosterone 
and insulin-like peptide 3 (INSL3) from the Leydig cells and 
anti-Müllerian hormone (AMH) produced by the Sertoli cells. 
The Leydig cells are differentiated from testicular mesenchymal 
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Fig. 1. (A) Male fetuses and infants. Serum LH, FSH, and testosterone concentrations throughout life in male subjects. 
In fetal life, placental hCG production stimulates the testosterone secretion in male fetuses during early gestation, and 
hereafter the fetal endogenous production of pituitary LH continues to stimulate the testosterone secretion which 
hereafter decreases concomitantly with FSH and LH levels towards birth. After birth LH, FSH, and testosterone increase 
in minipuberty with maximal levels at 1–2 months of age, followed by a significant suppression until puberty. (B) 
Female fetuses and infants. Serum LH, FSH, and estradiol increase in female fetuses midgestation which decreases by 
the end of gestation to very low levels. After birth FSH, LH, and estradiol increase at 1–2 months of age followed by 
slowly declining FSH, LH and fluctuating estradiol levels for 12–18 months. Females have higher FSH versus LH levels 
at all times compared to male fetuses and infants. LH, luteinizing hormone; FSH, follicle-stimulating hormone; hCG, 
human chorionic gonadotropin. Adapted from Lanciotti et al., Front Endocrinol (Lausanne) 2018;9:410.14)
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cells with the stimulation from human chorionic gonadotropin 
(hCG) in the first trimester, where hCG also controls the 
secretion of testosterone.14) After the 9th week of gestation, the 
secretion of testosterone is increasingly controlled by LH, and 
a clear increase in testosterone is observed. The concentration 
reaches its maximum between 11 and 14 weeks of gestation, 
with peak levels similar to adult values. Hereafter the 
testosterone concentration decreases towards term (Fig. 1).15,16) 
During fetal life and early infancy, Sertoli cells in the male testes 
are immature. The immature Sertoli cells secrete AMH with 
the main function of triggering the involution of the Müllerian 
ducts in the male fetus.17)

While testosterone and AMH are key to the masculinization 
of the male fetus, inducing the formation of male urogenital 
structures and involution of the Müllerian ducts, respectively, 
estrogen and the lack of AMH is central to the development 
of the female reproductive system. In the absence of AMH, 
the Müllerian duct develops into fallopian tubes, uterus, and 
the upper third of the vagina,18) and the Wolffian ducts regress. 
The main source of fetal estrogen is the placenta8) and ovarian 
follicles are created in the female ovaries when estrogen 
concentrations are high, which happens rapidly from 14 weeks 
of gestation and stabilizes at around week 34. While there is a 
correlation between the levels of circulating estrogen and the 
formation of primordial follicles in the fetus, further studies are 
needed to interpret the roles of FSH and LH during fetal life.14)

Regulation of the HPG hormone axis 

During early embryogenesis, GnRH neurons migrate from 
their origin in the olfactory placode to the hypothalamus and 
the median eminence, where GnRH is released into the pituitary 
portal vessels (for review, see19)).  Several neurotransmitters 
have been identified to play a key role in regulating the GnRH 
release. Many of them derive from the same hypothalamic cell 
type, the KNDy neurons, which releases kisspeptin, neurokinin 
B (NKB), and dynorphin. Kisspeptin is a peptide, which 
stimulates the release of GnRH by activating the Kisspeptin 
receptor (KISS1R), while NKB and dynorphin participate in 
regulating the release of kisspeptin.20) Studies have shown, that 
the inactivation of the gene encoding KISS1R results in pubertal 
failure.21,22) In contrast to kisspeptin and neurokinin B, which 
have been identified to stimulate the activation of the HPG axis, 
Makorin RING-finger Protein 3 (MKRN3) has been found to 
act as an inhibitor. A study identified mutations causing loss 
of function in the MKRN3 gene to cause central precocious 
puberty (CPP).23) Interestingly, MKRN3 mutations have later 
proven to be the most common genetic cause of familial CPP. 
Even though children with MKRN3 mutations are rare, such 
findings significantly contribute to the understanding of the 
central regulation of the HPG axis. MKRN3 is considered 
the brake on the HPG-axis, which is activated in minipuberty 
and released again in childhood resulting in pubertal onset. In 
accordance, circulating MKRN3 levels decline in boys and girls 
a few years before the HPG axis is reactivated in puberty.24,25) 

The hypothalamic GnRH pulse generator releases GnRH pulses 
of 1–2 per hour into the hypophyseal portal circulation and 
stimulates the gonadotrophs cells in the anterior pituitary gland. 
This leads to the pulsatile release of gonadotropins, FSH and 
LH, into the systemic bloodstream and to the target tissue in 
testes or ovaries.

