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Background: To ensure valid results of big data research in the medical field, the input 
laboratory results need to be of high quality. We aimed to establish a strategy for evaluat-
ing the quality of laboratory results suitable for big data research.

Methods: We used Korean Association of External Quality Assessment Service (KEQAS) 
data to retrospectively review multicenter data. Seven measurands were analyzed using 
commutable materials: HbA1c, creatinine (Cr), total cholesterol (TC), triglyceride (TG), al-
pha-fetoprotein (AFP), prostate-specific antigen (PSA), and cardiac troponin I (cTnI). 
These were classified into three groups based on their standardization or harmonization 
status. HbA1c, Cr, TC, TG, and AFP were analyzed with respect to peer group values. PSA 
and cTnI were analyzed in separate peer groups according to the calibrator type and 
manufacturer, respectively. The acceptance rate and absolute percentage bias at the 
medical decision level were calculated based on biological variation criteria.

Results: The acceptance rate (22.5%–100%) varied greatly among the test items, and 
the mean percentage biases were 0.6%–5.6%, 1.0%–9.6%, and 1.6%–11.3% for all 
items that satisfied optimum, desirable, and minimum criteria, respectively.

Conclusions: The acceptance rate of participants and their external quality assessment 
(EQA) results exhibited statistically significant differences according to the quality grade 
for each criterion. Even when they passed the EQA standards, the test results did not 
guarantee the quality requirements for big data. We suggest that the KEQAS classification 
can serve as a guide for building big data.
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INTRODUCTION

Research focus on big data in the healthcare systems field has 

been increasing because the large amounts of data generated 

in healthcare systems can potentially contribute to population 

health management and personalized medicine. The growth of 

healthcare data is associated with the increase in their digital 

availability [1]. The sources of big data in healthcare include 

electronic health records, clinical data (medical imaging and 

laboratory examination), pharmaceutical data, public records, 

genomic databases, and measurements made by medical de-

vices [2]. Numerous big data projects in the healthcare systems 
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field have focused on clinical decision support, personalized 

medicine, population health management, cost reduction, and 

improvement in the quality of healthcare [3].

  Big data in healthcare exhibit distinct features, such as het-

erogeneity, incompleteness, privacy, and data ownership, in ad-

dition to the commonly referred “5 V” (volume, velocity, variety, 

veracity, and value) [3]. The accuracy, completeness, and con-

sistency of such data are crucial to ensure the quality of the out-

put results [4]. Input data of poor quality can lead to poor deci-

sion-making and unreliable results.

  The quality of laboratory data is important for the retrospec-

tive analysis of large amounts of multicenter data in light of the 

quality issue of big data. According to the U.S. Centers for Dis-

ease Control and Prevention, 70% of current medical decisions 

rely on laboratory test results, showing the important role of clin-

ical laboratories in current healthcare system [5, 6]. As most 

test results in diagnostic laboratory medicine are quantitative, 

the equivalence of test results among laboratories is ensured 

through standardization and harmonization. Despite these ef-

forts, there remains a large bias in test results when the same 

sample is tested in various laboratories. If the biased test results 

are included in multicenter big data, the outcome results of big 

data research using such biased laboratory results are of no use. 

Thus, it is essential in big data research to assess the quality or 

accuracy of laboratory data using external quality assessment 

(EQA) results.

  EQA surveys evaluate the quality of test items in a laboratory. 

As EQA surveys require only minimum quality criteria, for labo-

ratory big data, it is necessary to evaluate EQA results using stri

cter criteria [7]. We aimed to establish a strategy for evaluating 

the quality of laboratory results suitable for big data research us-

ing Korean Association of External Quality Assessment Service 

(KEQAS) data as a surrogate for real laboratory data. The accep-

tance rate of participants and their EQA results were compared 

considering their quality grade based on the biological variation 

(BV) or outcome-based criteria for the total error.

MATERIALS AND METHODS

Study design
This retrospective study was conducted using multicenter EQA 

results from clinical laboratories. We retrieved KEQAS data of 

commutable fresh-frozen serum samples from 2010 to 2020 

and analyzed more than 30,000 EQA results for seven test items. 

