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With the projected increase in the global population, current healthcare delivery models 
will face severe challenges. Rural and remote areas, whether in developed or developing 
countries, are characterized by the same challenges: the unavailability of hospitals, lack of 
trained and skilled staff performing tests, and poor compliance with quality assurance 
protocols. Point-of-care testing using artificial intelligence (AI) is poised to be able to ad-
dress these challenges. In this review, we highlight some key areas of application of AI in 
point-of-care testing, including lateral flow immunoassays, bright-field microscopy, and 
hematology, demonstrating this rapidly expanding field of laboratory medicine.
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INTRODUCTION

Improved living standards due to technological advances have 

led to a larger aging population globally. Furthermore, the world’s 

population is projected to reach 8.5 billion by 2030, 9.7 billion 

by 2050, and 11.2 billion by 2100 [1]. Current healthcare re-

sources available to effectively cater to this burgeoning popula-

tion cannot keep pace with this rate of increase and pose a chal-

lenge to public health programs worldwide.

  Point-of-care (POC) testing, where patients are tested and 

treated at the hospital bedside, in pharmacies, at community 

centers, or in their own homes, provides a workable healthcare 

solution. One of the challenges in performing POC testing is en-

suring that the results are reliable and correctly interpreted. This 

requires properly trained users and quality assurance practices. 

Artificial intelligence (AI) is making important contributions to 

POC testing and is expected to help resolve many of the chal-

lenges faced by healthcare workers and in the widespread ap-

plication of direct-to-consumer testing. In this review, we high-

light some important examples where AI facilitates developments 

in this rapidly expanding field.

AI BACKGROUND

AI is a wide-ranging discipline that includes machine learning 

(ML), robotics, and visual computation. However, only those as-

pects of AI that are relevant to POC testing are discussed herein. 

ML, a subset of artificial learning, is used to create algorithms 
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for solving problems and building “intelligent machines.” Hence, 

ML is the “brain” of AI. The most common ML algorithm cur-

rently used in POC testing is “supervised learning,” where the 

machine is given “inputs” and associated “outputs.” When a 

new input is provided, the memory is scanned to identify the as-

sociated output. In the 1960s and 1970s, ML algorithms relied 

on linear “if–then” relationships [2]. However, as our understand-

ing of the human brain function has improved, scientists have 

attempted to better mimic it in ML, leading to the development 

of neural networks (NNs) [2].

  An artificial NN (ANN) is composed of the following node lay-

ers: an input layer, hidden layer, and output layer. Each node is 

connected to another node and associated with a particular wei

ght and threshold [3]; i.e., positive and negative weights repre-

sent individual responses to an input that results in an output 

[2]. If the output of a node exceeds a particular threshold, the 

node is activated and signals are sent to the next node; other-

wise, no signals are sent [3]. Hence, an ANN is an example of 

ML that uses information and helps the computer generate an 

output based on stored examples or previous encounters [4]. 

Convolutional NNs (CNNs) are best suited to work with image, 

speech, or audio signal inputs. They have three main types of 

layers: convolutional, pooling, and fully connected. In summary, 

as image data progress through the layers of a CNN, the model 

starts to recognize larger elements or shapes of the object until 

it finally identifies the target object [3].

AI AND LATERAL FLOW IMMUNOASSAYS 
(LFIAs)

LFIAs are among the most common diagnostic platforms for POC 

testing because they can provide results in as little as 10 min-

utes. LFIAs are easy to perform, user-friendly, and possess cost-

effective features that satisfy the “ASSURED” WHO benchmark 

of POC tests (A=affordable, S=sensitive, S=specific, U=user-

friendly, R=robust, E=equipment-free, D=deliverable to those 

who need them) [5].

