
Iodine and thyroid function

Review article

Severe iodine deficiency causes hypothyroidism that results in impaired somatic 
growth and motor development in children. Mild and moderate iodine deficiencies 
cause multifocal autonomous growth of thyroid, which results in thyrotoxicosis. On 
the other hand, iodine excess is associated with the development of hypothyroidism 
and thyroid autoimmunity. In areas of iodine deficiency, a sudden increase in iodine 
intake is associated with transient hyperthyroidism. Recent studies demonstrated 
that long-term thyroid function of subjects who experienced both iodine deficiency 
and iodine excess during childhood tended to be abnormal despite optimization 
of their current iodine intake. Iodine status in the Korean Peninsula is very unique 
because people in the Republic of Korea have been shown to have predominantly 
excessive iodine levels, whereas the Democratic People’s Republic of Korea is 
known to be an iodine-deficient area. Further research is warranted to verify the 
optimal ranges of iodine intake and to clarify the effects of iodine intake on thyroid 
disorders in the Korean Peninsula. 
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Introduction

Thyroid function is crucial to the metabolism of almost all tissues and is critical for the 
development of the central nervous system in the fetus and children1). The effects of the 
thyroid come from two iodine containing-hormones, triiodothyronine (T3) and thyroxine 
(T4). Iodine (atomic number, 53; standard atomic mass, 126.9) is a rate-limiting element for the 
synthesis of thyroid hormones. At present, the only physiological role known for iodine in the 
human body is in the synthesis of thyroid hormones by the thyroid gland2).

The relationship between iodine deficiency and thyroid disease was known since early 
in the twentieth century. Iodine deficiency has been regarded as one of the most important 
preventable causes of brain damage worldwide3). In 2013, 30 countries remain iodine-deficient; 
9 are moderately deficient, and 21 are mildly deficient by defined by median urinary iodine 
(UI) in school-aged children4). While the prevalence of severe iodine deficiency was reduced 
recently, the problems of iodine deficiency remerged in vulnerable populations, such as 
pregnant women and infants. Furthermore, some food or medications have very high iodine 
contents, which can result in thyroid dysfunction in some susceptible individuals. 

The Republic of Korea (South Korea) is regarded as an iodine-sufficient area, while the 
Democratic People’s Republic of Korea (DPRK) is known to be an iodine-deficient area, 
although there has been no nation-wide evaluation of iodine levels.

This paper reviews the physiologic role of iodine, methods to assess iodine nutrition, clinical 
implications of iodine deficiency or excess, and iodine-related thyroid problems in the Korean 
Peninsula. 

Role of iodine in thyroid physiology

Iodine is a trace element in soil and water that is ingested in several chemical forms. Most 
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forms of iodine are reduced to iodide in the gut3). Iodide is 
nearly completely absorbed in the stomach and duodenum3,5). 
Iodine is cleared from the circulation primarily by the 
thyroid and kidney. Under normal circumstances, plasma 
iodine has a half-life of approximately 10 hours, but this is 
shortened if the thyroid is overactive, as in iodine deficiency 
or hyperthyroidism. The mean daily turnover of iodine by the 
thyroid is approximately 60–95 μg in adults in iodine-sufficient 
areas. The body of a healthy adult contains from 15 to 20 mg of 
iodine, 70%–80% of which is in the thyroid. In the basolateral 
membrane of the thyroid cell, the sodium/iodine symporter 
(NIS) transfers iodide into the thyroid across a concentration 
gradient 20–50 times that of plasma by active transport3,6). 

Degradation of T4 and T3 in the periphery releases iodine 
that re-enters the plasma iodine pool7). Most ingested iodine is 
eventually excreted in the urine. Only a small amount appears 
in the feces.

The mammary gland concentrates iodine and secretes it into 
breast milk to provide for the newborn8). The salivary glands, 
gastric mucosa, and choroid plexus also take up small amounts 
of iodine. The NIS9,10) and pendrin9) have been reported in 
trophoblasts, and the placental iodine content is approximately 
3% that of the thyroid11).

Control of the thyroid by iodine

Iodide is known to control thyroid function. Its main effects 
are to decrease the response of the thyroid to thyrotropin (TSH); 
to acutely inhibit its own oxidation; to reduce its trapping after 
a delay; and, at high concentrations, to inhibit thyroid hormone 
secretion12). Small changes in iodine intake are sufficient to 
reset the thyroid system at different serum TSH levels. This 
suggests that modulation of the thyroid response to TSH by 
iodide plays a major role in the negative feedback loop12). In 
response to increasing doses of iodide, iodine organification 
increases initially and then decreases. This acute inhibition of 
organification, termed ‘the Wolff-Chaikoff effect’, results from a 
high concentration of inorganic iodide within thyroid cells13-15). 
The mechanism responsible for inhibition of organification is 
unclear, but it may be caused by inhibitory effect of iodide on 
thyroid peroxidase or some other enzymes15). In normal subjects 
who have been given iodide, the inhibition of organification 
is transient and this phenomenon is termed ‘escape from the 
Wolff-Chaikoff effect’ or ‘adaptation to the Wolff-Chaikoff 
effect’16).

