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The rapid development of next-generation sequencing (NGS) technology, including ad-
vances in sequencing chemistry, sequencing technologies, bioinformatics, and data inter-
pretation, has facilitated its wide clinical application in precision medicine. This review de-
scribes current sequencing technologies, including short- and long-read sequencing tech-
nologies, and highlights the clinical application of NGS in inherited diseases, oncology, 
and infectious diseases. We review NGS approaches and clinical diagnosis for constitu-
tional disorders; summarize the application of U.S. Food and Drug Administration-ap-
proved NGS panels, cancer biomarkers, minimal residual disease, and liquid biopsy in 
clinical oncology; and consider epidemiological surveillance, identification of pathogens, 
and the importance of host microbiome in infectious diseases. Finally, we discuss the 
challenges and future perspectives of clinical NGS tests.
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INTRODUCTION

Next-generation sequencing (NGS), also known as massively 

parallel sequencing or high-throughput sequencing, is a tech-

nology allowing simultaneous sequencing of millions of DNA or 

RNA sequences. The advantages of NGS compared with tradi-

tional sequencing methods include higher throughput with 

sample multiplexing, higher sensitivity in detecting low-fre-

quency variants, faster turnaround time for high sample vol-

umes, and lower cost. NGS represents a true sequencing tech-

nology revolution after Sanger sequencing [1]. Sequencing the 

first human genome using Sanger sequencing required many 

years and billions of dollars; however, with the emergence of 

NGS, a complete human genome can now be sequenced within 

a few days for less than $1,000 [2]. NGS has a wide spectrum 

of applications in laboratory medicine and has become an inte-

grated part of precision medicine. The technology has been 

widely used in diagnosis, prognosis, and therapy selection for 

constitutional disorders, oncology, and infectious diseases [3-5]. 

Concurrently, an increasing amount of well curated clinical, ge-

netic, and genomic data is being generated by NGS, further 

driving the development of precision medicine [6]. The U.S. 

Food and Drug Administration (FDA) recently released a set of 

guidelines for the design, development, and validation of NGS 

tests and approved several NGS-based tests and targeted thera-

pies [7-9]. In addition, the Centers for Medicare & Medicaid 

Services (CMS) has been actively monitoring the rapid innova-

tion of NGS tests and working to ensure coverage of NGS-based 

tests. All these advances have accelerated the clinical applica-

tion of NGS in laboratory medicine. This review highlights recent 
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developments in NGS technologies and their clinical application 

in diagnosis, prognosis, and therapeutics of inherited diseases, 

cancers, and infectious diseases. 

NGS TECHNOLOGIES

Historically, DNA sequencing technologies have played impor-

tant roles in molecular biology and clinical fields [10-13]. The 

first-generation platform, Sanger sequencing, was developed by 

Fred Sanger in 1977 and has been used for decades in re-

search and clinical genetics [14-16]. Three decades later, NGS 

technologies have evolved rapidly, leading to the invention of 

second and third generation sequencing technologies. Se-

quencing turnaround time and cost have been dramatically re-

duced since 2001 when the first draft map of the human ge-

nome was accomplished [17-26]. In this section, we discuss 

the commonly used next generation sequencers and their 

strengths and challenges. 

Second generation sequencing technologies
Various second-generation sequencing technologies have been 

developed by different commercial companies. Overall, the 

workflows of the different sequencing technologies include three 

steps: (1) template preparation including nucleic acid extrac-

tion; (2) library preparation including clonal amplification; and 

(3) sequencing and alignment of short reads. 

Roche 454 sequencing (Roche, Basel, Switzerland), launched 

in 2005, was the first commercially available massive parallel se-

quencing platform. Roche 454 sequencing uses pyrosequencing 

technology, which captures pyrophosphate (PPi) release and 

uses it as an indicator of specific base incorporation. Fragmented 

DNA is bound to beads with ligated adaptors followed by frag-

ment amplification via emulsion PCR within an emulsion droplet 

[27]. The beads containing multiple copies of the same DNA 

template are then loaded into PicoTiterPlate (PTP) wells. Each 

nucleotide is sequentially flowed into the PTP wells. Each time a 

nucleotide is incorporated during DNA synthesis, it releases py-

rophosphate, which is converted to ATP. In the presence of ATP, 

luciferase coverts luciferin to oxyluciferin to generate light, which 

is then detected and captured by a coupled-charge device (CCD) 

camera [28-30]. Sequencing accuracy is dependent on the 

reading of the light signals. A misread or missing signal, espe-

cially in homopolymer sequencing, could result in base errors 

and insertions or deletions. The Roche 454 sequencer genome 

sequencing (GS)-FLX, launched in 2008, could generate ap-

proximately 700 Mb of sequence data per run with read lengths 

up to 1,000 bases in approximately 20 hours [31]. Roche 454 

was phased out of the NGS field in 2016 because of its much 

higher cost compared with other high throughput NGS sequenc-

ers such as the Ion Torrent (Thermo Fisher, Waltham, MA, USA) 

and Illumina (San Diego, CA, USA) systems. 

Unlike other technologies using fluorescence or chemilumi-

nescence, Ion Torrent uses sequencing via hydrogen ion detec-

tion technology, which detects the release of protons while nu-

cleotides are being incorporated into the strands during synthe-

sis. The fragmented DNA is attached to 3-micron diameter beads 

with specific adapter sequences. Clonal amplification happens 

via emulsion PCR on the beads [27], and the beads are then 

loaded into microwells. The change in pH due to proton release, 

generated by the incorporation of each base during synthesis, is 

detected by the sensing layer of the microwell, which translates 

the chemical signal into a digital one [32]. The first Ion Torrent 

Personal Genome Machine (PGM) sequencer was released in 

2010. PGM has an output of up to 2 GB per run and fast run 

time (2–7 hours), which is suitable for targeted sequencing or 

smaller/genomes [32, 33]. In 2012, Ion Torrent released the 

Proton sequencer, which provides a higher throughput at the 

same speed and is capable of sequencing both exomes and 

human genomes [34, 35]. Compared with the PGM and Proton 

sequencers, the Ion GeneStudio S5 series sequencers, launched 

in 2015, changed the instrument cartridges and reagents result-

ing in easier preparation and shorter run time [36]. Rather than 

relying on the laser scanners/CCD cameras used in other se-

quencing technologies, the Ion Torrent platform is more rapid, 

direct, and less expensive. However, Ion sequencers do have 

sequencing error issues such as artifact insertions/deletions (in-

dels) associated with homopolymeric stretches and repeats [35]. 