  LFIAs typically use gold nanoparticles (GNPs) conjugated with 

antibodies that detect antigens of interest. However, because in-

terpretation of LFIA results relies on the ability to observe the 

control and test lines visually, there are some limitations to sen-

sitivity. Replacing GNPs with fluorophores has improved the sen-

sitivity of LFIAs; however, their use has been limited by platform 

instability when stored at room temperature [6] and their sus-

ceptibility to photobleaching [7]. The use of quantum dots has 

improved photostability, resulting in large molar extinction coef-

ficients and high fluorescent quantum yield [8]. However, quan-

tum dots exhibit high autofluorescence [9]. Another limitation of 

these optical testing platforms is that subsurface signals are not 

measured, and result interpretation is based on red, green, and 

blue light or gray-scale scanning, which limits their sensitivity 

and accuracy [10]. Yan, et al. [8] used magnetic nanoparticles 

conjugated to antibodies and measured the magnetic signals of 

the analytes human chorionic gonadotropin (hCG), cardiac tro-

ponin I, creatine kinase isoenzyme MB, and myoglobin using a 

magnetic immunoassay reader. This method enabled the detec-

tion of signals in the entire test zone regardless of the opacity or 

high noise-to-signal ratio [8]. Moreover, for weak magnetic sig-

nals (10−7–10−4 Oe) on test strips, they used a novel data-pro-

cessing method based on a support vector machine classifier 

and custom waveform reconstruction, thereby significantly im-

proving the sensitivity and accuracy of the test [8]. hCG was quan-

titatively detected in the range of 1–1,000 mIU/mL with a detec-

tion limit of 0.014 mIU/mL. This is a very low concentration, con-

sidering that laboratory instruments typically have a cut-off <5 

mIU/mL [8].

  The key step in using AI for LFIAs is building an image library. 

Turbé, et al. [11] built an image library using two different HIV 

LFIAs. The workflow was the same for both LFIAs: a drop of blood 

from a fingertip was applied to a pad, buffer was added to help 

movement of the specimen across the paper or solid support 

membrane by capillary action, and after 10–40 minutes, anti-

gen–antibody reactions produced visible lines corresponding to 

“Test” and “Control” lines indicating verified positive or negative 

test results [11]. Although LFIAs are attractive for POC testing, 

the accuracy of result interpretation can vary from 80% to 97%, 

depending on the training and experience of the user, as the 

test lines can sometimes be faint or the user may suffer from 

color blindness [11]. To counter this inadequacy of HIV LFIAs, a 

deep-learning algorithm was developed. Each patient was tested 

using both POC LFIAs; images were captured using a Samsung 

tablet (SM-P585) 8M Pixels camera (f1/9) with autofocus capa-

bility (Samsung, Seoul, Korea) integrated with a native Android 

camera application and sent to the mobile health system. A pilot 

field study of the algorithms deployed as a mobile application 

demonstrated increased sensitivity (97.8%) and specificity (100%) 

compared to those achieved with traditional visual interpretation 

by humans, including experienced nurses and newly trained 

community health workers, and reduced the numbers of false 

positives and false negatives [11].
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AI IN BRIGHT-FIELD MICROSCOPY 
DIAGNOSTIC TESTING

Malaria is an infectious disease caused by parasites of the Plas-
modium genus transmitted via a female Anopheles mosquito 

vector [12]. In 2019, the WHO estimated that there were 229 

million cases of malaria worldwide, with 409,000 deaths [13]. 

Children under the age of 5 years are the most vulnerable group, 

accounting for 67% (274,000) of all malaria-related deaths world-

wide. African regions account for an estimated 94% of all cases 

[13], with a predominance of Plasmodium falciparum infection 

[14].

  Microscopic identification of malarial parasites in a peripheral 

blood smear is historically the gold standard for malaria diagno-

sis and has well-established quality assurance practices; thus, 

properly trained healthcare workers can correctly quantify para-

sitemia and identify parasite species [15]. Microscopy generally 

has a detection limit of 20 parasites/µL [16], and in patients with 

clinical malaria, microscopic slide examination is associated with 

a diagnostic sensitivity of 75% [16]. However, the detection limit 

is lower in patients with non-P. falciparum malaria, low parasit-

emia, or partial immunity [15]. As skilled microscopists or prop-

erly working microscopes may not always be available in resource-

limited settings, there has been a drive to develop better diag-

nostic methods that can be performed easily in remote, rural 

healthcare settings.

  An automated microscopic analysis system comprises hard-

ware that captures images and software that applies an algo-

rithm to interpret the images and make diagnostic decisions. As 

mentioned above, a CNN is an ML model based on the human 

visual system that uses the mathematical operation of convolu-

tion to interpret captured images and has been highly success-

ful in image-related tasks [17].