In vitro, iodide has been reported to inhibit various metabolic 
steps in the thyroid cell. Iodide inhibits the cyclic adenosine 
monophosphate cascade and the Ca2+-phosphatidylinositol 4, 
5-bisphosphate (PIP2) cascade12). Iodide also activates H2O2 
generation and thus protein iodination in the thyroid of some 
species, including humans12). The down-regulation of NIS by 
iodide explains the adaptation to the Wolff-Chaikoff effect17).

Assessment of iodine nutrition and 
measurement of iodine content

Most methods of measuring iodine sufficiency have focused 
on field studies of iodine deficiency18,19), because elimination 
of iodine deficiency disorders (IDD) has been an integral 
component of many national nutrition strategies since 1990.

Assessment of the size of the thyroid is the historical method 
to evaluate iodine nutrition because iodine deficiency is 
associated with an increased goiter rate19). In areas of moderate 
to severe iodine deficiency, iodine status had been assessed by 
goiter palpation. In contrast, in areas of mild iodine deficiency, 
where goiters are smaller, palpation of  goiters has poor 
sensitivity and specificity, so measurement of thyroid volume by 
ultrasound is preferable. In 1992, the World Health Organization 
(WHO), together with the United Nations International 
Children’s Emergency Fund (UNICEF) and the International 
Council for the Control of  Iodine Deficiency Disorders 
(ICCIDD), simplified the previous goiter classification; grade 0 
was defined as a thyroid that is not palpable or visible; grade 1 
was defined as an enlarged gland that is palpable but not visible 
when the neck is in the normal position; and the previous stages 
2 and 3 were combined into a single new grade 2, defined as 
a thyroid that is clearly visible when the neck is in the normal 
position20).

Because 90% of ingested iodine is excreted through kidney 
within 24–48 hours21), the median of spot UI concentrations is 
used as a biomarker for recent dietary iodine intake. Because 
it is impractical to collect 24-hour urine samples in field 
studies, UI concentrations (μg/L) are usually measured in spot 
urine collections. If a large number of samples are collected, 
variations in hydration among individuals and day-to-day 
variations in iodine intake generally balance each other, so that 
the median UI concentration of spot urine samples correlates 
well with the median from 24-hour samples and with the 
estimated UI excretion (μg/day) from creatinine corrected UI 
concentrations19). However, UI concentration of spot urine 
should not be applied to individuals because of the significant 
day-to-day variation in iodine intake4). Because of this variation, 
10 repeat spot urine collections are needed to estimate an 
individual’s iodine intake with acceptable precision22,23). Iodine 
nutrition can be assessed by dietary sources of iodine. Saltwater 
fish and seafood, and especially some types of seaweeds have 
high natural iodine content24). Milk and dairy products are 
important iodine sources for children. Drinking water drawn 
from certain aquifers or water disinfected with iodine can 
also be rich in iodine19). The large day-to-day variations make 
it difficult to quantify the usual iodine intake, and dietary 
assessment of iodine intake is not practical to determine19). 

In iodine sufficiency, small amounts of thyroglobulin (Tg) are 
secreted into the circulation, and serum Tg is normally ＜10 
mg/L25). In areas of iodine deficiency, serum Tg increases due 
to greater thyroid cell mass and TSH stimulation. Serum Tg is 
well correlated with the severity of iodine deficiency26). A new 
assay for Tg was developed that uses dried blood spots, thereby 
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simplifying collection and transport27). 
There are several methods to measure iodine content in urine 

or food, as follows: colorimetry using a spectrophotometric 
procedure28), the iodine specific electrode29), neutron activation 
analysis30), and mass-spectrometry31). The most commonly used 
method is the sensitive spectrophotometric procedure based on 
the Sandell-Kolthoff reaction, in which iodide acts as a catalyst 
in the reduction of ceric ammonium sulfate (yellow color) to 
the cerous form (colorless) in the presence of arsenious acid28). A 
digestion or other purification step using ammonium persulfate 
(for urine) or chloric acid (for urine and food) is necessary 
before carrying out this reaction, to rid the urine of interfering 
contaminants32).

Iodine deficiency disorders

IDDs are defined as all the consequences of iodine deficiency 
in a population that can be prevented by ensuring that the 
population has an adequate intake of iodine. 