In the testes, FSH stimulates Sertoli cells to produce inhibin 
B and AMH, while LH stimulates Leydig cells to produce 
testosterone and INSL3. In the ovaries, LH stimulates theca 
cells to produce testosterone, which is converted into estradiol 
by FSH-driven aromatase activity in ovarian granulosa cells. 
Consequently, estradiol is released into circulation. In addition, 
inhibin A and B and AMH are produced in granulosa cells and 
released from the ovaries.26)

Minipuberty in healthy infants

In postnatal life, the HPG axis is transiently activated in the 
first months of life, during the minipuberty. At birth, serum 
concentrations of LH and FSH are low due to the suppressive 
effects of the high concentrations of placental hormones,10,12) 
which are gradually cleared with total clearance after approxi
mately one week. This removes the restraint, leading to elevated 
gonadotropin levels until 6 to 9 months of  age, with the 
exception of FSH, which remains elevated in girls for up to 3 to 4 
years.10,12) The LH/FSH ratio increases markedly in minipuberty 
and clearly separates male infants from female infants.27)

In boys, the postnatal rise in LH and FSH is associated with 
increases in testosterone and INSL-3 from the Leydig cells 
and inhibin B and AMH from the Sertoli cells.28,29) Similar to 
gonadotropin, testosterone levels are low in cord blood, but 
increase shortly after birth. It then reaches its peak between 
1 and 3 months of  age, with levels reported just beneath 
adult concentrations, before declining and stabilizing after 
approximately 4–6 months at undetectable levels (Fig. 1).10,12) 
The number of Leydig cells increases concomitantly until 3 
months of age when the fetal Leydig cells go into apoptosis.30) 
Similarly, the Sertoli cells develop and the number of germ 
cells increases in the first months of age.31) However, they do 
not express androgen receptors during infancy. Consequently, 
despite high intratesticular testosterone levels, spermatogenesis 
is not initiated and the production of AMH is not inhibited. 
Thus, the Sertoli cells produce AMH at very high concentrations 
during infancy, peaking at around 3 months of age, even in 
the presence of high levels of testosterone.32) From the time of 
puberty, the main role of AMH remains to be determined.28) 
At birth, circulating AMH is 35 times lower in female than in 
male cord blood.33) The following postnatal surge in AMH in 
healthy female infants correlates with the rise in the number 
of growing ovarian follicles.34) This correlation is supported by 
the undetectable AMH levels in postmenopausal women35) and 
patients with Turner syndrome,33) and by reports of very high 
levels of AMH in ovarian tumors.36)

Minipuberty and the associated sex steroid levels are impor
tant for genital development in boys. Thus, penile growth is 
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positively associated with testosterone levels from birth until 3 
years of age with the highest growth velocity of 1 mm per month 
present during the first 3 months.37) Likewise, minipuberty is 
associated with testicular growth38,39) which is due to increased 
length of seminiferous tubules, total germ cell number, and 
Sertoli cell number, as well as decreased apoptosis of Sertoli cells 
(for review, see40)). A positive correlation between FSH levels 
and testicular growth has been found, with testicular volume 
increasing from 0.27 to 0.44 cm3 from birth until 5–6 months, 
and then decreasing to 0.31 cm3 at 9 months of age.38)

Genital development during minipuberty is well described 
in boys whereas the association between elevated reproductive 
hormones and the development of the female reproductive 
organs in minipuberty is more unclear. Estradiol levels are high 
in cord blood in both sexes but decrease during the following 
days. However, in girls, the endogenous production increases 
after approximately one week, corresponding with the increase 
in follicular development.41) The estradiol levels then proceed to 
fluctuate while decreasing gradually towards the second year of 
life.42) In fact, large ovarian follicles are seen more often during 
the first than during the second year of life.42,43) Estradiol levels 
are significantly higher in the intrauterine environment, leading 
to the development of the uterus and mammary glands. Thus, 
both boys and girls have developed breast tissue at birth and 
later in infancy, but breast tissue  grows more in girls than in 
boys, which is likely an effect of the estrogen surge in girls.44,45) 
FSH, AMH, and breast tissue size in female minipuberty are 
associated with genetic variation in FSH action variants in the 
FSH-Receptor (FSHR) gene.46) The length of the uterus grows 
until day 7 and then decreases during the first 3 months, before 
stabilizing in size until the second year of life.42) This leads to 
controversy regarding the effect of estradiol on the uterus.