Illumina platforms are currently widely used in the NGS field 

[37-43]. Illumina developed a bridge PCR approach for clonal 

amplification and sequencing by reversible termination technol-

ogy. Both ends of the fragmented DNA anneal to two fixed 

adapters, which are immobilized to the solid surface of the flow-

cell, followed by bridge amplification to form clusters that con-

tain clonal DNA fragments. Each reversible terminator (RT) nu-

cleotide (ddATP, ddGTP, ddCTP, ddTTP) is protected at the 3′-
OH group and contains a cleavable fluorescent dye. Modified 

RT nucleotides are incorporated into the growing DNA chains 

during synthesis and release fluorescent signals, which are cap-

tured and recorded using a CCD camera. This technology sig-

nificantly reduces the homopolymer sequencing error by incor-

porating a single base at a time, as the addition of another base 

requires that a terminator first be removed [44, 45]. 
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MiSeq (Illumina), one of the most prevalent benchtop se-

quencers, was launched in 2011. It can produce data ranging 

from 540 Mb to 15 Gb, which is suitable for sequencing small 

panels of genes and bacterial genomes [46]. The production-

scale sequencer, HiSeq2500 (Illumina), was launched in 2012, 

with the capacity of sequencing an entire genome in approxi-

mately 24 hours. Both platforms use the four-channel sequenc-

ing by synthesis (SBS) system, in which each base is detected 

by individual images. NextSeq 500, launched in 2014, uses 

two-channel SBS system, which only requires two images to de-

termine all four base calls. This new technology reduces imag-

ing capture time and the number of cycles and hence, de-

creases sequencing cost and time. The HiSeq X Ten, HiSeq 

3000, and HiSeq 4000 systems were launched in 2015; these 

adopted billions of pre-formatted nanowell grids at fixed loca-

tions rather than normal flow-cells, resulting in many folds 

higher data output compared with MiSeq and HiSeq2500 [45]. 

NovaSeq, the most powerful sequencer to date, was released in 

2017, with the goal of reducing the cost of sequencing a human 

genome to $100. NovaSeq also uses two-channel chemistry, 

but with larger flow-cells with more nanowells and a faster imag-

ing capture system. It can generate up to 6 Tb of sequence data 

and 20 billion reads in approximately two days. NovaSeq allows 

customers to choose from four different flow cell types with dif-

ferent capacities to meet different sequencing needs. Overall, Il-

lumina platforms are currently the most popular in both clinical 

and research settings owing to their high accuracy, relative low 

cost, and high throughput.

Third generation sequencing technologies
Although the second-generation sequencing technologies have 

hugely impacted the NGS field, we still face many challenges 

such as short sequence reads leading to sequence gaps, align-

ment issues associated with repetitive regions or pseudogenes, 

and PCR artifacts. To overcome these limitations, third genera-

tion sequencing technologies, single molecule sequencing-

based technologies, were developed [47-49]. Pacific Biosci-

ences (Menlo Park, CA, USA) (Pac Bio) single molecule real-

time (SMRT) and Oxford Nanopore sequencing technologies 

(Oxford Nanopore Technologies, Oxford, UK) are representatives 

of this generation [50]. 

PacBio SMRT technology does not require amplification and 

offers much longer reads than second generation sequencing 

technologies. The library preparation is similar to that of second-

generation sequencing technologies, except that the adapters 

used in library preparation have a hairpin structure to ensure 

that the double-stranded DNA fragments become circular after 

ligation to form the SMRTbell template. The bases are se-

quenced by synthesis in real time on a chip containing millions 

of zero mode waveguides (ZMWs), which are nanowells several 

nanometers in diameter and approximately 100 nm in depth. 

The template molecule and DNA polymerase are immobilized at 

the bottom of each ZMW. During the sequencing reactions, the 

complementary strand of the template is elongated by DNA 

polymerase with fluorescently labeled deoxyribonucleotide tri-

phosphates. The CCD camera inside of the machine captures 

and records the fluorescent signals in real-time observation [48, 

50, 51]. The first PacBio RS (PacBio) was released in 2011, 

with an average sequencing read length of approximately 1.5 kb 

[49, 52]. Two years later, RS II was released, with an average 

read length of approximately 20 kb [48, 53]. In 2015, PacBio 

launched a new SMRT system, Sequel, with larger cells and an 

increased number of ZMWs, which produces an average read 

length between 8-12 kb [53]. The upgraded Sequel II system 

can currently generate eight-fold the sequence data with 50% 

of the reads ≥50 kb. PacBio technology has a few advantages 

compared with the second-generation sequencing technologies, 

including much shorter sample preparation time (4–6 hours) 

and sequencing run time (within a day/run), much longer se-

quencing reads (average 10–15 kb), and reduced GC bias and 

sequencing errors due to PCR amplification. However, this tech-

nology has a few inherent drawbacks including a relatively high 

error rate (10–15%). Most errors are due to indels, and a small 

portion is caused by miscalls. This error rate can be reduced by 

multiple sequencing runs [53, 54]. 

The other representative third-generation sequencing technol-

ogy is Oxford Nanopore; this novel technology uses nanopores, 

tiny biopores with a nanoscale diameter, and measures current 

changes, instead of SBS or fluorescence detection approaches. 

Any particle passing through the pore interrupts the voltage 

across the channel owing to the nature of the nanopore; each of 

the four bases leads to a distinctive current change owing to 

their unique structures. No amplification step or fluorescence 

labeling is required by this platform, and it does not rely on DNA 

polymerase like PacBio SMRT. Not only can Nanopore se-

quence DNA, it can also directly sequence RNA and protein 

[48]. This technology also has the advantages of short turn-

around time and no GC bias. The most apparent disadvantage 

of the Nanopore technology is a high sequencing error rate of 

approximately 14%, and most of the errors are indels. 

Overall, the third-generation sequencing technologies provide 

longer sequence reads, which helps close gaps in current refer-
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ence assemblies generated from short reads and can sequence 

through extended repetitive regions and characterize structural 

change in human genomes. However, third generation technolo-

gies still have a major issue of high error rate. A hybrid sequenc-

ing strategy, combining second- and third- generation NGS tech-

nologies, could address some of these issues [55-59]. The back-

ground technology, read length, and sequencing capacity of 

commonly used NGS platforms are summarized in Table 1.

 

APPLICATION OF NGS IN CONSTITUTIONAL 
DISORDERS

The evolution of technologies for the diagnosis of constitutional 
disorders
NGS is rapidly transforming how research into the genetic de-

terminants of constitutional disorders is performed. The tech-

nique is highly efficient, with detailed genetic information pro-

duced in a reasonably short time and at a relatively low cost. 

Several studies have compared the diagnostic yield and cost of 

NGS with other types of DNA testing. G banding, for example, 

detects chromosomal aberrations, with a diagnostic yield of ap-

proximately 3% for unexplained constitutional disorders [60]. 