We categorized the data into three groups depending on whether 

the measurement procedures had been standardized or harmo-

nized (Fig. 1).

  The first group comprised laboratory tests for HbA1c, creati-

nine (Cr), total cholesterol (TC), and triglyceride (TG) fully stan-

dardized in accuracy-based EQAs [8–11]. The target values of 

these tests were measured using reference measurement pro-

cedures in certified reference laboratories [12, 13]. According 

Fig. 1. Overview of the approach used to categorize the data into groups and establish the target values.
Abbreviations: KEQAS, Korean Association of External Quality Assessment Service; EQA, External Quality Assessment.
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to the International Consortium for Harmonization of Clinical 

Laboratory Results, the tests in the second and third groups had 

maintained their harmonization status or were undergoing har-

monization [14]. The second group comprised tests for which 

relevant international standards exist, including tests for alpha-

fetoprotein (AFP) and prostate-specific antigen (PSA). AFP tests 

were calibrated against the WHO 72/225 International Standard 

(IS). The PSA tests were calibrated using the WHO 96/670 IS or 

the Hybritech standard (Beckman Coulter Inc., Brea, CA, USA) 

[14, 15]. The target values for this group were determined by 

calculating the mean in accordance with their standards. The 

third group comprised tests for which harmonization was still 

ongoing because of the lack of traceable calibrators or the use 

of various antibodies, such as the cardiac troponin I (cTnI) test. 

We analyzed the results of major instrument platforms for cTnI 

that were used by more than 10 EQA survey participants. These 

platforms included Abbott (Abbott Diagnostics, Abbott Park, IL, 

USA), Beckman Coulter Inc., LSI Medience (LSI Medience, Chiba, 

Japan), Radiometer (Radiometer Medical ApS, Brønshøj, Den-

mark), Roche (Roche Diagnostics, Mannheim, Germany), and 

Siemens (Siemens Healthineers, Erlangen, Germany). Because 

these cTnI tests use different calibrators and epitopes, the aver-

age value for each manufacturer was considered the target value. 

The manufacturer names are denoted as letters from A to F.

  We selected EQA samples with concentrations close to medi-

cal decision levels according to corresponding clinical guidelines 

and subsequently calculated the absolute percentage bias for 

each test item (Supplemental Data Table S1) [17–23]. We ana-

lyzed 10 samples for HbA1c, Cr, and TC; five for TG and PSA; 

four for AFP; and eight for cTnI. The analytical performance spec-

ifications (APSs) were the optimum, desirable, and minimum 

goal of total error (TE) based on the BV of the measurand using 

the latest European Federation of Clinical Chemistry and Labo-

ratory Medicine data [24]. The acceptance criteria are summa-

rized in Supplemental Data Table S2. In addition to the BV, an 

outcome-based criterion for TE (6.7%) was used for HbA1c [25]. 

Results that did not meet the minimum criteria (outcome-based 

criterion for HbA1c) were considered unacceptable.

  Finally, our analysis focused on EQA results that met the de-

fined KEQAS performance criteria. For HbA1c, Cr, TC, and TG, 

the acceptable bias limit was ±6.7%, ±11.4%, ±9%, and 

±15%, respectively [25–27]. The AFP, PSA, and cTnI accep-

tance criteria were established within±3 SD indices.

Statistical analysis
Microsoft Office Excel 2021 (Microsoft Co., Redmond, WA, USA) 

Fig. 2. Percentages of acceptable performances and sample concentrations ranging from approximately 6.0% to 7.0% obtained from 10 
EQA samples for HbA1c according to different performance goals.
Abbreviation: EQA, external quality assessment.
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and MedCalc version 19.2.6 for Windows (MedCalc Software, 

Ostend, Belgium) were used for statistical analysis. The mean 

percentage bias for the BV criteria was compared between groups 

using one-way ANOVA followed by the Student–Newman–Keuls 

and Kruskal–Wallis tests and then Dunn’s post-hoc test. Statisti-

cal significance was defined as P <0.05. To detect outliers, the 

distributions of the total sample results from each participating 

laboratory and test were visually observed; a value >3 SDs from 

the target mean concentration was considered an outlier. The 

95% confidence intervals (CIs) of the mean percentage bias for 

the BV criteria were calculated from all samples after outlier elim-

ination.