  EasyScan Go is an automated microscopy system developed 

by Motic (Hong Kong, China) that captures images and uses 

the CNN algorithm to interpret the images and make a diagnos-

tic decision. Das, et al. [18] compared the results obtained by 

experienced microscopists with those obtained automatically 

with EasyScan Go in diagnosing malarial blood smear slides. The 

diagnostic sensitivity of EasyScan Go was 91.1% (95% confidence 

interval [CI]: 88.9%–92.7%), and the specificity was 75.6% (95% 

CI: 73.1%–78.0%). With good-quality slides, the sensitivity was 

similar (89.1%, 95% CI: 86.2%–91.5%), but the specificity in-

creased to 85.1% (95% CI: 82.6%–87.4%) [18]. Slide quality 

was a significant contributor to both specificity and sensitivity. 

Although there is still room for improvement, especially for esti-

mations in cases of low parasitemia and parasite density, with 

current research efforts by various groups, AI is expected to sig-

nificantly improve malaria diagnosis.

  Schistosomiasis is a neglected tropical disease caused by the 

flatworm Schistosoma spp., affecting approximately 236.6 mil-

lion people, mainly in Africa [19]. Diagnosis is made using bright-

field microscopy to identify eggs in a urine sample. Operator skills 

and experience are important because mild infections with low 

egg secretion can easily be missed [20].

  Oyibo, et al. [20] designed a schistoscope, which is a low-cost, 

high-quality digital microscope that can also function as a slide 

scanner. They used an CNN model to identify the images using 

a data bank of 5,000 Schistosoma haematobium egg images 

captured from spiked and clinical urine specimens collected in 

field settings. The schistoscope was constructed using easily 

accessible parts. The optical system comprises a Raspberry Pi 

High-Quality Camera Module V2.1 (Alast Corp., Rowland Heights, 

CA, USA) equipped with a Sony IMX477R stacked, back-illumi-

nated sensor (12.3-megapixel resolution, 7.9-mm sensor diago-

nal, and 1.55×1.55-µm sensor pixel size) (Arducam Technol-

ogy Co. Ltd., Hong Kong, China). To visually identify Schistosoma 
eggs, they used a 4× magnification objective; however, the de-

vice was designed such that the objective could be easily inter-

changed with a 20× magnification objective [20]. The CNN al-

gorithm clearly identified eggs in the images, showing that the 

image quality was suitable for automatic detection of Schistosoma 

eggs in line with the current diagnostic reference standard. High-

quality microscopic images of S. haematobium, Schistosoma 
mansoni, and hookworm eggs were captured by microscopists 

using this device, and the eggs were clearly identified in digital 

images [20]. In a preliminary study, they found that the schisto-

scope had 80% sensitivity, which satisfied the WHO Target Prod-

uct requirement for the diagnosis of schistosomiasis [21].

AI AND HEMATOLOGY

The routine requirement of a complete blood count (CBC) in 

hematology poses a challenge to developers of POC testing de-

vices. This is mainly because a CBC requires not only counting 

cells but also differentiating cell size and morphology, which in a 

blood specimen can span a spectrum of cell maturity [22]. He-

moScreen, designed by PixCell Medical Technologies, Ltd. (Yok

ne’am lllit, Israel), is the first Food and Drug Administration-ap-

proved POC hematology analyzer [23] that overcomes the chal-

lenges often presented in POC hematology testing. For the test-

ing of cells in fluids, the flow must be streamlined into single-
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particle streams. Flow cytometry uses this technique to allow 

the scattering of fluorescent light for cell counting and morpho-

logical analysis.

  HemoScreen consists of an analytic device and a disposable 

cartridge that contains all reagents required for testing. A part of 

the cartridge termed the “sampler” directly collects blood via a 

finger stick or from a venous specimen and is placed into the 

analytic device, where the blood is mixed with the reagents be-

fore entering a translucent chamber for optical analysis and enu-

meration [23]. Through a phenomenon known as viscoelastic 

focusing, also known as the Fahraeus–Lindqvist effect [24], blood 

cells migrate and concentrate at the centerline of small blood 

vessels or microchannels under laminar flow. This results in a 

single layer of cells, which aids in optical analysis [25]. For cel-

lular analysis, HemoScreen uses machine-vision technology 

(image processing and analysis) rather than laser scattering or 

impedance [23]. Machine vision enables the accurate imaging 

of hundreds of flowing cells, capturing unique peculiarities that 

are later used in AI algorithms to identify individual cells and sub-

types. Interference from cell debris and platelets can be identi-

fied to avoid erroneous reporting of the results. Hence, Hemo-

Screen can be used by operators with minimal hematology train-

ing [23].