High-resolution chromosomal microarray analysis (CMA) de-

tects gene copy number variations (CNVs) and has a diagnostic 

yield of 15-20% for the same disease categories [60]. NGS 

whole-exome sequencing (WES) has a diagnostic yield of 25% 

for Mendelian disorders [61] and whole-genome sequencing 

(WGS) has a slightly higher diagnostic yield (27%) for pediatric 

and adult genetic diseases [62]. In contrast to WES and WGS, 

targeted NGS gene panels focus on subsets of genes, ranging 

from several to hundreds, depending on the focus of the spe-

cific diseases. The diagnostic yields of NGS panels vary signifi-

cantly; for example, congenital glycosylation disorder panel has 

a reported diagnostic yield of 14.8% [63], while the prenatal 

skeletal dysplasia panel has a diagnostic yield of 53% [64]. In 

this section, we focus on the process from translational research 

to clinical diagnosis, molecular diagnosis rate, and patient care, 

as well as NGS methods in constitutional disorders.

Forward and reverse phenotyping
Genetic disease studies traditionally progress from phenotype to 

genotype analysis, the so-called “forward genetics” method 

[65]. NGS has led to a new process known as reverse pheno-

typing, in which the genetic marker data are used to drive, or 

form the basis of, new phenotype definitions [66]. The combi-

nation of NGS and segregation analysis may identify a patho-

genic variant in a gene that was not known to cause the disease 

or was previously linked to a different phenotype. In such cases, 

retrospective clinical interpretation of the patient and their family 

members can reveal additional characteristics that were unrec-

ognized previously. In a review of over 300 WES studies investi-

gating the causes of rare diseases (between 2010-2012), 178 

studies reported a novel disease-associated gene, 51 discussed 

reverse phenotyping, and 79 reported novel or known variants 

in a known disease-associated gene [67]. More recent studies 

have shown that approximately 25% of reported variants in 

known disease-associated genes are associated with a pheno-

type that matched the clinical presentation of the investigated 

patient [68-71]. These findings highlight the advantages of the 

“genotype-first” approach in studying rare diseases, especially 

when phenotypic presentations vary drastically from one patient 

to another. Thus, NGS provides a powerful molecular tool for es-

tablishing a clinical diagnosis even before the disease charac-

teristics are fully revealed. 

The number of newly identified disease-associated genes has 

grown exponentially since the application of NGS technology. 

Table 1. Summary of commonly used NGS platforms 

Company Platform(s) Sequencing mechanism Read length Outputs/run time

Roche/454 GS FLX Pyrosequencing Up to 1,000 bp 700 mol/L/23 hr

Thermo Fisher/Ion Torrent PGM Detection of hydrogen Ion Up to 400 bp Up to 4 Gb/day (PGM318)

Illumina MiSeq

HiSeq 2500

HiSeq 4000

Novate

Reversible terminator Up to 300 bp

Can be up to 250 bp

Can be up to 150 bp

150 bp

Up to 15 Gb/56 hr

60 hrs for up to 300 Gb (rapid mode)

Up to 1.5 Tb/3 days

Up to 3,000 Gb/44 hr

Pacific Biosciences Sequel Real-time 10-15 kb (average) 20 Gb/day

Oxford Nanopore MinION Real-time Longest read >2 Mb Up to 30 Gb/48 hr

Abbreviations: NGS, next-generation sequencing; GS, genome sequencing; PGM, personal genome machine.
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The identification of a new disease-associated gene or the asso-

ciation of a known gene with new phenotypes is of great signifi-

cance for patient management including early therapeutic inter-

vention in some cases [72]. The most commonly used ap-

proaches for identifying disease-associated genes include: (1) 

analysis of a group of patients with the same clinical character-

istics using WES or WGS and filtering out rare variants in a com-

mon gene in all or some members of the group; and (2) pro-

band analysis in conjunction with parents or informative family 

members and filtering out variants by disease inheritance pat-

tern (autosomal dominant, recessive, X-linked, or de novo) to 

simplify the process and identify the causal gene. 

NGS Strategies for the diagnosis of constitutional diseases
Targeted NGS gene panels
Targeted NGS gene panels are designed for a specific disease 

or group of diseases, with the ability to maximize coverage, sen-

sitivity, and specificity for the genes of interest. Therefore, tar-

geted NGS gene panels often have higher diagnostic yield than 

exome sequencing (ES) or genome sequencing (GS). However, 

when diagnostic uncertainty is high, the diagnostic rate of a tar-

geted NGS gene panel can be lower [73]. 

Targeted NGS gene panels are often used in the context of a 

suspected disease or a group of diseases. Diagnostic rates vary 

across NGS gene panels. For instance, a study using a genetic 

eye disease panel, including 257 genes, the mitochondrial ge-

nome, and previously identified deep intronic pathogenic vari-

ants in a cohort of 192 probands, identified a causal variant in 

98 of the probands, with a diagnostic rate of 51% [74]. The di-

agnostic rate for genetically heterogeneous diseases, such as 

hereditary hearing loss, could be increased by using a combined 

approach. A study using tiered ES reported a diagnostic rate of 

21% with Tier 1 testing including Sanger sequencing and tar-

geted deletion analysis of the two most common nonsyndromic 

hearing loss genes (STRC and GJB2) and two mitochondrial 

genes (MT-RNR1 and MT-TS1). The diagnostic rate increased to 

33% with Tier 2 testing, including 119 genes and CNV analysis, 

using array comparative genomic hybridization [75]. 

The cost of targeted NGS gene panels is variable, but usually 

significantly lower than that of ES. More expensive panels often 

incorporate multiple sequencing and copy number analysis 

techniques to improve the sensitivity of the test.

ES
A study of 500 unselected consecutive patients who received 

traditional genetic diagnostic evaluations showed that nearly half 

of the patients remained undiagnosed [76]. Clinical ES targets 

approximately 22,000 protein-coding genes, increasing the 

chances of identifying pathogenic variants that may be causal 

for genetic diseases. ES can also identify risk variants for a spe-

cific condition/syndrome that have not been diagnosed in the 

individual tested; these results are called secondary or inciden-

tal depending on whether the gene is deliberately studied. 

Guidelines for the clinical reporting of these categories of find-

ings have been published [77]. 

Clinical ES is regularly used for patients with previous negative 

NGS gene panel tests or complex phenotypes with broad differ-

ential diagnoses. This approach has the advantage of evaluating 

all known disease-associated genes and collecting sequencing 

data for future reanalysis, as variant classification and new gene 

discovery advances. When ES is used in patients with a sus-

pected genetic disease without a diagnosis, the molecular diag-

nostic rate ranges from 24 to 52% [78-80]. 