RESULTS

Acceptance rates based on the performance goals
Fig. 2 shows the acceptance rates and concentrations expressed 

in National Glycohemoglobin Standardization Program (NGSP) 

units of 10 HbA1c samples. The concentrations ranged from 

5.8% to 7.1%. Conversion between NGSP (%) and International 

Federation of Clinical Chemistry (IFCC) (mmol/mol) units requires 

a linear equation: IFCC unit=10.93×NGSP unit–23.5. The mean 

acceptance rates were 95.2%, 67.5%, 42.9%, and 22.9% within 

the outcome-based, minimum, desirable, and optimum criteria, 

respectively.

  The mean acceptance rates for the first group for various APSs 

are presented in Fig. 3A. For Cr, the average acceptance rates 

for 10 samples with concentrations ranging from 0.66 to 1.40 

mg/dL were 70.9%, 56.3%, and 34.4% within the minimum, 

desirable, and optimum criteria, respectively. The Cr concentra-

tion can be converted from mg/dL to the SI unit (µmol/L) by mul-

tiplying the value with 88.42. The average acceptance rates for 

10 TC samples with concentrations ranging from 197.2 to 246.4 

mg/dL were 100.0%, 99.1%, and 86.0%, respectively. TC and 

TG concentrations can be converted from mg/dL to the SI unit 

(µmol/L) by multiplying the values with 0.0259 and 0.0113, re-

spectively. The TG data were divided into two groups based on 

whether or not the test method included free glycerol blanking, 

and the concentrations of the five samples ranged from 93.3 to 

205.0 mg/dL. Within the minimum, desirable, and optimum cri-

teria, the average acceptance rates were 100.0%, 100.0%, and 

99.5%, respectively, for the non-free glycerol-blanking method, 

100.0%, 100.0%, and 99.7%, respectively, for the free glycerol 

blanking method, and 100.0%, 100.0%, and 99.6%, respec-

Fig. 3. Mean percentages of acceptable performances considering 
the participants’ EQA results according to different performance 
goals. Data categorized into three groups are shown for each test 
item. (A) Standardization of laboratory tests, including HbA1c, cre-
atinine, total cholesterol, and triglyceride. (B) Harmonization cate-
gory, including AFP and PSA classified according to the calibrator 
(Hybritech standard or WHO 96/670 IS). (C) Lack-of-harmonization 
category, including cardiac troponin I, according to six manufactur-
ers (A–F).
Abbreviations: EQA, external quality assessment; AFP, alpha-fetoprotein; 
PSA, prostate-specific antigen; IS, international standard. 
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tively, for both methods combined.

  The AFP data from the 2019–2020 survey demonstrated that 

the four samples had concentrations ranging from 11.6 to 87.8 

ng/mL, which were close to the clinical threshold. Based on the 

minimum, desirable, and optimum criteria, the average accep-

tance rates were 99.8%, 99.6%, and 94.7%, respectively.

  The PSA data were divided into two groups according to the 

calibrator. According to the WHO 96/670 IS, the average accep-

tance rates for five samples with concentrations ranging from 

4.011 to 12.989 ng/mL were 99.1%, 92.4%, and 60% within 

the minimum, desirable, and optimum criteria, respectively. Ac-

cording to the Hybritech standard, the average acceptance rates 

Fig. 4. Box plot analysis of mean percentage bias for total sam-
ples for each test according to different performance goals. (A) 
HbA1c, (B) creatinine, (C) total cholesterol, (D) triglyceride, and 
(E) alpha-fetoprotein. The gray box plot shows the minimum, 
first quartile, median, third quartile, and maximum values. The 
blue line indicates the mean and the blue diamond the confi-
dence interval of the data. Groups were compared using the 
Student–Newman–Keuls multiple-comparison test. **P ≤0.001 
and *P ≤0.05. 
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Table 1. Mean percentage bias according to analytical performance criteria

