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INTRODUCTION

Physicians increasingly use patients’ laboratory test results for 
disease diagnosis, patient monitoring, treatment planning, and 
the evaluation of treatment effectiveness [1-4]. Laboratory test 
values do not represent exact data but rather vary within certain 
confidence limits due to systematic or random variation [1,5,6]. 
Bias is the systematic deviation of laboratory test results from 
the actual value. A significant bias in measurement results can 
cause misdiagnosis or misestimation of disease prognosis and 
increased healthcare costs [7-9]. Some causes of bias have 
been presented previously [10-12]. Although bias has been ex-
tensively discussed within the last decades, it has rarely been 
properly addressed, representing the “dark side of the moon,” 
particularly in the field of laboratory medicine. To handle bias 
properly, the terminology, pre-analytical and analytical condi-
tions, and statistical techniques used to evaluate bias must be 
standardized [13-19]. Notably a “purist” approach in which “ev-

erything is expected to be perfect” is not a pragmatic method for 
solving common laboratory medicine problems. Laboratory re-
sources should not be wasted on correcting insignificant and 
minor differences that do not affect clinical decisions.

Biological and non-biological samples have distinct properties. 
Non-biological samples are affected by pre-analytical or analyti-
cal variations, whereas biological samples such as whole blood, 
plasma, and urine are affected by both pre-analytical and ana-
lytical variations as well as by biological variation (BV) [1]. This is 
particularly evident in sequential sampling. Within the human 
body, analytes fluctuate around (homeostatic) set points, which 
is known as the within-subject BV [20]. Measurement results of 
patient samples vary over time due to BV, even if pre-analytical 
and analytical variations are negligible [1, 20]. Deviations that 
cannot be tolerated in industrial measurements can be toler-
ated in medical laboratories. According to Albert Einstein, “every-
thing should be made as simple as possible, but not simpler” 
[21]. The practical aspect should be as simple as possible but 

Bias in Laboratory Medicine: The Dark Side of the Moon
Abdurrahman Coskun , M.D.
Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey

Physicians increasingly use laboratory-produced information for disease diagnosis, patient 
monitoring, treatment planning, and evaluations of treatment effectiveness. Bias is the 
systematic deviation of laboratory test results from the actual value, which can cause mis-
diagnosis or misestimation of disease prognosis and increase healthcare costs. Properly 
estimating and treating bias can help to reduce laboratory errors, improve patient safety, 
and considerably reduce healthcare costs. A bias that is statistically and medically signifi-
cant should be eliminated or corrected. In this review, the theoretical aspects of bias 
based on metrological, statistical, laboratory, and biological variation principles are dis-
cussed. These principles are then applied to laboratory and diagnostic medicine for practi-
cal use from clinical perspectives.

Key Words: Bias, Confidence interval, Diagnostic error, Quality control, Total quality man-
agement, Uncertainty

Received: January 21, 2023
Revision received: April 15, 2023
Accepted: August 4, 2023

Corresponding author: 
Abdurrahman Coskun, M.D.
Department of Medical Biochemistry, 
School of Medicine, Acibadem Mehmet Ali 
Aydinlar University, Kayisdagi cad. No 32,
Atasehir, Istanbul 34752, Turkey
E-mail: coskun2002@gmail.com

© Korean Society for Laboratory Medicine
This is an Open Access article distributed under 
the terms of the Creative Commons Attribution 
Non-Commercial License (https://creativecom-
mons.org/licenses/by-nc/4.0) which permits 
unrestricted non-commercial use, distribution, 
and reproduction in any medium, provided the 
original work is properly cited.

http://crossmark.crossref.org/dialog/?doi=10.3343/alm.2024.44.1.6&domain=pdf&date_stamp=2024-01-01
https://orcid.org/0000-0002-1273-0604
mailto:coskun2002@gmail.com


Coskun A
Bias in laboratory medicine

https://doi.org/10.3343/alm.2024.44.1.6 www.annlabmed.org    7

not at the expense of the theoretical background of the con-
cepts under study.

In this review, bias is evaluated from metrological and statisti-
cal, laboratory, and clinical perspectives. The theoretical aspects 
of bias based on metrological and BV principles are summa-
rized, and these principles are applied to laboratory and diag-
nostic medicine for practical use.

METROLOGICAL AND STATISTICAL 
PERSPECTIVES OF BIAS

Terminology
The terms bias, trueness, and systematic error are interrelated 
[13, 22]. According to Vocabulary International Metrology (VIM) 
edition 3, measurement bias is the “estimate of a systematic 
measurement error” (2.18) [13]. Measurement trueness is de-
fined as the “closeness of agreement between the average of 
an infinite number of replicate measured quantity values and a 
reference quantity value” (2.14) and “is inversely related to sys-
tematic measurement error, but is not related to random mea-
surement error” (Note 2). Instrumental bias is defined as the 
“average of replicate indications minus a reference quantity 
value” (4.20).