Many studies have aimed to improve diagnostic yield; for ex-

ample, including the biological parents (trio testing) together 

with proband testing. In one study, the molecular diagnostic rate 

increased by 16% by confirming the de novo status of a variant 

in the proband or clarifying segregation patterns for recessive 

diseases by identifying the variant in both unaffected parents 

[81]. Trio testing with clinical phenotyping strengthens diagnosis 

confidence. Previous studies have also reported an increased 

diagnostic rate using re-analysis; a 15% improvement was 

achieved by periodical reanalysis of genotype/phenotype data of 

undiagnosed individuals [82]. 

GS
GS is a comprehensive method for analyzing entire genomes. A 

comparison between GS and ES with six unrelated individuals 

demonstrated that an estimated 650 high quality coding single 

nucleotide variants (SNVs; approximately 3% of coding variants) 

were detected by GS but missed by ES [83]. Studies comparing 

GS with CMA followed by a targeted NGS gene panel, the stan-

dard of care for first-tier clinical investigation of congenital mal-

formations and neurodevelopmental disorders, showed that GS 

identified clinically diagnostic genetic variants in 34% cases, 

which was more than a two-fold increase compared with CMA 

plus a targeted NGS gene panel (13%) [84]. For inherited reti-

nal diseases, GS identified 14 clinically relevant genetic variants 

in 46 individuals; these variants included large deletions and 

variants in noncoding regions of the genome. These findings 

confirmed a molecular diagnosis for 11 of 33 individuals re-

ferred for GS who had not obtained a molecular diagnosis 
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through targeted NGS gene panels, suggesting GS could result 

in an overall 29% increase in diagnostic yield [85]. 

More recently, rapid GS (rGS) has been used for infants with 

acute illness. rGS enables the identification of potential causes 

of a genetic disease or ruling out a genetic etiology for a condi-

tion within a period of 36 hrs. During a nine-month period, in-

fants from 42 families underwent rGS for etiologic diagnosis of 

genetic diseases, with a diagnostic yield of 43% (18 of 42 in-

fants). Twenty-six percent (11/42) of the infants who underwent 

diagnostic rGS avoided morbidity, one had a 43% reduction in 

likelihood of mortality, and one started palliative care. In six of 

the 11 infants, the changes in management because of the rGS 

results reduced inpatient cost by $800,000-2,000,000 [86]. 

rGS provides a faster diagnosis, enabling timely precision medi-

cal interventions that can decrease the morbidity and mortality 

of infants with genetic diseases [87].

A meta-analysis on the cost-effectiveness of ES and GS based 

on 36 studies showed that a single test ranged from $555 to 

5,169 for ES and from $1,906 to 24,810 for GS. Most cost-effi-

ciency studies have concluded that ES and GS are economically 

superior to other testing options [88]. 

In summary, targeted NGS gene panels contain a set of genes 

specifically designed for a (or a group of) known genetic disease 

and can detect mosaic variants with higher confidence owing to 

higher sequencing depth. The diagnostic yield is relatively 

higher for patients with typical clinical characteristics. However, 

targeted panels can only detect variants in genes included in 

the panel and therefore are not suitable for patients with un-

characteristic manifestations and limit approaches for new dis-

covery such as reverse genotyping. ES includes nearly all pro-

tein-coding genes, and GS covers nearly the entire genome, 

providing much higher diagnostic yield, but also increased cost 

at present. 

Clinical impacts
A study examining the application of NGS for 83 patients with 

suspected inherited bone marrow failure syndrome demon-

strated that a causal variant was detected in 18% of the patients 

[98]. In 20% of these patients, the results led to the initiation of 

a cancer surveillance program and proper family counseling 

[89]. In another study involving 278 infants referred for ES, 

36.7% received a genetic diagnosis, and the medical manage-

ment was affected in 52.0% of the diagnosed patients [90]. 

Apart from the diagnostic value, the ultimate value of any di-

agnostic test is its impact on patient treatment, which is depen-

dent on knowing when to order the test and whether therapeutic 

choices exist. 

APPLICATION OF NGS IN ONCOLOGY

Cancer is a genomic disease, and the identification of charac-

teristic genomic aberrations in cancers has become an integral 

part of precision medicine. NGS can be used to identify differ-

ent genomic alterations commonly observed in cancer including 

SNVs, small indels, CNVs, and fusion genes in hematologic or 

solid malignancies [91-93]. Although the availability of whole 

genome, exome, or transcriptome sequencing has been in-

creasing, targeted gene sequencing is the method of choice in 

clinical laboratories for cancer diagnosis to ensure optimal se-

quencing quality (read depth and coverage, variant character-

ization, reporting), cost-effectiveness, and turnaround time. 

Small NGS panels (<50 genes) can be applied for specific can-

cers such as acute myeloid leukemia (AML) or breast cancer; 

however, larger NGS panels are commonly used in academic 

hospitals and commercial laboratories for a wide range of can-

cers. In our clinical laboratory in the Division of Genomic Diag-

nostics (DGD) at the Children’s Hospital of Philadelphia (CHOP), 

large custom-designed NGS panels have been developed for 

hematologic malignancies and solid tumors for the detection of 

SNVs/indels, CNVs, and fusions (Fig. 1) [91, 94]. When we 

tested these custom-designed NGS panels on 367 pediatric 

cancer samples, we found that NGS panel testing had a clinical 

impact in 88.7% of leukemia/lymphomas, 90.6% of central ner-

vous system (CNS) tumors, and 62.6% of non-CNS solid tu-

mors in the cohort [91]. NGS application in clinical laboratories 

is regulated by a number of agencies such as the FDA, Centers 

for Disease Control and Prevention (CDC), and other agencies 

[7, 95]. The standards and guidelines for the validation of NGS 

panels, validation of bioinformatics pipelines, and interpretation 

and reporting of sequence variants in cancers were recently 

published [96-98].

FDA-approved NGS panels in cancer
The Thermo Fisher (Waltham, MA, USA) Oncomine Dx Target 

Test was the first companion diagnostic (CDx) test approved by 

the US FDA in June 2017. This test simultaneously evaluates 

variants in 23 genes associated with non-small cell lung cancer 

(NSCLC). The approved markers include BRAF V600E, EGFR 

L858R, EGFR exon 19 deletions, and ROS1 fusions for use as a 

CDx for specific targeted therapies [99]. Thermo Fisher is ac-

tively expanding the Oncomine Dx Target Test by validating 

other variants such as ERBB2 exon 20 insertions and other fu-
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sions including ALK and RET [100]. The Oncomine Dx Target 

Test has received positive reimbursement decisions from the 

CMS and from large commercial health insurers in USA. It has 

been adopted for use by several national reference laboratories.