  Sight Diagnostics Ltd. (Tel Aviv, Israel) developed the Sight 

OLO POC hematology analyzer that uses computer vision for im-

age analysis [26]. Similar to HemoScreen, Sight OLO can use 

fingerstick and venous blood specimens, both of which are col-

lected in potassium EDTA-coated capillary tubes. Hb testing re-

quires a specimen volume of 17 μL, whereas cell staining for 

image analysis requires 10 μL of blood, which is mixed with a 

diluent and dried fluorescent stains. The red channel represents 

Hb, the green channel represents cytoplasmic staining, and the 

blue channel represents DNA nuclear staining.

  A challenge in POC hematology is the ability to identify abnor-

mal cells in blood smears. The process of preparing a monolayer 

blood smear is necessary to identify cell types. However, this re-

quires technical skills that may not always be available at the POC 

during an emergency crisis or in remote rural areas.

  Sight OLO circumvents this problem through a novel process 

in which diluted cells are drawn into the image chamber by cap-

illary action, and the dimensions of the chamber are such that 

as the cells settle, a monolayer develops. These monolayer blood 

smears are rapidly imaged using the Sight OLO automated bright-

field and fluorescence microscope that captures thousands of 

multispectral images of a single blood specimen based on opti-

cal and chemical signatures. Multispectral images are generated 

at five wavelengths: red (633 nm), green (577 nm), blue (460 

nm), violet (405 nm), and ultraviolet (365 nm). These different 

illumination wavelengths allow the identification of erythrocytes, 

leukocytes, and platelets [26].

  Furthermore, Sight OLO uses three different analysis work-

flows to count and characterize erythrocytes, leukocytes, and 

platelets. All three workflows involve a two-step process, in which 

a preliminary batch of candidates is identified before being fur-

ther analyzed for definite identification [26]. Bright-field images 

are used to identify erythrocytes, which may still overlap if they 

are too close to each other. Therefore, once the candidates are 

identified, they are screened for overlap and split into individual 

cells based on morphological features. Erythrocyte images are 

further characterized using CNN algorithms to estimate cell prop-

erties such as mean cell Hb, mean cell volume, and mean cell 

Hb concentration [26]. Leukocytes are identified using both bright- 

field and fluorescent channels. The nucleus and cytoplasm are 

first identified in each cell and then further characterized based 

on different features, using a computer. ML is used to analyze 

these features and classify different leukocyte types as well as to 

identify abnormal cell types using classification algorithms. True 

platelets are identified by first filtering the candidates according 

to different morphological and intensity properties and then ap-

plying several CNN algorithms that are trained to accurately dis-

tinguish platelets from the background in different scenarios [26]. 

Table 1 compares the characteristics of the HemoScreen and 

Sight OLO devices.

AI FOR ANEMIA AND Hb VARIANT DETECTION

Anemia is a serious health problem that affects approximately 

one third of the world’s population [27]. In sub-Saharan Africa, 

its prevalence reaches up to 91% in schoolchildren [28]. The 

consequences of anemia include poor birth outcomes, impaired 

cognitive and behavioral development, and decreased produc-

tivity in adults [27]. Anemia and sickle cell disease are associ-

ated with high mortality and morbidity in resource-limited coun-

tries, posing significant health problems. Recently, An, et al. [27] 

developed a POC microchip electrophoresis device that can mea

sure both anemia and Hb variants using AI algorithms. The ANN- 

based ML algorithm measures the Hb concentration. Whole blood 

is diluted in a standard calibrator and electrophoresed on a cel-

lulose acetate paper. After 10 minutes, the Hb is separated into 

subtypes according to the finer mass-to-charge ratio. The Hb 

concentration is then determined by comparing the Hb band 

intensity with the intensity of the standard calibrator. High-reso-
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lution images are captured of both the Hb band (red) and the 

