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This study describes an objective approach to deriving the clinical performance of au-
toverification rules to inform laboratory practice when implementing them. Anonymized 
historical laboratory data for 12 biochemistry measurands were collected and Box-Cox-
transformed to approximate a Gaussian distribution. The historical laboratory data were 
assumed to be error-free. Using the probability theory, the clinical specificity of a set of au-
toverification limits can be derived by calculating the percentile values of the overall distri-
bution of a measurand. The 5th and 95th percentile values of the laboratory data were 
calculated to achieve a 90% clinical specificity. Next, a predefined tolerable total error ad-
opted from the Royal College of Pathologists of Australasia Quality Assurance Program 
was applied to the extracted data before subjecting to Box-Cox transformation. Using a 
standard normal distribution, the clinical sensitivity can be derived from the probability of 
the Z-value to the right of the autoverification limit for a one-tailed probability and multi-
plied by two for a two-tailed probability. The clinical sensitivity showed an inverse relation-
ship with between-subject biological variation. The laboratory can set and assess the clini-
cal performance of its autoverification rules that conforms to its desired risk profile.
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A laboratory quality system can be built upon a multilayer, inter-

linking electronic rule system (e.g. delta check, autoverification 

rules, linearity range check, serum indices check) to minimize 

the risk of errors and ensure patient safety. The quality system 

may include autoverification limits that check for gross errors at 

the individual result level [1-5]. Additionally, it may include delta 

checks, in which the current patient result is compared to the 

preceding one for significant differences, indicating an error [6–

10]. Patient-based quality control can be applied for the detec-

tion of population-level shifts and/or drifts [11-14].

Laboratory practitioners must understand the clinical sensitiv-

ity and specificity of implemented autoverification rules to make 

an informed decision pertaining to the clinical risk. Currently, 

there exists a paucity of evidence-based approach on defining 

the clinical sensitivity and specificity of autoverification rules. We 

describe a simple approach to objectively define the clinical 

performance of laboratory-specific autoverification limits. This 

study was undertaken as part of an effort to optimize the au-

toverification limits and was exempted from ethics approval 

(Domain-Specific Review Board, Singapore; reference number: 

2016/01115).

The definitions of autoverification limits and clinical perfor-

mance are provided below:

Autoverification limits: �Numerical threshold values within which 

the laboratory results are assumed to 

not contain significant/gross errors and 

are safe to be released without scien-

tific or clinical review.
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Clinical specificity: �Probability of the chosen set of autoverifica-

tion limits to correctly identify results without 

errors, calculated as: true negatives/(true 

negatives + false positives).

Clinical sensitivity: �Probability of the chosen set of autoverifi-

cation limits to correctly identify results with 

a predefined magnitude of bias, calculated 

as: true positives/(true positives + false neg-

atives).

Anonymized historical data for 12 general biochemistry serum 

measurands from a laboratory serving community-ambulatory 

subjects (National University Hospital, Kent Ridge, Singapore) 

were collected as previously described [15]. The data were as-

sumed to be error-free and were Box-Cox-transformed to ap-

proximate a Gaussian distribution using an automated online 

tool with default settings (http://www.wessa.net/rwasp_boxcox-

norm.wasp) [16].

As the laboratory data were assumed to be error-free, results 

falling within any selected autoverification limits were consid-

ered true negatives, whereas those falling outside the limits were 

considered false positives (Fig. 1A). When the percentile values 

of the overall data distribution are used as autoverification limits, 

this coincides with the clinical specificity. For example, if the 5th 

and 95th percentile values of the overall data distribution are 

taken as the autoverification limits, the clinical specificity of this 

set of autoverification limits will be 90%. If only one side of the 

autoverification limit is set, e.g., the 95th percentile value, the 

clinical specificity will be 95% [6, 7]. We selected a clinical 

specificity of 90% to maintain the false alarm rate at 10%. 

Once the autoverification limits fulfilling the predefined clinical 

specificity have been determined and the magnitude of tolera-

ble total error for the autoverification rules to be assessed against 

has been defined, the clinical sensitivity can be determined. 

The analytical performance specifications of the Royal College 

of Pathologists Australasia Quality Assurance Program were se-

lected as the source of tolerable total error for 12 measurands 

[17]. The total error was applied to the extracted laboratory data 

before being Box-Cox transformed. The transformed laboratory 

data exceeding the autoverification limits were considered true 

positive, whereas those falling within the limits were considered 

false negative (Fig. 1B).

For a standard normal distribution with a positive bias, the 

clinical sensitivity for a one-tailed detection can be obtained by 

examining the probability of observing a Z-value that is higher 

than the Z-value corresponding to the autoverification limit for 

the error-free distribution. This is mathematically represented as:

clinical sensitivity (one-tailed)=probability  

[Z>critical Z-value at upper autoverification limits].