The US FDA approved Memorial Sloan Kettering-Integrated 

Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) 

panel, developed by the Memorial Sloan Kettering Cancer Cen-

ter, and the FoundationOne CDx (F1CDx), developed by Foun-

dation Medicine, for in vitro diagnosis via detection of genetic 

variants in November 2017 [101-103]. The MSK-IMPACT test 

detects SNVs, indels, and microsatellite instability (MSI) in 468 

unique genes by sequencing both tumor samples and matched 

normal samples from the same patient with solid malignant 

neoplasms to detect genetic alterations that might help guide 

treatment options. F1CDx detects SNVs, indels, limited CNVs, 

and gene rearrangements in 324 genes and two genomic signa-

tures, including MSI and tumor mutational burden (TMB), in 

any solid tumor to identify patients who may benefit from treat-

ment with targeted therapies. Additionally, F1CDx was approved 

by the US FDA in 2019 to be used as a CDx for olaparib for first 

line maintenance therapy in BRCA-mutated advanced ovarian 

cancer [104]. The F1CDx test has also been accepted by the 

CMS. MSK-IMPACT and F1CDx are single-site tests performed 

at the Memorial Sloan Kettering Cancer Center and Foundation 

Medicine, respectively.

The NantHealth Omics Core test was approved by the US 

FDA in November 2019. It is a WES platform to report TMB and 

somatic alterations (SNVs and indels) in 468 cancer-relevant 

genes (https://www.accessdata.fda.gov/cdrh_docs/reviews/

K190661.pdf). The Illumina TruSight Oncology 500 (TSO 500) 

test was launched in October 2018. It targets 523 genes for SNV 

and indel detection and 55 genes for fusion and splice variant 

detection. It can also detect immunotherapy-associated biomark-

ers such as TMB and MSI; Illumina is seeking US FDA approval 

of this test as a CDx. MI Transcriptome CDx (Caris Life Sciences, 

Irving, Texas, USA) is an NGS test using RNA from formalin-fixed 

paraffin embedded tumor tissue to detect structural rearrange-

ments and measure gene expression in cancer patients; it has 

Fig. 1. Representations of genomic alterations identified by the Children’s Hospital of Philadelphia Division of Genomic Diagnostics NGS 
tests. (A) A KIAA1549-BRAF fusion detected in the Fusion panel. Red and blue represent forward and reverse sequencing reads. (B) FLT3-
ITD identified in the NGS solid tumor panel. (C) CNVs identified by the NGS solid tumor panel. (C-1) CNV analysis based on reading depth. 
(C-2) B allele frequency analysis demonstrating SNV separation. Red arrows indicate one copy of 11q; green arrows indicate three copies of 
the 17q genomic region.
Abbreviations: NGS, next-generation sequencing; CNV, copy number variation; SNV, single-nucleotide variation.
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received a breakthrough device designation from the US FDA for 

the detection of FGFR biomarkers including gene fusions in solid 

tumors (https://fdahealthnews.com/stories/512479753).

Application of NGS in cancer diagnosis, prognosis, and 
therapeutics
Disease-specific biomarkers 
In addition to US FDA-approved NGS panels, many other com-

mercial or custom-designed NGS panels are being used in clini-

cal laboratories, with an increasing number of identified biomark-

ers for cancer diagnosis, prognosis, and therapeutics. For exam-

ple, in normal karyotype AML, the most frequently mutated 

genes include NPM1, CEBPA, FLT3, DNMT3A, TET2, IDH1, 
IDH2, NRAS, ASXL1, KMT2A, WT1, and RUNX1 [105]. NPM1 

is the most frequently mutated gene in adult type AML, and 

NPM1 mutations are associated with favorable outcomes in the 

absence of concurrent DNTM3A and FLT3-ITD mutations [106]. 

CEBPA mutations are commonly bi-allelic and have been associ-

ated with a favorable outcome in AML [107]. RUNX1 mutations 

have been associated with worse overall survival [108]. Patients 

with FLT3-ITD mutations often have an increased risk of relapse 

and shorter overall survival compared with patients without the 

mutation [109]. 

In 2017, the US FDA approved midostaurin, a multi-targeted 

protein kinase inhibitor, for treating newly diagnosed adult AML 

patients with FLT3 mutations. In 2017, the US FDA also ap-

proved enasidenib for the treatment of relapsed or refractory 

adult AML with an IDH2 gene mutation, while in 2018 it ap-

proved ivosidenib as the first treatment for adult patients with 

relapsed/refractory AML and an IDH1 mutation [110]. DNMT3A 

mutations tend to be associated with shortened overall survival 

[111], and TET2 mutations are often associated with a poor 

prognosis in cytogenetically normal AML [112-114]; however, 

patients with TET2 mutations may respond to hypomethylating 

agents [115]. Mutations in ASXL1, KMT2A, or TP53 are gener-

ally associated with poor prognosis [116]. The 2017 World 

Health Organization (WHO) classification recognizes AML with 

mutated NPM1, CEBPA, and RUNX1 as specific entities [117]. 

Another successful example of clinical NGS application is in 

lung cancer. Certain mutations in several genes, such as EGFR, 

ALK, and ROS1, are targetable driver mutations [118-120]. 

There are several US FDA-approved EGFR inhibitors, such as 

afatinib, gefitinib, erlotinib, and osimertinib, for NSCLC patients 

with these mutations. Lung cancer patients with ALK rearrange-

ments (e.g. EML4-ALK) may benefit from US FDA-approved 

ALK-inhibitors, including crizotinib, alectinib, and ceritinib [121]. 

ROS1 mutations are present in 1-2% of NSCLC patients who 

may be sensitive to crizotinib and entrectinib, approved by the 

US FDA in 2016 and 2019, respectively [122, 123]. According 

to the 2018 guidelines of the College of American Pathologists, 

the International Association for the Study of Lung Cancer, and 

the Association for Molecular Pathology, testing for mutations in 

EGFR, ALK, and ROS1 is required for all advanced-stage lung 

cancers; if these are negative, additional targetable alterations in 

BRAF, MET, RET, ERBB2, and KRAS can be tested [124]. The 

use of NGS technology in lung cancer tests has proven reliable, 

cost-effective, and efficient [92]. 

Cancer type-agnostic biomarkers 
In addition to disease-specific biomarkers, a few pan-cancer 

biomarkers have been identified, including MSI, TMB, and neu-

rotrophic tropomyosin-related kinase (NTRK). MSI is caused by 

the inactivation of the DNA mismatch repair (MMR) system and 

has been found in many types of primary cancers [125, 126]. 

In May 2017, the US FDA approved the PD-1 inhibitor pembro-

lizumab (Keytruda) for treating adult and pediatric patients with 

unresectable or metastatic solid tumors that have been identi-

fied as MSI-high (MSI-H) or MMR deficient (dMMR) [127]. This 

was the first time that a cancer treatment was approved on the 

basis of a common biomarker, irrespective of the tissue of ori-

gin. Furthermore, the US FDA approved other drugs, including 

nivolumab (Opdivo) and combination of nivolumab and ipilim-

umab (Yervoy, a cytotoxic T-lymphocyte-associated protein 4 

(CTLA-4 inhibitor)), for treating adult and pediatric patients with 

MSI-H or dMMR metastatic colorectal cancer [128, 129]. 