standard calibrator band (blue), including all relevant pixel in-

formation. Each frame in the image video is sequentially split 

into the constituent red and blue channels. This information is 

then fed as the input feature vector to a trained ANN that exam-

ines the intensity ratio pattern and reports the corresponding Hb 

concentration (g/dL) (Fig. 1). The results are finally used to de-

termine the anemia status of the patient. Using this system, ane-

mia could be detected with 100% sensitivity and 92.3% speci-

ficity. Patients with sickle cell disease were identified with 100% 

sensitivity and specificity. Overall, this platform enables integrated 

anemia detection and Hb variant identification using a single 

Table 1. Comparison of the features of the HemoScreen and Sight OLO hematology instruments, which use AI

Characteristic HemoScreen (PixCell Medical Technologies Ltd.) Sight OLO (Sight Diagnostics Ltd.)

Specimen type Capillary or venous anticoagulated whole blood, collected in  
K2 EDTA tubes

Capillary or venous anticoagulated whole, collected in K2 EDTA tubes

Calibration Factory calibrated Factory calibrated

QC CBC-PIX: 3 levels (high, medium, and low) CBC-OPT: 3 levels (high, medium, and low)

QC storage 2°C–8°C 2°C–8°C

QC stability 75-d closed vial stability with 14-d open vial stability Unopened until expiration date; opened 14 d

Parameters measured In adults and children aged 2 years and older In adults and children aged 3 months and older

- Erythrocytes - Erythrocytes

- Leukocytes - Leukocytes

- Platelets - Platelets

- Hb - Hb

- Hematocrit - Hematocrit

- Mean corpuscular (erythrocyte) volume - Mean corpuscular (erythrocyte) volume 

- Mean cell (erythrocyte) Hb - Mean cell (erythrocyte) Hb 

- Mean cell (erythrocyte) Hb concentration - Mean cell (erythrocyte) Hb concentration 

- Erythrocyte distribution width - Erythrocyte distribution width 

- Neutrophils (number, percentage) - Neutrophils (number, percentage)

- Monocytes (number, percentage) - Monocytes (number, percentage)

- Lymphocytes (number, percentage) - Lymphocytes (number, percentage)

- Eosinophils (number, percentage) - Eosinophils (number, percentage)

- Basophils (number, percentage) - Basophils (number, percentage)

Throughput 10 samples/hr

Test principle Viscoelastic focusing, which causes the cells to perfectly align into a 
plane. High-resolution microscopic images are taken of the flowing 
cells. Each image is analyzed using machine-vision algorithms, 
and the different cell types are differentiated and counted. 
Leukocytes are stained prior to testing to enable differentiation 
between their subtypes and abnormal cells. Hb is calculated based 
on the optical density measured on individual intact cells.

Computer-vision algorithms visually scan stained blood specimen 
under a fluorescence microscope and analyze the captured images. 
The software identifies visual differences between different blood 
components relying on characteristics such as size, shape, 
intensity, and morphology. Optical density measurement of Hb.

Specimen volume 40 μL 27 μL (17 μL added to one chamber and 10 μL added to another)

Cartridge shelf-life 6.5 months 6 months

Cartridge storage Room temperature (17°C–27°C) Room temperature (18°C–26°C)

Specimen storage Specimen can be stored for 7 hrs in K2 EDTA tubes before testing Specimen can be stored for 8 hours in K2 EDTA tubes before testing

Operating temperature 17°C–27°C 18°C–30°C

Bar code scanning Yes Yes

Abbreviations: AI, artificial intelligence; CBC-OPT, complete blood count-optional control kit for Sight OLO; CBC-PIX, complete blood count-optional control 
kit for HemoScreen.
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POC testing device [27].

CONCLUSIONS

The use of AI in POC testing will bring about radical and perma-

nent changes, in the same way information technology influenced 

laboratory medicine in the 1980s. The biggest advantage of AI 

in POC testing is its ability to perform the necessary diagnostic 

testing reliably and accurately without the need for skilled or trained 

personnel. This will significantly impact community healthcare 

and avoid the trend of population migration to urban areas in 

resource-limited countries, preventing unnecessary overcrowd-

ing and self-inflicted poverty, while improving the quality of life 

of those living in remote and rural areas.
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