Based on these definitions, estimating bias requires two main 
components: (1) a reference quantity or assigned value and (2) 
a replicate measurement of the quantity (Fig. 1). If one of these 
two components is unknown or has not been properly deter-
mined, bias cannot be estimated correctly.

Mathematically, bias can be calculated using the following 
equation:

Bias(A)=O(A)–E(A)	 (1)

where O(A) and E(A) are observed (measured) and expected val-
ues of analyte A, respectively. In practice, O(A) and E(A) corre-
spond to the mean of repeated measurements and reference 
data, respectively.

Estimated bias is not a precise value. Each measurement re-
sult has a systematic and random component, and the mean of 
repeated measurements has a degree of variation depending 
on the probability selected.

Types of bias
Measurement accuracy varies across different concentrations, 
and the linearity of measurement methods is lost in the region 
near the limit of quantitation and upper measurement limits [23, 
24]. Measured bias can be constant or proportional. In constant 
bias, the difference between the target and measured values is 
constant, whereas in proportional bias, the difference between 
the target and measured values is proportional to the amount of 
the measurand (i.e., it is a function of the measurand concen-
tration) (Fig. 2) [25-28]. The bias between two methods can be 
evaluated using a Bland–Altman graph, which is a powerful 
graphic tool for evaluating the agreement between two methods, 
particularly when it is correctly interpreted and based on an ad-
equate sample size [29-31]. Passing–Bablok regression analy-
sis can also be used to evaluate the presence of constant and 
proportional bias between two methods (Fig. 2) [32].

The regression equation for two methods can be written as 
follows:

y=ax+b	 (2)

where a is the slope and b is the intercept.
If y=x (i.e., a=1 and b=0), it can be considered that there is 

no significant bias between two methods or instruments. Note 

Reference value Mean

Bias

MeanTarget

Bias
A B

Fig. 1. Bias is the difference between the target/reference value and the mean value of repeated measurements of the sample. (A) The es-
timation of bias requires two main components: (1) reference quantity or assigned value and (2) replicate measurements of the quantity. (B) 
If the reference quantity value is not available, an assigned value can be used to estimate the bias.
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that in the case of a≠1 and b≠0, the significance of a and b 
should be evaluated using the 95% confidence intervals (CIs) of 
the slope and intercept. If the 95% CI of a includes 1, it can be 
concluded that there is no significant proportional bias between 
two methods. Similarly, if the 95% CI of b includes 0, it can be 
concluded that there is no significant constant bias between two 
methods (Fig. 2). Details for detecting proportional and constant 
bias have been presented previously [33-35].

Measurement of bias
Practically, bias measurement requires the availability of refer-
ence values and the mean of repeated measurements (Fig. 1A). 
The reference quantity value can be determined using certified 
reference materials (CRMs) or fresh patient samples measured 
using reference methods [36, 37]. If the reference quantity 
value is not available, an assigned value can be used to esti-
mate the bias (Fig. 1B). Bias should not be estimated by simply 
subtracting the mean of the measured value from the reference 
or assigned value. Additionally, the significance of the bias 
should be evaluated and confirmed. Subtracting a single mea-
surement result from a reference or assigned value does not 
yield bias; this is a common error made in medical laboratories, 
particularly when calculating the sigma metric (SM) [38] of the 
measurement procedure. The characteristics of bias depend on 
the measurement procedure and the duration of data collection 

for bias estimation; therefore, measurement conditions have a 
significant influence on bias and its significance [12, 39].

Measurement conditions
Metrologically, three bias measurement conditions [39] can be 
defined, which are discussed as follows:

Repeatability conditions
For repeatability conditions, (1) the measurement procedure, in-
strument, operating conditions, operator, and location (labora-
tory) must be the same, and (2) the repeated measurements 
must be completed within a short period (no longer than one 
day) and in a single run.

Repeated measurements under repeatability conditions yield 
the smallest random variation, and if a bias exists, it can be eas-
ily detected.

Intermediate precision conditions
Intermediate precision conditions are referred to as the variation 
in a measurand analyzed in a single laboratory over several 
months using different instruments, operating conditions, opera-
tors, reagents, and calibrators. Repeated measurements under 
intermediate precision conditions show higher random variation 
than those under repeatability conditions, and if a bias exists, it 
may be difficult to detect (Fig. 3).