NTRK is the second US FDA-approved tissue-agnostic bio-

marker for cancer treatment, which is based on the presence of 

NTRK fusions. Fusions involving members of the NTRK onco-

gene family, NTRK1/NTRK2/NTRK3, are the most prevalent in 

rare adult cancer types and a broad range of pediatric cancers, 

with increased frequency in highly aggressive cancers such as 

glioblastoma [130, 131]. In November 2018, the US FDA ap-

proved larotrectinib (VITRAKVI), an oral and selective tropomyo-

sin receptor kinase (TRK) inhibitor, for treating adult and pediat-

ric patients with metastatic or unresectable solid tumors that 

have an NTRK fusion without a known acquired resistance mu-

tation [132, 133]. In August 2019, the US FDA granted ap-

proval for another TRK inhibitor, entrectinib (ROZLYTREK), for 

adults and pediatric patients (≥12 years of age) with metastatic 

or unresectable solid tumors that have an NTRK fusion without 

a known acquired resistance mutation. Entrectinib was also ap-

proved for adults with metastatic NSCLC whose tumors are 
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ROS1-positive [134, 135].

TMB is another tissue-agnostic marker for potential response 

to immunotherapy. TMB can be used to identify patients most 

likely to benefit from immunotherapy across a wide range of 

cancer types [136, 137]. TMB can be accurately measured 

through NGS targeting a large panel of gene (e.g., F1CDx), ES 

(e.g. NantHealth Omics Core), or GS. Calculation of TMB and 

identification of MSI status can be simultaneously performed in 

a single NGS-based test.

Clinical trials
Another application of NGS in oncology is identifying and enroll-

ing patients into the appropriate clinical trials. There are two 

kinds of clinical trials: umbrella trials and bucket trials (also 

known as basket trials) [138, 139]. An umbrella trial enrolls pa-

tients with a type of morphologically defined cancer and assigns 

them to a treatment arm on the basis of the genetic mutations 

detected in their cancer; many different treatment arms exist un-

der the umbrella of a single trial. In a basket trial, patients with 

different cancers, but sharing the same genetic abnormality, are 

enrolled to test a new drug against the common genetic altera-

tion. An example of a basket trial is the ongoing NCI-MATCH 

(National Cancer Institute -Molecular Analysis for Therapy 

Choice) trial launched in 2015 by the US NCI [140]. Thousands 

of cancer biopsies from patients undergo NGS to identify genetic 

abnormalities that may respond to selected targeted therapies.

Application of NGS in minimal residual disease (MRD) 
monitoring and liquid biopsy
MRD refers to the small number of cancer cells that remain in 

the body during or after cancer treatment. MRD can be used to 

measure the effectiveness of treatment, predict the risk of re-

lapse, confirm or monitor remission, and potentially identify an 

early relapse of the cancer [141]. The most widely used tests for 

measuring MRD include flow cytometry, real-time quantitative 

PCR, digital PCR, and NGS. Flow cytometry or PCR-based tests 

can usually measure MRD down to 1 in 10,000 or 1 in 100,000 

cells [142, 143]. The ClonoSEQ test, developed by Adaptive 

Biotechnologies (Seattle, WA, USA), is an NGS-based test for as-

sessing and monitoring MRD in patients with multiple myeloma 

and B-cell acute lymphoblastic leukemia. It was approved by 

the US FDA in 2018 and has been covered by Medicare and 

private health insurers since 2019 [144, 145]. This test detects 

as few as one cancer cell in one million healthy (<10-6) cells. 

The company is also validating this test for other disorders, such 

as chronic lymphocytic leukemia and non-Hodgkin’s lym-

phoma. Recently, the US FDA issued draft guidelines on the 

use of MRD assessment in trials involving patients with hemato-

logic malignancies [6]. 

Cancer heterogeneity, limited cancer biopsy samples, and in-

vasive procedures are some of the challenges in molecular diag-

nostics and disease monitoring of solid tumors [146]. Liquid bi-

opsy, which tests circulating cancer cells, circulating cell-free 

cancer DNA/RNA, or exosomes in blood or other bodily fluids, 

such as urine and cerebrospinal fluid (CSF), shows great prom-

ise for MRD detection, real-time monitoring of disease progres-

sion, therapy selection, and cancer diagnosis during early stages 

of the disease [147-150]. In 2016, the US FDA approved the 

Cobas EGFR Mutation Test v2, a PCR-based liquid biopsy test 

from Roche, for detecting specific EGFR mutations in blood 

samples. This test can be used to identify patients with meta-

static NSCLC who would be eligible for treatment with erlotinib 

(Tarceva) [151]. Several large NGS-based liquid biopsy tests are 

available, including Guardant360 (Guardant Health) and Foun-

dationOne Liquid (Foundation Medicine); however, these have 

yet to be approved by the US FDA [152]. The FDA has granted a 

breakthrough device designation for several blood-based cancer 

tests, such as the Grail multi-cancer blood test for early cancer 

detection [153] and the PapGene test for detecting ovarian and 

pancreatic cancers based on a combination of circulating cancer 

DNA (ctDNA) and protein biomarkers [154]. Other investiga-

tional liquid biopsy tests include TruSight Oncology 500 ctDNA 

(Illumina), Oncomine Pan-Cancer Cell-Free Assay (Thermo 

Fisher), and CancerSEEK (Thrive Earlier Detection Corp, Cam-

bridge, MA, USA) [155].

According to the joint review issued by the American Society 

of Clinical Oncology and the College of American Pathologists, 

more evidence is needed to demonstrate the clinical utility of liq-

uid biopsy [156]. Additional challenges need to be addressed 

before a wide application of liquid biopsy in clinical settings. For 

example, the fraction of cancer-derived DNA in blood plasma 

samples is generally low; therefore, modified sample preparation 

methods and much deeper sequence coverage are needed to 

achieve sufficient sensitivity. Furthermore, clonal hematopoiesis 

may potentially confound the results of liquid biopsy tests [157]. 

CLINICAL APPLICATIONS FOR DIAGNOSIS OF 
INFECTIOUS DISEASES 

Globally, infectious diseases remain one of the most significant 

overall causes of morbidity and mortality [158]. Proper and ac-

curate diagnosis of a pathogen is critical for patient treatment, 
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as a delayed or incorrect diagnosis can lead to a multitude of 

adverse events including unnecessary use or misuse of antibiot-

ics, increased healthcare costs, and worsened patient outcomes 

[159-162]. Many of these issues are exacerbated in settings, 

such as poor and under-served areas, in which tools for rapid, 

accurate diagnoses are limited [163]. 