Elevated sex steroids in minipuberty may also influence 
other physiological endpoints such as body composition and 
linear growth. During the first years of life, thyroid hormones 
along with insulin and glucocorticoids, and hereafter growth 
hormone, and insulin-like growth factors influence linear 
growth. In puberty, sex steroids are important for the pubertal 
growth spurt, but importantly, sex steroids also play a role for 
linear growth in minipuberty. Thus, testosterone levels are 
high in boys during minipuberty, which may partly explain 
the higher growth velocity observed in boys compared to girls. 
Interestingly, the maximum growth velocity difference between 
boys and girls is observed at 1 month of  age, when male 
testosterone serum levels are at their peak.47,48) In addition, boys 
with congenital hypogonadotropic hypogonadism (CHH), thus 
lacking the infant testosterone surge, have decreased growth 
rate during minipuberty compared to controls.49) The hormonal 
differences between boys and girls during minipuberty appears 
to be important for sex differences in body composition, with 
males accumulating more lean mass and ultimately gaining a 
lower percent fat mass than females.50)

Minipuberty in different species 

The transition from one life-history stage to the next is 
initiated by switch mechanisms such as the rise in hormones 
during the minipuberty. Evolutionary theories try to explain 
the variations in these life stages explored both among and 
within species. Humans differ from other species by being born 
immature and helpless and having a relatively short period 
of infancy followed by a long childhood period.51) Previous 
studies investigated the postnatal hormonal levels in several 
animal species such as mouse, rat, and horse as well as newborn 
boys and found a postnatal surge of reproductive hormones 
of mammals in general, but these studies were limited by the 
less precise assays for measurement of hormones available at 
that time.52) However, in other higher primates, minipuberty 
has been discovered with activation of the pulsatile GnRH 
release during infancy followed by the quiescent period until 
the onset of puberty in these species. In vitro studies revealed 
that embryonic GnRH neurons from rhesus monkeys have a 
pulsatile secretion and suggested that the pulsatile release of 
GnRH becomes functional during early fetal development.53) 
Another study on rhesus monkeys indicated that the switch that 
turns off the GnRH pulsation during infancy was associated 
with a decline in the numbers of kisspeptin neurons in the 
arcuate nucleus in agonadal male monkeys.54) In addition, recent 
rodent studies revealed that minipuberty also occurs in mice 
and that gonocyte transformation is influenced by the transient 
FSH signaling pathway.55) Thus, minipuberty is not limited to 
the human neonate but is observed in other species. However, 
humans differ compared to other species in their much 
longer duration of the childhood period spanning the interval 
between minipuberty and puberty. The evolutionary role of 
this long hormonally quiescent period in humans compared 
to other species remains speculative, but the acquisition of 
skills to accommodate a complex society before being ready to 
reproduce appears a plausible explanation.

Minipuberty in various differences of sexual 
development conditions

The HPG axis can readily be evaluated in newborns suspec
ted of differences of sexual development (DSD) conditions 
during minipuberty. A few studies on reproductive hormones in 
infants with DSD conditions exist. 

Infants with CHH have subnormal FSH, LH, and inhibin 
B levels in minipuberty.56) The postnatal surge of hormones 
is absent in boys with CHH, who often present with bilateral 
cryptorchidism with or without micropenis.  Hypospadias rarely 
occur in CHH because first trimester placental hCG secretion 
ensure sufficient androgen production needed for early urethral 
closure, whereas testicular descent and penile growth are 
dependent on sufficient testosterone and INSL3 secretion in the 
second half of pregnancy.29,56)

In newborns with cryptorchidism reproductive hormones 
during minipuberty may be altered.  Thus, higher FSH and 
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LH levels, and reduced inhibin B and INSL3 have been 
demonstrated in cryptorchid boys.29) Newborn boys with 
non-palpable testes remain a diagnostic challenge. Clinically 
it can be difficult to distinguish between boys with anorchia 
who do not have functional testicular tissue and boys with 
bilateral cryptorchidism who have intraabdominal testes. 
However, serum concentrations of LH, FSH, AMH, inhibin 
B, and testosterone hormone levels in minipuberty differ 
between the groups and can, therefore, be used as clinical tool 
to determine the presence of functional testicular tissue during 
minipuberty in infant boys.57) Furthermore, an exaggerated 
biphasic gonadotropin pattern is present in boys with anorchia, 
with higher levels of FSH and LH as well as undetectable AMH 
and inhibin B levels during minipuberty compared to healthy 
boys.57)