Test item
Mean percentage bias (95% CI) according to different criteria

Optimum Desirable Minimum Outcome-based Unacceptable

HbA1c 0.6 (0.6–0.6) 1.0 (1.0–1.0) 1.6 (1.6 –1.7) 2.6 (2.5–2.6) 8.8 (8.6–9.1)

Cr 1.8 (1.7–1.9) 3.1 (3.0–3.3) 4.3 (4.1–4.5) 20.0 (19.1–20.9)

TC 1.7 (1.6–1.7) 2.1 (2.0–2.2) 2.1 (2.1–2.2)

TG 2.9 (2.8–3.1) 3.0 (2.8–3.1)

AFP 5.6 (5.4–5.7) 6.4 (6.2–6.6) 6.5 (6.2–6.7) 79.6 (49.3–109.9)

PSA-Hybritech calibrator 3.9 (3.0–4.7) 7.4 (6.7–8.0) 8.4 (7.8–9.0) 28.8 (23.8–33.8)

PSA-WHO calibrator 3.7 (3.5–4.0) 6.4 (6.3–6.6) 7.3 (7.1–7.5) 28.3 (26.5–30.1)

Abbreviations: Cr, creatinine; CI, confidence interval; TC, total cholesterol; TG, triglyceride; AFP, alpha-fetoprotein; PSA, prostate-specific antigen.

Fig. 5. Box plot analysis of mean percentage bias for cardiac tropo-
nin I grouped into six manufacturers (A–F) according to different 
performance goals. Bars represent means, and error bars represent 
95% confidence intervals. Groups were compared using the Stu-
dent–Newman–Keuls multiple-comparison test. **P ≤0.001 and 
*P ≤0.05.
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for five samples with concentrations ranging from 4.176 to 14.329 

ng/mL were 98.4%, 89.9%, and 50.3% within the minimum, 

desirable, and optimum criteria, respectively (Fig. 3B).

  We analyzed the survey data for cTnI using samples with val-

ues close to the concentrations at which the CV was 20% in the 

manufactures’ package inserts. The concentrations of the eight 

samples ranged from 0.106 to 2.006 ng/mL. The mean accep-

tance rates for the six manufacturers are shown in Fig. 3C. The 

mean acceptance rates within the minimum criteria for TE were 

>95.0% for all manufacturers, except one (F; 89.1%). For man-

ufacturers A, B, and D, the mean acceptance rates were all 

>95.0% within the desirable bounds. The mean acceptance 

rates within the optimum criteria were 92.0%, 82.5%, 72.9%, 

91.4%, 77.4%, and 50.4% for manufacturers A–F, respectively.

Mean percentage bias
Figs. 4 and 5 and Supplemental Data Fig. S1 show box and 

whisker plots of the mean percentage bias for all analyte items 

according to the performance criteria. The mean percentage 

bias for the BV criteria showed significant differences between 

the groups (P <0.0001, one-way ANOVA) for all analyte items. 

The mean percentage bias (95% CI) for each analyte is sum-

marized in Table 1.

  The mean percentage bias did not significantly differ between 

the two calibrator types based on the APS groups for PSA (P = 

0.236, 0.325, 0.522, and 0.603 for the optimum, desirable, mini-

mum, and unacceptable criteria, respectively) (Supplemental 

Data Fig. S1). Conversely, for cTnI, the mean percentage bias 

differed significantly (P <0.05) among the platforms based on 

the APS groups (Fig. 5). According to the optimum, desirable, 

minimum, and unacceptable criteria, the mean percentage bias 

(range) for cTnI for the six platforms was 4.4% (3.9%–5.5%), 

6.5% (4.8%–9.6%), 7.2% (4.8%–11.3%), and 46.0% (41.0%–

99.0%), respectively.