For a two-tailed detection, the probability is multiplied by two 

as the positive and negative bias can be detected by the upper 

and lower autoverification limits, respectively. A step-by-step 

protocol for alanine aminotransferase as an example is provided 

in Fig. 2. The other 11 measurands were analyzed in the same 

manner. The data for the 12 general biochemistry measurands 

required variable degrees of Box-Cox transformation, with opti-

mal lambdas ranging from –0.66 to 2.00 (Table 1) [16]. The 5th 

and 95th percentile values (corresponding to a clinical specific-

ity of 90%) of the transformed distribution were determined (Ta-

ble 1). The clinical sensitivities at the autoverification limits de-

rived from the laboratory data after the application of the tolera-

A B

Fig. 1. Diagram showing the determination of overall (A) clinical specificity and (B) sensitivity from laboratory data that have been trans-
formed to approximate a Gaussian distribution. The dotted line in panel (B) represents the original distribution before addition of the posi-
tive error.
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ble total error are summarized in Table 1.

In general, the clinical sensitivities were inversely correlated 

with between-subject biological variation (Supplemental Data 

Fig. S1). Serum chloride, with the smallest between-subject bio-

logical variation (1.3%), had the highest (two-tailed) clinical 

sensitivity (100%), whereas γ-glutamyltransferase, with the larg-

est between-subject biological variation (44.5%), had the lowest 

clinical sensitivity (6.1%). A relatively high clinical sensitivity is 

required for the autoverification limits (e.g., 80%–95%) to main-

tain a low false-negative (missed-detection) rate [18].

The combination of an increasingly sophisticated laboratory 
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Fig. 2. Step-by-step protocol for determining clinical specificity and 
sensitivity and autoverification limits for serum alanine aminotrans-
ferase as an example.
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information technology, the ability to generate large volumes of 

laboratory data using automation, and the increasing clinical 

demands for ever shorter sample-to-result times, necessitating 

a means to release patient results in a timely manner, while en-

suring patient safety. In response, autoverification limits have 

been conceived as an electronic means to release patient re-

sults efficiently, without prior scientific or clinical review. The ap-

plication of autoverification limits has gained significant traction 

in laboratory practice and is one of the most commonly imple-

mented electronic laboratory rules [1–5].

Several approaches have been described to determine au-

toverification limits, with the most simplistic approach being set-

ting the reference interval as the autoverification limits [1–5]. 

The assumption here is that any laboratory results within this in-

terval should not elicit a significant clinical reaction, and they 

are considered sufficiently benign to be released without man-

ual review. These limits are used primarily to rule out results that 

may be associated with significant errors. There are also ap-

proaches that extend the autoverification limits beyond refer-

ence intervals into what could be regarded physiologically ex-

treme ranges, e.g., critical values or physiologically improbable 

ranges [19]. The latter includes values that are generally not 

compatible with life (e.g., potassium >8 mmol/L). In this case, 

the autoverification is geared toward identifying results that likely 

are associated with gross significant errors. Lastly, autoverifica-

tion limits can be set based on professional opinion.

The above approaches do not directly inform laboratory prac-

titioners of the clinical performance of the applied autoverifica-

tion rules, particularly, the clinical sensitivity and its associated 

false-negative rate. This may lead to the setting of autoverifica-

tion rules that do not match the acceptable clinical risk profile of 

the laboratory. The approach described here leverages on the 

simple concept of probability theory and Z-values, which we 

have previously applied in the context of delta checks [7]. Clini-

cal specificity and sensitivity have an inverse relationship, and 

careful tradeoffs must be considered when deciding upon the 

limits. The need for operational efficiency to return results in a 

timely manner has often led to laboratories adopting wider au-

toverification limits (i.e., favoring higher specificity). This study 

clearly demonstrated the impact of between-subject biological 

variation on clinical sensitivity. For measurands that have a wide 

between-subject biological variation, the implementation of 

wider autoverification limits (i.e., higher specificity) may trans-

late into poorer clinical sensitivity and the inability to direct re-

sults with potential errors for manual review.

Our simple approach should help laboratory practitioners 

consider the risk profile and clinical impacts in the selection and 

implementation of autoverification limits. A Microsoft Excel tool 

for determining clinical specificity and clinical sensitivity is in-

cluded in the Supplemental Data.
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Supplemental Data Figure S1. Clinical sensitivity (two-tailed) and 
between-subject biological variation are inversely related.

1

0.8

0.6

0.4

0.2

0

Cl
in

ica
l s

en
sit

ivi
ty 

(%
)

Between-subject biological variation (%)

10	 20	 30	 40	 50