Klinefelter syndrome (47,XXY) is characterized by primary 
testicular failure and infertility in adulthood, whereas data 
on the HPG axis during minipuberty are sparse and contra
dicting.58-60) However, one recent study including 38 infants 
and measurement of testosterone by means of liquid chroma
tography/tandem mass spectrometry showed that the majority 
of infants presented with a testosterone concentration within 
the normal range, but the testosterone concentrations in the 
infants with Klinefelter syndrome were significantly lower as 
compared with controls.61,62) Despite reduced testosterone, 
INSL3 and LH concentrations were normal in these infants. 
In addition, normal inhibin B and AMH concentrations were 
found, but significantly elevated FSH in minipuberty.61,62)

Turner syndrome (45,X) is characterized by primary ovarian 
failure, hypergonadotropic hypogonadism, lack of pubertal 
development, and infertility. A longitudinal study assessed the 
HPG axis during infancy in patients with Turner syndrome.  

 FSH and LH demonstrate biphasic age patterns with peaks 
at infancy and expected puberty, similar to patterns seen in 
healthy girls, with no dependence of karyotype. Importantly, 
gonadotropins were highly elevated in minipuberty compared 
to healthy girls.63) 

Children with X-linked adrenal hypoplasia congenita caused 
by NR0B1 mutations are characterized by adrenal failure and 
hypogonadotropic hypogonadism, which is not evident in 
infancy, as studies have suggested that reproductive hormones 
are normal during minipuberty.64,65)

Prader Willi syndrome (PWS) is caused by a deletion of a 
section of the paternal derived chromosome 15, which results 
in mental retardation, obesity, and hypothalamic dysfunction. 
At birth cryptorchidism, scrotal hypoplasia, and micropenis 
are frequently reported. By the time of puberty, many of the 
boys have hypogonadotropic hypogonadism due to their 
hypothalamic dysfunction, but some of the boys may have 
hypergonadotropic hypogonadism due to their cryptorchidism. 
However, in infant PWS boys, levels of LH, FSH, and testo
sterone during minipuberty were all within reference ranges of 
healthy boys.66,67)

Infants with AR mutations resulting in complete androgen 
insensitivity syndrome (AIS) have lowered LH and testosterone 
levels, and male LH/FSH ratio in minipuberty,27) whereas infants 

with partial AIS have normal or high LH and testosterone 
levels,68) suggesting some physiological role of  androgen 
signaling in the HPG axis activation during minipuberty.

Infants with aromatase deficiency due to CYP19 mutations 
which results in a lack of estradiol, present with elevated 
FSH and LH levels during minipuberty in girls, which may 
suggest that estrogen feedback on the HPG axis activation in 
minipuberty is more important in girls compared to boys.69,70)

Treatment of hypogonadism in minipuberty 

Minipuberty also represents a "window of opportunity" for 
treatment in conditions with an impaired HPG axis. Treatment 
with testosterone is effective with regards to penile growth, 
and a short course of testosterone treatment of micropenis 
in otherwise healthy boys is widely accepted. Such treatment 
during minipuberty is effective and well-tolerated without 
virilization or disturbances of growth.71,72) 

Few reports of infants with hypogonadotropic hypogonadism 
treated with gonadotropins during minipuberty exist.73-76) 
These indicate that short-term treatment with recombinant 
FSH and hCG may mimic the physiological minipuberty by 
stimulating the production of testosterone, inhibin B, and AMH 
and potentially stimulating the proliferation of Sertoli cells (for 
review, see77)). 

Minipuberty - a “window of opportunity” 

Minipuberty may represent a "window of opportunity" to 
evaluate the HPG axis by measuring the basal hormone concen
trations without stimulation tests in infants with suspected 
of reproductive disorders. We have a unique opportunity 
to evaluate the spontaneous function of the HPG hormone 
axis during minipuberty, which is lost hereafter for another 
10 years until the HPG axis is reactivated in puberty. It is 
therefore recommended that serum FSH, LH, and testosterone 
are measured in minipuberty by reliable and ultrasensitive 
hormone assays in infants with DSD or suspected of CHH.78)
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