DISCUSSION

Big data research using unreliable laboratory results can result 

in poor medical decisions, improper risk stratification, inappro-

priate management, and increased costs for the patient [28, 29]. 

We investigated the eligibility of test results that met the EQA cri-

teria to be included in big data based on the BV or outcome-based 

criteria.

  We selected seven test items that were measured using com-



Cho EJ, et al.
Evaluating quality of laboratory data using EQA

https://doi.org/10.3343/alm.2023.43.5.425 www.annlabmed.org    431

mutable frozen human serum pools in the KEQAS program. Ac-

cording to the test item, the acceptance rates for EQA results 

were 67.5%–100%, 42.9%–100%, and 22.9%–99.5% within 

the minimum, desirable, and optimum criteria, respectively. Among 

the seven test items, HbA1c and Cr showed low acceptance 

rates. Based on the minimum criteria, the mean acceptance 

rates for HbA1c and Cr were 67.5% and 70.9%, respectively, 

which we attribute to the minimum criteria for HbA1c (3.3%) 

and Cr (11.1%) being lower than the KEQAS acceptable bias 

criteria for HbA1c (6.7%) and Cr (11.4%). The acceptance rate 

was analyzed using all participants with acceptable and unac-

ceptable results in KEQAS in this study. Therefore, few partici-

pants showed mean percentage biases between 11.1% and 

11.4%.

  The minimum criterion for HbA1c was 3.3%, which is 15.8 

times more stringent than that of APF (52.2%); therefore, it had 

the lowest acceptance rate among the seven test items. The 

minimum criterion of Cr was 11.1%, which is three times higher 

than that of HbA1c, while the acceptance rate was comparable 

to that of HbA1c, which can be attributed to the analytical inter-

ference in routine Cr methods. Because the minimum criterion 

for Cr is high, it is necessary to deduce through discussions with 

data scientists whether any of the criteria based on the BV can 

be applied to the big data criterion for Cr. Unlike for Cr, it may 

be possible to use the minimum criterion for HbA1c for use in 

big data, unless HbA1c big data require very high accuracy.

  The BV criteria of TC were similar to those of Cr, but its ac-

ceptance rates were 1.4, 1.8, and 2.5 times higher than those 

of Cr for the minimum, desirable, and optimal criteria, respec-

tively. Unlike that for Cr, the KEQAS acceptable bias criterion for 

TC was 9%, which was higher than the desirable criterion (8.7%) 

and lower than the minimum criterion (13.0%). The difference 

in medical decision levels between Cr (0.7–1.0 mg/dL) and TC 

(200–240 mg/dL) was another factor contributing to the higher 

acceptance rate of TC. Even when the absolute difference was 

small, a low Cr value was more likely to cause a large relative 

difference (%bias). Fully automated enzymatic methods, less 

interference, and standardization of measurement procedures 

for cholesterol quantification were additional contributing fac-

tors. The mean percentage biases for TC were <3% based on 

the minimum, desirable, and optimum criteria. Given the high 

acceptance rates and low mean percentage biases for TC based 

on all criteria, we can apply any criterion according to the needs 

in term of accuracy and size of the TC big data.

  TG showed a substantially wider BV criterion than other lipids 

owing to its high intraindividual BV, which is approximately three 

times that of TC [30]. The optimum criterion for TG was 13.5%, 

which is close to the KEQAS acceptable bias criterion for TC (15%). 

Few EQA results for TG were outside the optimum criterion, re-

gardless of free glycerol blanking. Therefore, for TG, it is crucial 

to set a new criterion other than the BV-based criterion for use 

in big data.