Reproducibility conditions
In addition to repeatability and intermediate precision, reproduc-
ibility conditions also include the total variation of different labo-
ratories. The variation of repeated measurements under repro-

Proportional bias
y=ax
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Constant bias
y=x+b
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Fig. 2. Constant and proportional bias. If a≠1 and b≠0, the signifi-
cance of a and b should be evaluated using the 95% confidence in-
tervals of a and b.
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Fig. 3. Characteristics of bias change over time. Data collected for 
sodium under intermediate precision or reproducibility conditions 
contain both random and systematic (bias) variations.
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ducibility conditions includes all types of variations originating 
from different sources, such as measurement procedures, in-
struments, operating conditions, operators, and locations (labo-
ratories) over several months. Among repeated measurements, 
those conducted under reproducibility conditions demonstrate 
the highest degree of random variation compared to those con-
ducted under intermediate precision conditions, and if bias ex-
ists, it may be difficult to detect.

Significance of bias
Since bias is defined as the difference between a target value 
and the mean of repeated measurements (Fig. 1), the signifi-
cance of a calculated bias should be evaluated before further 
calculations [40, 41]. The significance of bias can be evaluated 
using t-test. Alternatively, while it may not be statistically accu-
rate in some instances, the significance of bias can be evalu-
ated using the 95% CI in a very practical context. This evaluation 
is more visual in nature, as opposed to a strict statistical assess-
ment. If the 95% CI of the mean of repeated measurement re-
sults and the target value overlap, bias is not considered to be 
significant, whereas if there is no overlap bias is considered to 
be significant (see Supplemental Method for an explanation and 
Supplemental Tables S1, S2 for practical examples). Note that 
since bias and imprecision are related, the imprecision of the 
method significantly impacts the significance of the bias [14].

CLINICAL LABORATORY PERSPECTIVE OF BIAS

In clinical laboratories, bias should be evaluated using fresh pa-
tient samples or commutable samples. The use of commutable 
samples in clinical laboratories has been reviewed previously 
[42-44] (see also the “Commutability and bias” section below). 
As the analytical responses of fresh patient samples and com-
mutable samples are similar [45], commutable samples can 
represent fresh patient samples in performance evaluations of 
measurement procedures. A pragmatic procedure including an-
alytical performance of the instruments, sample types, mea-
surement procedures, data collection period, and statistical 
techniques is required to handle bias in clinical laboratories.

Analytical performance specifications (APSs)
APSs are a set of criteria that specify the quality required for the 
analytical performance of measurement procedures to deliver 
laboratory test results that achieve the best possible health out-
comes for patients without causing harm [46]. In daily practice, 
the analytical performance of measurement systems is evalu-

ated by calculating the systematic and random variations, 
namely, bias and imprecision. In addition to bias and impreci-
sion, total allowable error (TEa) has been accepted as a compo-
nent of APS over the last four decades and has been used for 
various purposes. However, TEa has limitations, including a lack 
of definition in the VIM and a lack of fit in metrology [13]. The 
standard equation of TEa is as follows:

TEa=Bias+1.65 CV	 (3)

In the linear combination of bias and the CV, only one side of 
the CV (normal distribution) is included in the calculation; there-
fore, the appropriate multiplier for a 95% probability is 1.65. The 
CV represents the imprecision of the measurement procedure.

According to the Guide to the Expression of Uncertainty in 
Measurement (GUM) [47], bias should be corrected and known 
bias should not be included when calculating APSs and other in-
dicators. Because of the limitations mentioned above, TEa 
should not be used in laboratory medicine to represent a toler-
ance limit and/or measurement uncertainty (MU). In metrology, 
total error (not TEa) corresponds to accuracy. Accuracy is the 
combination of bias and imprecision, which can be used to eval-
uate the error of a single measurement result. Therefore, accu-
racy is used in External Quality Assessment Scheme (EQAS) pro-
grams. In clinical laboratories, TEa has been incorrectly used or 
recommended instead of the tolerance limit (TL) [38], MU [48], 
or other reliable indicators. The TL or tolerance interval contains 
a specified proportion of units from the sampled process or pop-
ulation; the detailed calculation method is presented previously 
[49]. Although TEa explains many phenomena in laboratory 
medicine, in reality, it cannot solve any problems and has no 
place in metrology. Therefore, it is not considered a part of APSs 
in this review.

To prevent misdiagnosis, acceptable limits for bias should be 
determined for the measurand measurement results reported 
to patients.

Models for deriving acceptable bias
The acceptable limits or TLs can be determined based on vari-
ous factors, including customer requirements, clinical needs, es-
tablished guidelines, and statistical methodologies such as the 
Taguchi loss function [50, 51]. Despite intensive efforts, the ac-
ceptable limits for laboratory analytes measured in biological 
samples are not well-defined. Two international meetings were 
organized to define the criteria for APSs in medical laboratories 
[52-55].
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Stockholm and Milan consensuses
The first conference on global analytical quality specifications 
was held in Stockholm in 1999. According to the Stockholm con-
sensus, APSs are based on five hierarchical criteria [54] with the 
highest-ranking criterion given the highest priority. If it is not fea-
sible to apply the first criterion, then the second criterion should 
be utilized, and so on, in descending order of priority [1, 53].