Insufficient iodine during pregnancy and infancy results 
in neurological and psychological deficits in children. The 
intelligence quotient (IQ) of children living in severely iodine-
deficient areas is, on average, 12 points lower than that of those 
living in iodine-sufficient areas1). Iodine deficiency remains the 
leading cause of preventable mental retardation worldwide33). 
In adults, mild-to-moderate iodine deficiency increases the 
incidence of hyperthyroidism due to toxic goiter34).

The iodine status of most premature infants worldwide is that 
of iodine deficiency35), whereas in South Korea a substantial 
proportion of premature infants have iodine excess35). In a 
longitudinal study, persistent decreases in TSH and increases 
in free T4 were observed in a previously iodine insufficient 
population, even though the present iodine status was adequate, 
suggesting that low iodine intake at young age leads to thyroid 
autonomy that persists despite normal iodine intake later in 
life36). 

Effect of excessive iodine on the thyroid

Excessive iodine intake can alter thyroid function, although 
most individuals tolerate high dietary intakes of  iodine 
remarkably well. 

Following exposure to high iodine levels, the synthesis of 
thyroid hormone is normally inhibited by the acute Wolff-
Chaikoff effect13-15). Administration of supplemental iodine 
to subjects with endemic iodine deficiency goiter can result 
in thyrotoxicosis. This response, termed iodide-induced 
hyperthyroidism or the Jod-Basedow effect (Jod is derived from 
the German word for “iodine”), occurs in only a small fraction 
of individuals at risk37). Patients with underlying, perhaps mild, 
autoimmune thyroid disease, such as Hashimoto’s thyroiditis, 
are particularly susceptible to developing iodine-induced 
hypothyroidism during several weeks after the exposure38). 
The Wolff-Chaikoff effect dose not mature until 36–40 weeks’ 

gestation; therefore, preterm infants are vulnerable to the effects 
of iodine overload39-41).

High iodine intake is associated with autoimmune thyroid 
disease34). A sudden increase in iodine intake in an iodine-
deficient population may induce thyroid autoimmunity42). 
People with antithyroid antibodies have a higher risk of develop-
ing thyroid dysfunction when the iodine intake is high43). The 
overall incidence of thyroid carcinoma in populations does 
not appear to be influenced by iodine intake44). Excessive 
iodine intake in children in high iodine areas is associated with 
impaired thyroid function45).

Iodine related health problem in
Korean peninsula

Although no nation-wide survey has estimated the iodine 
status in South Korea, several studies of iodine status in South 
Korean have revealed that the iodine nutritional state of South 
Koreans is more than adequate. In a cross-sectional study of 611 
healthy South Korean preschool children, approximately two-
thirds of subjects were found to have excessive iodine intake, and 
3.9% of these children had insufficient iodine intake46). A study 
performed in 540 healthy adults showed that the median UI 
levels in a Korean urban population were more than adequate47). 
However, adverse effects of excess iodine were not apparent. In 
a study of 337 healthy South Korean adults, UI excretion had a 
weakly negative correlation with free T4 and showed a positive 
trend with TSH, whereas their levels of free T4 and TSH were 
within the normal ranges48). Iodine excess did not directly 
influence the risk of goiter in 69 Korean prepubertal children49). 

Koreans consume excess iodine from seaweed, and iodine 
intake is strongly influenced by seaweed consumption. However, 
dose-response data derived from subjects who consume excess 
iodine frequently, but not continuously, during their lifetime are 
not available50). Further population-based studies are warranted 
to clarify the implications of iodine excess in South Korea.

In contrast, North Korea is geologically prone to iodine defi-
ciency owing to its predominantly mountainous terrain. A 
national IDD survey was conducted from November 2009 to 
March 2010 by the ICCIDD in 6- to 12-year-old North Korean 
children throughout the country. The total goiter rate was 
19.5%, 2.2% of which were visible goiters. The overall median 
UI concentration was 97 μg/L and the proportion with UI 
concentration below 100 μg/L was 51%50). In the DPRK, a salt 
iodization program has been supported by UNICEF for more 
than 10 years; however, the amount of iodized salt remains 
limited because of issues related to the purchase of potassium 
iodate and the production capacity of the salt factories51). Health 
problems associated with iodine deficiency in North Korea 
might be public health concerns after unification of Korea.

  
Conclusions

Both iodine deficiency and iodine excess are associated 
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with an increased risk of thyroid disorders. Further research 
is warranted to verify the optimal ranges of iodine intake and 
to clarify the effects of iodine intake on thyroid disorders, 
considering the unique and divergent patterns of iodine status 
in the Korean Peninsula. 
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