Sequencing bacterial DNA and RNA has been used for de-

cades to identify casual pathogens and resistance genes in clin-

ical isolates and even before the onset of NGS, could yield rapid 

results with high specificity [164, 165]. However, with the ad-

vance of NGS technologies, clinicians and laboratory profession-

als have seen tremendous growth and opportunity for using se-

quencing as a front-line diagnostic tool. Below, we summarize 

and briefly highlight the current applications of NGS for infec-

tious diseases including a brief comparison of NGS methods, 

epidemiological surveillance, identification of pathogens and 

their resistance markers for diagnosis and treatment, and the 

importance of the host microbiome. 

NGS strategies for infectious diseases 

Before discussing the utility of NGS in clinical care of infectious 

disease, it is important to understand the three main types of 

NGS methods and how they differ. Targeted NGS uses panels of 

known pathogen sequences to screen clinical isolates. The pan-

els can be specific for or target multiple types of pathogens in-

cluding bacteria [166], viruses [167], and even eukaryotic or-

ganisms [168]. These panels can also target pathogens known 

to be involved in particular illnesses, such as gastrointestinal 

[168] or respiratory [169] diseases, and have been optimized 

for use with specific sample types, such as CSF [170]. The ad-

vantages of these panels are their high specificity, sensitivity, 

rapid turnaround time, and ability to sequence directly from a 

host isolate [166, 168, 170]. However, the downsides include 

their limited scope and inability to identify novel pathogens or 

antibiotic resistance markers. 

In the case of bacterial samples, WGS enables the sequenc-

ing of an entire pathogen genome including plasmids. This 

broad sequencing allows for the identification of antibiotic resis-

tance profiles, which can be used to inform first-line drug use 

decisions [171]. The drawback of WGS for bacterial samples is 

that it usually requires a separate culture step to ensure the 

sample is free of contaminant or commensal bacteria; however, 

sequencing directly from a host isolate and skipping culture has 

been performed with targeted enrichment [172]. Furthermore, 

while WGS datasets accurately define known drug resistance 

markers, the discovery of novel mutations and their effects on 

phenotype bring added uncertainty to the test [173, 174].

Metagenomic NGS (mNGS) can use samples directly ob-

tained from a patient and amplify the sequences of all organ-

isms in the sample, including host sequences. This unbiased 

approach allows for the detection of multiple types of pathogens 

in one sample (and even the host response to them) and can 

be particularly useful when targeted or less comprehensive tests 

are not diagnostic [175-177]. Furthermore, mNGS can detect 

pathogen sequences that comprise a very small portion of the 

overall sequenced reads; such low-level sequences can easily 

be missed by other methodologies [178]. However, there are 

significant drawbacks to using an mNGS approach, which in-

clude the cost and complexity of the process, as well as the 

need for optimization and standardization of each step in the 

test, from sample preparation to data analysis [179-181]. Owing 

to its unbiased nature, mNGS requires additional considerations 

such as the low ratio of pathogen to host DNA or RNA; unless 

the host genome or transcriptome are also being analyzed, the 

host DNA/RNA should be removed [182]. In addition, the pres-

ence of commensal bacteria in host samples [183] and con-

taminated laboratory reagents [184-186] can also confound 

testing, leading to incorrect results. 

Epidemiology and public health 
During infectious disease outbreaks, it is critical to rapidly track 

the transmission, spread, and evolution of pathogens; NGS has 

been playing an increasingly critical role in these processes. One 

case that highlights the potential speed of NGS in the field is the 

West Africa Ebola virus (EBV) outbreak of 2015. Researchers 

utilized third generation Nanopore technology (as described in 

the NGS Technologies section above) to track EBV transmission 

of separate viral lineages across countries by monitoring muta-

tion rates [187]. Using a MinION sequencer (Oxford Nanopore 

Technologies), researchers were able to sequence over 140 EBV 

samples directly in the field [187]. Sequencing on the machine 

itself generally took less than one hr and with cloud-based com-

puting, data were ready to be analyzed in less than a day. Only 

days after the outbreak of new coronavirus associated pneumo-

nia in Wuhan, China, the sequence of the new coronavirus, 

SARS-CoV-2, was determined using mNGS, which facilitated 

disease diagnosis and surveillance, and the development of ef-

fective drugs for disease treatment and vaccines for prevention 

[188].

NGS has also facilitated disease outbreak tracking in clinical 

settings, particularly in cases of healthcare-acquired infections. 

In one study, the spread of adenovirus in a neonatal intensive 
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care unit was linked to eye examinations, based on confirmation 

that the exact viral sequence was found in both affected pa-

tients and the equipment used during their examinations [189]. 

In another hospital, an outbreak of a fungal bloodstream infec-

tion in 18 patients receiving anti-nausea medication was found 

to be connected to contaminated medication, with all patients 

and contaminated containers testing positive for an identical 

pathogen identified by WGS [190]. In another case of unex-

pected transmission, researchers proposed a reasonable hy-

pothesis for the spread of a highly resistant Klebsiella pneumo-
nia strain based on WGS, which linked all cases to an index pa-

tient discharged three weeks before any others demonstrated 

symptoms [191]. NGS can also provide critical insights into the 

diversity of clinical isolates and can group strains based on their 

genetic profiles during outbreaks, which is particularly important 

in the context of identifying emergent resistant or virulent strains 

[192, 193]. 

Finally, while not directly related to clinical care, NGS is also 

advancing and improving procedures for public health related 

surveillance. WGS is currently being used alongside traditional 

methods for tracking and sourcing foodborne illnesses, showing 

improved speed and rates of detection [194-196]. Furthermore, 

NGS has proven valuable in monitoring the most prevalent 

strains of influenza, which has important impacts on the devel-

opment of annual vaccines [197, 198]. 

Pathogen identification and diagnosis 
Numerous examples in the literature describe the use of NGS to 

identify bacterial, viral, or eukaryotic pathogens in a wide range of 

sample types including synovial fluid, CSF, feces, corneal tissue, 

blood, plasma, and nasopharyngeal swabs [199-206]. Rather 

than describing these routine applications of NGS in detail, we 

will instead highlight a few cases that show the advantages of us-

ing NGS tests as opposed to traditional laboratory practices. 

Traditional diagnostic laboratory methods, such as culture-

based or PCR tests, are generally reliable and cost-effective for 

common pathogens; however, NGS and mNGS can specifically 

provide tremendous value in cases, where there is no a priori 
knowledge of the pathogen. One extreme example is a case of 

an adolescent with severe combined immunodeficiency who 

presented with infection symptoms for months without a diag-

nosis [207]. Nearly 40 different tests using multiple sample 

types, ranging from culture to PCR-based methods, proved non-

diagnostic. Finally, the use of mNGS with CSF identified a very 

low number of reads that matched to Leptospira santarosai, 
demonstrating proof of a specific bacterial infection. Following 

this discovery, the patient was administered the appropriate an-

tibiotics and responded to the treatment.