Although the Stockholm consensus was aimed at defining ac-
ceptance criteria for APS based on medical needs, it did not 
have the expected effect in laboratory medicine for 15 years. In 
2014, the European Federation of Clinical Chemistry and Labo-
ratory Medicine (EFLM) organized a strategic conference in Mi-
lan to revise the Stockholm consensus, which was named the 
Milan consensus [55]. The APS criteria were revised and simpli-
fied based on clinical and laboratory requirements, and techno-
logical achievability was considered a critical parameter.

In both the Stockholm and Milan consensuses, the first crite-
rion in the hierarchy is based on the effect of analytical perfor-
mance on clinical outcomes and the second criterion is based 
on the components of the measurands’ BV. In the Milan consen-
sus, the third and fourth criteria of the Stockholm consensus are 
excluded and the APS criteria are simplified and limited to three 
criteria. The last criterion (the fifth in the Stockholm consensus 
and the third in the Milan consensus) is based on the state of 
the art of the measurement, i.e., the highest level of analytical 
performance technically achievable.

Since 1999, APSs of laboratory analytes based on clinical de-
cision limits have been difficult to define. A single laboratory test 
can be used for numerous clinical purposes, resulting in various 
associated clinical decision limits. Although the first criterion is 
excellent, it is not widely used in practice. No single model can 
be applied to all measurands, and therefore, applying different 
models is a pragmatic approach to estimate the APSs of differ-
ent measurands. Alternatively, APSs can be based on a compro-
mise between different models [56]. Selecting the most appro-
priate model for a measurand can be challenging. Ceriotti, et al. 
[57] proposed a simple and pragmatic workflow to select the 
most appropriate models for various measurands.

Because of the nature of laboratory tests, the first criterion of 
both the Stockholm and Milan consensuses is not widely ap-
plied in practice, and therefore, the APSs of laboratory analytes 
are mainly based on the second criterion, BV.

Acceptable bias derived from components of BV of the measurands
Unlike clinical outcomes, BV in an analyte can be easily esti-
mated. The EFLM BV Working Group has greatly contributed to 

laboratory test BV. In the last decade, the group has developed 
checklists [58] and standards [59] for BV studies, measured the 
BV of numerous analytes [60] using a strict protocol [61], per-
formed meta-analyses of BV data of numerous analytes pub-
lished in the literature [62-69], and launched a BV database for 
most laboratory tests [70]. The database is dynamic and is up-
dated when a new paper on BV is published.

The question remains as to how to develop a model to esti-
mate acceptable limits for bias based on BV. There is a model 
for the acceptable limits of imprecision based on BV. This model 
is based on the contribution of analytical variation to the total 
variation, which is calculated using the following equation:

CVT
2 =CVA

2+CVI
2	 (4)

A triple model for performance evaluation has been proposed 
as follows [1]:

Desirable performance is defined as CVA <0.50 CVI. Here, the 
maximum contribution of analytical variation to total variation is 
12%.

Optimum performance is defined as CVA <0.25 CVI. Here, the 
maximum contribution of analytical variation to total variation is 
3%.

Minimum performance is defined as CVA <0.75 CVI. Here, the 
maximum contribution of analytical variation to total variation is 
25%.

The acceptable limit for imprecision can be modeled based 
on the contribution of the analytical variation to total variation; 
however, this method cannot be used for bias. Because bias is a 
linear parameter, the reference interval (RI) can be used to 
model the limits of acceptable bias [71-74].

Physicians generally use conventional RIs for clinical deci-
sions. If a patient’s laboratory results are within the RI, they are 
accepted as normal; otherwise, they are considered abnormal. 
Therefore, bias has various effects on disease misdiagnosis 
[71]. A positive bias in laboratory test results will increase the 
percentage of RIs outside the upper limits (ULs) and decrease 
the percentage outside the lower limits (LLs). A negative bias will 
have the opposite effect. Laboratory test results within RIs are 
considered normally distributed. The geometrical shape of the 
normal distribution is not rectangular [75, 76]; therefore, the ef-
fect of bias on the UL and LL is not symmetric. Using normal dis-
tribution mathematics, we can calculate the percentage of indi-
viduals outside the RI when bias exists. This can be used to 
model the acceptable limit for bias based on BV as with impreci-
sion [77].
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The conventional population-based RI comprises both be-
tween- and within-subject BV, so that acceptable bias can be 
calculated according to their Gaussian combination. The model 
for acceptable bias is based on the acceptable number of peo-
ple outside the RI when bias exists. Details of the model to de-
rive the acceptable bias from BV data have been reported previ-
ously [1]. As shown in Fig. 4A, the LL and UL of the RI are set to 
cover 95% of the population values. If the measurement proce-
dure has a positive bias, the curve will shift to the right (Fig. 4B); 
>2.5% of the population will have values higher than the UL 
and <2.5% of the population values will be outside the LL. Be-
cause of the bell shape of the curve, the increase in population 
values outside the UL will be higher than the decrease in popu-
lation values outside the LL. The change in population values in-
side and outside of the RI caused by increasing bias is pre-
sented in Fig. 4B.