  The average acceptance rate of AFP was approximately 95.0% 

based on the optimum criterion (17.4%). Despite using target 

values for AFP that were derived from all methods used in dif-

ferent platforms, the acceptance rate was high. The mean per-

centage bias for AFP did not significantly differ (approximately 

6%) among the three BV groups. The average acceptance rates 

of the two PSA calibrator types were approximately 60.0% based 

on the optimum criterion, which was lower than that of AFP. The 

difference in the BV criteria was one cause of this discrepancy; 

the optimum criterion of PSA was 8.1%, which is less than half 

of that of AFP (17.4%). Accordingly, the mean percentage bias 

of PSA was <4.0% and that of AFP was 5.6%. The WHO cali-

brator yields 2%–14% lower PSA value than the Hybritech cali-

brator [31, 32]. According to the optimum, desirable, and mini-

mum criteria, there were 3.0%, 14.3%, and 14.7% differences, 

respectively, in mean percentage bias between the two calibra-

tor types. Therefore, it is essential to construct big data accord-

ing to the type of calibrator used in the PSA test. Recently, the 

APSs derived from state-of-the-art tests were shown to be the 

most suitable because of the lack of high-quality BV data for tu-

mor markers [33]. The average acceptance rate for PSA was 

approximately 90.0% when applying the 15% criterion recom-

mended in earlier studies [33, 34]. Further research is needed 

to decide the criteria to be set for AFP or PSA big data.

  The acceptance rates for cTnI were 89.1%–99.3%, 81.7%–

99.4%, and 50.4%–92.0% for the minimum, desirable, and 

optimum criteria, respectively. The results varied among manu-

facturers owing to differences in calibration and antibody speci-

ficity [35]; moreover, the bias was calculated using the mean 

value of each instrument peer group. However, the acceptance 

rate varied significantly among peer groups; particularly, the ac-

ceptance rate according to the optimal criteria ranged from 50.4% 

to 92.0%. If the overall mean of the six cTnI tests was used as 

target value and all EQA results were simultaneously analyzed, 

the acceptance rates based on the BV criteria were 44.3%, 33.0%, 

and 17.2% for the minimum, desirable, and optimum criteria, 

respectively. For the TnI test, acceptance rates should be deter-

mined separately for the different manufacturers. The mean per-

centage biases for cTnI among six platforms were 3.9%–5.5%, 

4.8%–9.6%, and 4.8%–11.3% for the optimum, desirable, and 
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minimum criteria, respectively. The mean percentage bias was 

significant for the desirable and minimum criteria but relatively 

small for the optimum criterion. The results in the unacceptable 

group showed a mean percentage bias of 40.9%–99.0% among 

the six platforms. For big data construction, one must consider 

the platform used for the TnI test to improve clinical outcomes 

in patients with various cardiovascular conditions. Further re-

search may be needed to decide an outcome-based criterion 

for TnI big data.

  There have been numerous studies on standardizing terms, 

result formats, statistical techniques, and data categorization or 

mapping tools to improve the quality of big data [23, 36–38]. 

However, big data researchers, not clinical pathologists, may 

wrongly believe that all quantified data can be aggregated with-

out any quality-assurance checks [39, 40]. We used EQA re-

sults as a surrogate for real laboratory data, and we compared 

and analyzed participants’ EQA results considering their quality 

grade based on the TE, which revealed statistically significant 

differences. Even test results that passed the EQA did not guar-

antee the quality for inclusion in big data. Therefore, in big data 

research, it is essential for laboratory medicine experts to ensure 

that the data meet quality standards; particularly, the reliability 

of test results should be considered [12]. Big data should be 

classified according to the state of harmonization or standard-

ization; however, no study has been conducted on this. EQAs 

evaluate test results using categorization based on the standard-

ization or harmonization status. This classification can guide build-

ing big data for each test item.

  One potential study limitation is that we only used BV based 

on the test items as the acceptance criteria. Because standards 

or guidelines for QC of laboratory data are lacking, further rese

arch is needed to establish criteria and evaluate the data quality 

according to test items, test characteristics, and the purpose 

and amount of big data. According to Kim, et al. [12], cumula-

tive EQA data can be used to evaluate a laboratory’s reliability 

over time. As EQA can only guarantee a laboratory’s performance 

at a given point and big data in healthcare include longitudinal 

patient records, it is desirable to analyze accumulated EQA re-

sults from each laboratory to determine whether its test results 

can be included in big data.
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