In another case, an mNGS approach was used to identify a 

likely cause of death in three men, who developed nearly identi-

cal CNS symptoms before dying, but showed no evidence of an 

infectious pathogen using multiple diagnostic tests [208]. The 

three men were squirrel breeders, had shared squirrels for 

breeding, and all three had previously been exposed to bites or 

scratches. Through mNGS of multiple tissue types isolated from 

a squirrel handled by one of the patients, the researchers identi-

fied a low level of sequences that corresponded to the bornavi-

rus family, though this virus was ultimately determined to be 

novel based on phylogenetic studies. The bornavirus was con-

firmed using quantitative reverse transcription PCR in both the 

squirrel and patient brain tissue, as well as by immunohisto-

chemical staining of patient tissues. There are multiple other ex-

amples of cases, where NGS found an unexpected or previously 

undiagnosed pathogen including eukaryotic organisms such as 

amoebae [209, 210]. 

In many settings, fast detection of the pathogen, as well as its 

associated resistance or virulence markers, is extremely impor-

tant for appropriate and timely treatment; rGS can identify treat-

ment options faster than conventional methods. Nanopore se-

quencing, which is as fast, or faster than standard approaches, 

has been used to identify pathogens, as well as antibiotic resis-

tance markers [211, 212]. At one institution, Nanopore se-

quencing was found to shorten the average time to appropriate 

antibiotic therapy in pneumonia patients by roughly 24 hrs com-

pared with standard methods, while delivering results in eight 

hrs post sequencing [213]. NGS is particularly helpful in situa-

tions where results are delayed or are non-diagnostic by culture, 

and can detect antimicrobial resistance or virulence markers at 

low frequencies, while still demonstrating sensitivity and speci-

ficity comparable to standard practices [172, 214-218]. 

NGS can also resolve discrepancies between standard cul-

ture-based and molecular-based diagnostic approaches and 

identify multiple organism co-infections, which may confound 

standard testing results [219, 220]. Furthermore, culture may 

be less effective as a diagnostic test when used to identify 

pathogens from patients already treated with antibiotics; in one 

study NGS showed significantly higher sensitivity than culture 

methods in patients with prior antibiotic exposure [221]. Finally, 

NGS using cell-free DNA in urine or blood has proven effective 

for diagnosing additional pathogens in cases where culture-

based methods have failed [175, 204, 205].
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Integrated sequencing of pathogens and the host
Up until now, we have focused on the sequencing and identifica-

tion of infectious organisms. However, using datasets of the 

host’s own microbiome, as well as changes in host gene expres-

sion, can greatly aid the predictive value of testing. One study ex-

amining lower respiratory tract infections showed that an ap-

proach combining the gene expression signature of a patient’s 

immune response measured by profiling the host transcriptome 

via RNA-sequencing, alongside mNGS to identify and discern 

between the patient’s own commensal flora and pathogen ge-

nomes, was able to accurately identify the causative pathogen 

and achieve high sensitivity and specificity, with a true negative 

predictive value of 100% [222]. In addition to aiding in the inter-

pretation of diagnoses, the host microbiome can also provide in-

sight into the general wellness of a patient. For example, virome 

sequencing in immunocompromised patients post-organ or stem 

cell transplant can gauge the competency of the host immune 

system, as viral load can increase with use of immunosuppres-

sant drugs [223-225]. Changes in the diversity of commensal 

bacterial flora can highlight disease onset or progression [226, 

227]. Conversely, rescue of that diversity has been monitored us-

ing NGS by comparing results from a phylogenetic microarray 

alongside improved symptoms in patients with Clostridium diffi-
cile infections who were administered treatments such as fecal 

transplants [228]. Overall, the application of NGS has demon-

strated diagnostic utility in infectious diseases, and further ad-

vancements in sequencing technologies will open new avenues 

for integrating both host and pathogen sequencing data, to pro-

vide a more holistic diagnosis and inform clinical management.

CHALLENGES AND FUTURE PERSPECTIVES

Commonly used NGS technologies have limitations such as 

short reads and relying on clonal PCR to generate enough sig-

nals for detection. New technologies with long reads and single 

molecular sequencing (e.g., Pacific Biosystems and Oxford 

Nanopore) would theoretically be better and require less starting 

material; however, their high error rate prevents them from be-

coming the method of choice. GS is predicated to play an in-

creasingly important role in laboratory medicine, as it does not 

require an upfront enrichment step and produces uniform cov-

erage of the whole genome; however, data analysis, especially 

structural variant analysis, variant interpretation, and data stor-

age, remains arduous in GS [229, 230]. In oncology, cancer 

heterogeneity is a challenge for sampling, variant detection, 

variant interpretation, and treatment recommendations. New 

methods, such as single cell sequencing [231] and liquid bi-

opsy, are promising for addressing this issue. Germline altera-

tions are also confounding issues in somatic cancer diagnostics; 

sequencing matched cancer and normal tissues simultaneously 

from the same patient is a plausible solution, although obtaining 

matched normal tissue has proven difficult in certain clinical sit-

uations [232].

The implementation of NGS tests in clinical diagnostic labora-

tories requires many resources [233]. Test validation, bioinfor-

matics support, and data storage according to the guidelines are 

required before NGS test implementation and these are cost pro-

hibitive for many small laboratories. Additionally, the current cost 

of clinical NGS tests remains high, limiting the usage of large 

panel testing, ES, and GS in cancer. Another obstacle of NGS ap-

plication in laboratory medicine is insurance coverage. In 2018, 

the CMS finalized the National Coverage Determination, which 

covers NGS tests for patients with advanced cancer (https://www.

cms.gov/medicare-coverage-database/details/nca-tracking-sheet.

aspx?NCAId=296). In 2019, the CMS proposed a new national 

coverage policy for germline NGS panels for cancer patients, 

which will be finalized in 2020 (https://www.cms.gov/newsroom/

press-releases/cms-expands-coverage-next-generation-sequencing-

diagnostic-tool-patients-breast-and-ovarian-cancer).

CONCLUSIONS

NGS is a breakthrough technology that opens new opportunities 

for molecular diagnostics. Many clinical laboratories have already 

adopted NGS technology to identify causal variants for the diag-

nosis of constitutional disorders, genomic profiling for precision 

oncology, and pathogen detection for infectious diseases. The 

NGS technologies and bioinformatics tools will continue to evolve 

and become the major diagnostic means and standard of care 

for genomic analysis to meet the ever-increasing demands of 

precision medicine.
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