Mathematically, the area under the curve (AUC) can be used 
to calculate the population values inside and outside of the RI 
as follows:

����� � 1
σ√2π e

-��x-μ�
2

2σ2 �
+∞

-∞
d�x� 

     

 

	 (5)

where σ is the standard deviation, µ is the mean, and x is the 
variable.

From Equation 5, the AUC within the RI can be calculated us-
ing Equation 6:
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From Equations 5 and 6, the population values outside the RI 
can be calculated according to Equation 7:

AUCRI-outside�� �
1
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UL
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Equations 5–7 are very complex and cannot be used in daily 
practice. Instead, z-transformation and a z table can be used to 
calculate the AUC and population values inside and outside the 
RI. A practical method is presented in Fig. 5. When bias exists, 
this graph can be used to easily estimate the population values 
outside and inside the RI.

Based on the normal distribution, a triple model for bias has 
been suggested (see Supplemental Table S3):

CVB
2 =CVI

2+CVG
2	 (8)

where CVB is the total BV.
Desirable performance is defined as BA <0.250CVB. Here, 

0.8% of the additional population will be outside the conven-
tional RI and 5.8% will be outside the RIs due to bias.

Optimum performance is defined as BA <0.125CVB. Here, 
0.1% of the additional population will be outside the conven-
tional RI and 5.1% will be outside the RI due to bias.

Minimum performance is defined as BA <0.375CVB. Here, 

No bias
95%

Less than
95%2.5%2.5%

More than
2.5%

BiasA B

Fig. 4. Effect of bias on population values inside and outside the reference interval. Given the geometric shape of the normal distribution 
curve, an increase in bias results in an exponential shift of the population from within the reference intervals to beyond them. (A) When 
bias=0, 5% of the population is situated outside the reference intervals. (B) When bias >0, the proportion of the population located outside 
the reference intervals exceeds 5%.
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1.7% of the additional population will be outside the conven-
tional RI and 6.7% will be outside the RI due to bias.

Short- and long-term biases
In routine practice, clinical laboratories use different consum-
ables, QC samples, calibrators, and reagents with different lot 
numbers. The accuracy of measurement results is generally 
monitored using QC materials, and if the measurement result of 
QC materials is not within acceptable limits, the instruments/
measurement system is calibrated. Calibration may correct a 
shift from the target value; consequently, any measurement sys-
tem that is frequently calibrated may show bias patterns around 
the mean value (Fig. 3). Therefore, the characteristic of bias 
changes over time [12], and the bias pattern estimated from re-
peated measurement results obtained under repeatability con-
ditions is expected to differ from that estimated from data col-
lected under intermediate precision or reproducibility conditions.

A reliable target or consensus value that can be obtained from 
the EQAS peer group is required to estimate bias [43, 78-80].

Bias and external quality assessment schemes
Although it is recommended to estimate bias using CRM and 
reference methods from a metrological perspective, this is not 
practically achievable in clinical laboratories. Modern clinical 
laboratories analyze thousands of measurands in different sam-
ple types; therefore, procedures to assess the quality and per-
formance of measurement procedures should be practical and 
cost-effective, rather than purist and theoretical. Numerous lab-
oratories use assigned values from EQAS to estimate bias. How-

ever, this does not represent the real bias that is determined us-
ing CRMs and reference methods. Bias calculated from EQAS 
data is performance bias. Since performance of a laboratory is 
evaluated using data from other laboratories, bias in the labora-
tory reflects the position of the laboratory within the peer group. 
The assigned value or mean of the peer group does not reflect 
the actual value of the analyte measured using CRMs and a ref-
erence method. EQAS programs are not aimed at estimating 
bias and EQAS samples are generally not commutable [42-44]. 
Therefore, bias estimated using EQAS data may not represent 
the actual bias in patients’ laboratory test results.

Commutability and bias
According to the VIM, commutability of a reference material is 
defined as the “property of a reference material, demonstrated 
by the closeness of agreement between the relation among the 
measurement results for a stated quantity in this material, ob-
tained according to two given measurement procedures, and 
the relationship obtained among the measurement results for 
other specified materials” [13]. In other words, for commutabil-
ity, the analytical response of tested materials obtained from 
measurement procedures should be the same as that of patient 
samples [45]. Therefore, commutable materials can represent 
fresh patient samples for method comparison [81-83].

In clinical laboratories, human samples (whole blood, serum, 
plasma, urine, and other body fluids and samples) are analyzed. 
Therefore, the samples used to evaluate quality indicators must 
represent human samples. However, in practice, commercial QC 
samples are used to evaluate quality indicators. As commercial 
QC samples are used for a long period, they must be stable. To 
increase the stability of QC materials, lipids are removed and 
the samples are lyophilized, resulting in a matrix that differs 
from that of the fresh patient samples. Although fresh patient 
samples are commutable, they are unstable and cannot be 
used for long periods. Because of the lack of commutability, 
commercial QC samples do not represent the patient samples, 
and therefore, the bias and imprecision estimated from com-
mercial QC and fresh patient samples may be different. Ideally, 
the reference materials and/or commercial QC samples should 
be commutable with patient samples. The commutability of 
samples can be estimated according to CLSI guidelines [84,85]. 
An estimate of the bias observed between reference and routine 
methods is required to evaluate sample commutability [86]. 
Consequently, commutability can be estimated using correctly 
designed bias experiments and bias can be estimated correctly 
using commutable materials [87-89].
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estimate the population values inside and outside reference inter-
vals.
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Bias and MU
As MU is an inseparable part of all types of measurements, ac-
curate calculation of MU has long been a research focus in me-
trology [90-92].

Various methods for MU calculations have been suggested; 
however, a global consensus has not been reached, particularly 
for use in daily practice. Numerous parameters, including instru-
ments, reagents, methods, laboratory environments, and techni-
cal staff, affect the MU of analytes. The number of parameters 
and their contribution to MU vary depending on the analytes and 
laboratory. To overcome this problem, two major methods to cal-
culate the MU of analytes have been proposed: bottom-up (Type 
A) and top-down (Type B) methods [93-96].

In the bottom-up method, all possible sources of MU are in-
cluded in the calculation of the total MU [92]. This method is 
generally applied to newly developed methods, in-house meth-
ods, and measurement procedures that have multiple compo-
nents. However, this method is time-consuming and requires a 
detailed road map analysis before MU calculations. It may not 
be possible to determine all possible sources of MU, particularly 
in automated measurement systems. In the top-down method, 
QC data collected in a laboratory, such as internal QC or EQAS 
data, are used to calculate the total MU [97,98]. This method is 
more practical and pragmatic for calculating the MU of analytes 
in medical laboratories, particularly for auto-analyzers.

MU is applied in nearly all industrial sectors but not effectively 
in medical laboratories. Unlike other calculations, the MU calcu-
lation has not been standardized in medical laboratories. Al-
though International Organization for Standardization (ISO) 
guidelines 15189 [99] recommend the MU calculation for each 
analyte in medical laboratories, there is no explanation of how 
to make these calculations. Some guidelines recommend using 
the bottom-up method to calculate MU, whereas ISO guidelines 
to calculate the MU of analytes in medical laboratories were not 
available until 2019 with the release of guidelines ISO/TS 
20914:2019 [100], recommending the inclusion of three major 
parameters to calculate MU: precision, bias, and calibration un-
certainty. Different approaches are suggested depending on the 
availability of MU components as follows.

If all components (i.e., imprecision, bias, and calibration un-
certainty) are available, the following equation can be used to 
estimate the MU of analytes.

U= �Ucal
2 + URw2 +UBias2        

 

	 (9)

If bias or calibration uncertainty is not available, these compo-

nents can be excluded from the MU equation as follows:

U= �Ucal
2 + URw2         

 

 	 (10)

U= �URw2          

 

 	 (11)

Although the guidelines suggest the inclusion of long-term im-
precision, the long-term data collected under intermediate preci-
sion conditions or reproducibility conditions also include bias. As 
mentioned above when discussing short- and long-term biases, 
for frequently calibrated instruments, the long-term bias be-
comes a random variation. The graph of data collected under re-
producibility conditions (Fig. 3) shows that bias cannot be evalu-
ated as a separate parameter, and the imprecision calculated 
from the dataset collected under reproducibility conditions cov-
ers all known variations, including bias. The data shown in Fig. 3 
contains all measurement results collected from an instrument 
that was frequently calibrated. Based on the EQAS evaluation, 
instrument performance was acceptable in comparison with 
that in the peer group. There was no reason to expand the varia-
tion in these data by including additional parameters.

However, the guidelines do not provide a strict framework for 
these parameters. In ISO/TS 20914:2019 [100], imprecision is 
calculated from the internal QC data, bias is calculated from 
EQAS data, and calibration uncertainty is obtained from the 
manufacturers.

Details on how to obtain these parameters are unclear be-
cause the imprecision of the measurement procedure can be 
calculated from the data collected under repeatability, interme-
diate precision, or reproducibility conditions [39]. The impreci-
sion is expected to be the lowest for data collected under re-
peatability conditions and the highest for data collected under 
reproducibility conditions. Bias can also be calculated using 
CRMs and reference methods or EQAS data; however, the signif-
icance of bias should be evaluated before further calculations.

Laboratory data are not exact and have various degrees of 
variation depending on several factors, including methods and 
samples, resulting in differences in numerical data, which may 
be significant or insignificant [101]. As bias is the difference be-
tween reference data and the mean of repeated measurements, 
the significance of bias must be addressed before using a bias 
in further calculations. Using bias without evaluation of its sig-
nificance in MU calculation can artificially increase the total MU. 

MU should include the most influential factors affecting pa-
tients’ test results rather than numerous insignificant compo-
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nents. Estimating MU from data collected under reproducibility 
conditions is a practical method for medical laboratories [39]. 
Because bias is a component of data collected under reproduc-
ibility conditions, it should not be included in the MU calculation 
as a separate parameter.

Another issue is the treatment of bias in the MU calculation. 
As shown in Equation 9, bias is generally included in MU calcula-
tions as a quadratic parameter similar to imprecision. In mathe-
matical terms, it is not valid to sum a variance with a linear pa-
rameter; therefore, only the variances of variables can be added 
together [102].

In conclusion, (1) the inclusion of bias in MU calculation, par-
ticularly if the imprecision is calculated from data collected un-
der reproducibility conditions, artificially increases the total MU; 
(2) it is mathematically incorrect to treat bias as variance; and 
(3) the significance of bias should be considered before further 
calculations [39, 40, 103].

Bias and Six Sigma
Six Sigma is a widely accepted standard methodology for total 
quality management [104] in the new millennium. The perfor-
mance of processes can be evaluated objectively using the 
Sigma scale [105, 106]. If a process has a level of 6 sigma, it 
produces only 3.4 defects per one million opportunities (DPMO), 
which can be considered the gold standard [107]. The SM of a 
process can be calculated using equation 12:

SM=
TL

(12)
2xSD

where TL is the tolerance limit (from the upper to lower limit) of 
the process and SD is the standard deviation of the process.

In the 1980s, Bill Smith and engineers at Motorola Inc. devel-
oped the Six Sigma methodology. Because the SM is considered 

the number of SDs between the mean and the UL/LL of the pro-
cess, the mean of the process can be centered, which is the 
same as the target of the process. In practice, the situation is 
different, and a shift can be observed between the mean and 
the target of the process. Based on long-term observation, this 
shift is approximately 1.5 SDs (Fig. 6) [108].

In Equation 12, bias is not directly included in the SM calcula-
tion. However, the Six Sigma methodology does not neglect bias 
but rather treats it correctly. If bias is detected, it should be elim-
inated; including bias even if it can be eliminated is not prag-
matic. However, if the system does not provide real-time moni-
toring (as is the case in most medical laboratories), we cannot 
be certain that bias does not exist. In daily practice, bias is the 
dark side of the moon. To overcome this problem, a 1.5 SD bias 
is included in all calculations related to the SM, and a table of 
conversion of DPMO to SM and vice versa is prepared accord-
ingly. Therefore, 6 sigma corresponds to 3.4 DPMO. However, if 
we neglect bias, it corresponds to 0.002 DPMO.

In medical laboratories, the process performance is calcu-
lated using a modified equation proposed by Westgard:

SM=
TL–Bias

(13)
SD

Equation 13 differs from Equation 12 in that it includes bias. 
This method has two main disadvantages. First, incorporating 
bias in the equation is mathematically incorrect, and the SM ob-
tained from Equation 13 dramatically underestimates the pro-
cess performance [103, 109, 110]. Second, 1.5 SD bias is in-
cluded in the DPMO tables and the SM calculated using Equa-
tion 13 can significantly underestimate process performance. 
Because bias is included twice in the calculations (once in Equa-
tion 13 and once in the 1.5 SD bias inclusion), the performance 
of numerous medical instruments and laboratory tests has been 

SD
1 2 3 4 5 6

Target

Lower limit Upper limit1.5 SD shift

Fig. 6. Sigma metrics is the number of 
SDs located between the target and 
upper/lower limits. 1.5 SD shift is con-
sidered the standard bias.
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calculated as 3–4 SM [111-114]. This implies that the quality of 
medical laboratory instruments is lower than that of industrial 
instruments, which is not true. The low-quality level calculated 
for medical laboratory instruments is due to the incorrect equa-
tion and is unrealistic. In reality, medical laboratory analyzers 
are high-technology products of the same quality as industrial 
analyzers.

In statistics, various distributions, such as normal, t, and chi-
square distributions, are used in different situations [75,76]. 
The mathematics of the SM are based on the normal distribu-
tion [115], which is geometrically bell-shaped and mathemati-
cally asymptotic to the X-axis (Fig. 6). A shift of the normal distri-
bution curve to the right or left will change the AUC within the TL; 
however, this change will not be linearly proportional to the shift 
[103, 109, 110]. The relationship between bias and the AUC can 
be calculated using the normal distribution equation (Equation 
5). However, Equation 5 is very complex and cannot be used in 
daily practice. Instead, it is practical to use standard tables that 
show how performance changes with bias [107].

The second important point is that the bias included in the 
calculation rarely reflects the real bias. In medical laboratories, 
bias is calculated from EQAS data, and its significance requires 
confirmation.

Correction of bias
Before initiating the correction procedure, it is essential to evalu-
ate the significance of a bias and confirm its existence. Correct-
ing statistically insignificant or clinically unimportant bias would 
be a waste of time and money [12, 116]. For a significant bias, a 
root-cause analysis should be conducted, and if the cause is un-
known, correction is not recommended. In this case, bias should 
be accepted and the bias of the analyte should be considered in 
all reported information. If a bias is significant and clinically im-
portant, it can be eliminated by modifying the methods. If elimi-
nation is not possible, a correction procedure should be initi-
ated.

DIAGNOSTIC PERSPECTIVE OF BIAS

Diagnostic accuracy is directly related to the clinical perfor-
mance characteristics of the measurands. Sensitivity, specificity, 
positive and negative predictive values, likelihood ratios, and 
ROC curves are used to describe the relationship between test 
results and diagnostic accuracy [117-120].

The sensitivity of a test reflects the fraction of patients with a 
specific disease correctly predicted by the test and can be calcu-

lated using the following equation:

Sensitivity=
TP

(14)
TP+FN

where TP represents the true positives (patients with a disease 
with a correct diagnosis based on the test result) and FN repre-
sents the false negatives (patients with a disease with an incor-
rect diagnosis based on the test result).

In contrast to sensitivity, the specificity of a test reflects the 
fraction of individuals without a specific disease correctly pre-
dicted by the test, which can be calculated using the following 
equation:

Specificity=
TN

(15)
TN+FP

where TN represents the true negatives (individuals without dis-
eases who are correctly predicted by the test result) and FP rep-
resents the false positives (individuals without diseases who are 
incorrectly predicted by the test result).

Sensitivity and specificity are key components of method per-
formance, and the correct estimation of both metrics is affected 
by bias (Fig. 7) [121,122].

Predictive values (positive and negative) are functions of sen-
sitivity, specificity, and the disease prevalence and can be for-
mulated as follows:

PV– =
TN

(16)
TN+FN

PV+ =
TP

(17)
TP+FP

The predictive value of a negative test result (PV–) is the frac-
tion of healthy individuals with negative test results, whereas 
the predictive value of a positive test result (PV+) is the fraction 
of patients with a disease and positive test results.

The odds ratio shows the prevalence of a disease in a popula-
tion and is expressed as the ratio of the probability of the pres-
ence of the disease to the probability of its absence, as follows:

Odds ratio=
Probablity of the presence of a specific disease

(18)
1–Probablity of the presence of a specific disease

Significant bias will decrease the diagnostic accuracy of labo-
ratory tests (Fig. 8).
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CONCLUSIONS

Bias is the systematic deviation of measurement results from 
the true value, and it has a significant effect on the information 
produced from laboratory medicine. However, bias is rarely han-
dled correctly. While imprecision is estimated based on repeated 
measurements, bias is estimated based on both repeated mea-
surements and a reference/target value. Additionally, the signifi-
cance of bias should be evaluated and confirmed. In clinical lab-
oratories, bias is the dark side of the moon, and its estimation 
should be based on appropriate experimental design, data col-
lection, statistical evaluation, and commutable samples. Treat-
ing bias appropriately reduces laboratory errors, improves pa-
tient safety, and significantly reduces healthcare costs. Statisti-
cally significant and medically important biases should be elimi-
nated or corrected. Medical laboratories should develop policies 
to eliminate the impact of bias on data reported to patients. Fu-
ture studies are required to illuminate the dark side of the 
moon, i.e., to eliminate the negative impact of bias on medical 
decisions and healthcare costs.
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