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Electroencephalography (EEG) produces time-series data of neural oscillations in the brain, 
and is one of the most commonly used methods for investigating both normal brain func-
tions and brain disorders. Quantitative EEG analysis enables identification of frequencies and 
brain activity that are activated or impaired. With studies on the structural and functional 
networks of the brain, the concept of the brain as a complex network has been fundamen-
tal to understand normal brain functions and the pathophysiology of various neurological 
disorders. Functional connectivity is a measure of neural synchrony in the brain network that 
refers to the statistical interdependency between neural oscillations over time. In this review, 
we first discuss the basic methods of EEG analysis, including preprocessing, spectral analy-
sis, and functional-connectivity and graph-theory measures. We then review previous EEG 
studies of brain network characterization in several neurological disorders, including epilepsy, 
Alzheimer’s disease, dementia with Lewy bodies, and idiopathic rapid eye movement sleep 
behavior disorder. Identifying the EEG-based network characteristics might improve the un-
derstanding of disease processes and aid the development of novel therapeutic approaches 
for various neurological disorders. 
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INTRODUCTION

Electroencephalography (EEG) produces time-series data of the electrical field generated 
by neuronal activities within the brain.1 Since synaptic activity is the main source of extra-
cellular current flow, the summated excitatory and inhibitory postsynaptic potentials of 
cortical pyramidal neurons are the main contributors to the field potentials measured by 
EEG.2 The field potentials recorded using EEG exhibit oscillations that reflect rhythmic fluc-

ORCID

Jun-Sang Sunwoo
https://orcid.org/0000-0001-8834-0568
Kwang Su Cha
https://orcid.org/0000-0002-7710-8648
Ki-Young Jung
https://orcid.org/0000-0001-5528-9081

https://crossmark.crossref.org/dialog/?doi=10.14253/acn.2020.22.2.82&domain=pdf&date_stamp=2020-10-28


83http://www.e-acn.org https://doi.org/10.14253/acn.2020.22.2.82

Jun-Sang Sunwoo, et al. Computational EEG analysis for brain network

Computational electroencephalogra-
phy analysis for characterizing brain 
networks
Jun-Sang Sunwoo1*, Kwang Su Cha2*, Ki-Young Jung2

1Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
2Department of Neurology, Seoul National University Hospital, Seoul, Korea

Electroencephalography (EEG) produces time-series data of neural oscillations in the brain, 
and is one of the most commonly used methods for investigating both normal brain func-
tions and brain disorders. Quantitative EEG analysis enables identification of frequencies and 
brain activity that are activated or impaired. With studies on the structural and functional 
networks of the brain, the concept of the brain as a complex network has been fundamen-
tal to understand normal brain functions and the pathophysiology of various neurological 
disorders. Functional connectivity is a measure of neural synchrony in the brain network that 
refers to the statistical interdependency between neural oscillations over time. In this review, 
we first discuss the basic methods of EEG analysis, including preprocessing, spectral analy-
sis, and functional-connectivity and graph-theory measures. We then review previous EEG 
studies of brain network characterization in several neurological disorders, including epilepsy, 
Alzheimer’s disease, dementia with Lewy bodies, and idiopathic rapid eye movement sleep 
behavior disorder. Identifying the EEG-based network characteristics might improve the un-
derstanding of disease processes and aid the development of novel therapeutic approaches 
for various neurological disorders. 

Key words: Electroencephalography; Functional connectivity; Epilepsy; Dementia

tuations in the excitability of neurons. The frequency of neu-
ral oscillations typically ranges from 0.05 Hz to 500 Hz,3 and 
the physiological mechanisms and functional implications 
underlying these oscillations vary with the frequency band.4 
The EEG power spectral density reflects the distribution of 
energy in different frequency bands. Spectral analysis can be 
used to determine whether neural oscillations within a cer-
tain frequency range are associated with particular cognitive 
processes or brain dysfunction.5 

Communication within the brain network requires neuro-
nal synchronization or functional connectivity, which refers 
to the statistical interdependency between neural oscil-
lations over time.6 The concept of the brain as a complex 
network has been fundamental to understanding normal 
brain functions as well as the pathophysiologies underlying 
various neurological disorders.7 In this paper, we first discuss 
the methodology for EEG analysis, and then review previous 
EEG studies of neurological disorders, with a focus on the 
characterization of brain networks.

METHODS

EEG preprocessing
EEG recordings are frequently contaminated with physiolog-
ical and nonphysiological artifacts. The physiological artifacts 
include electrical potentials generated by biological activi-
ties, which are largely generated by eye movements, muscle 
and cardiac activities, and sweat. The nonphysiological arti-
facts can originate from anywhere near the EEG recording 
system, such as the electrode-scalp interface, devices, and 
adjacent environment. Identifying discriminative features 
by analyzing the EEG signals requires the artifacts to be re-
moved. Below we introduce some techniques for cleaning 
EEG signals that can remove these artifacts.

Filtering
Unfiltered EEG signals are usually contaminated with arti-
facts such as 60-Hz line noise, muscle activities, background 
noise, and very-low-frequency noise. These contaminants 
tend to predominate within specific frequency bands, and 
so they can be effectively reduced by applying appropriate 
band-pass filtering. 

The bandwidths of filters applied to EEG signals need to 

reflect the artifact-specific frequency ranges. For example, 
highpass filters (e.g., >0.1 Hz) are applied to remove low-fre-
quency drifts, while lowpass filters (e.g., <50 Hz) are applied 
to remove high-frequency noise such as that due to muscle 
activity. A notch filter is commonly used to eliminate power 
line noise, since is only present within a very narrow fre-
quency band. In addition to the frequency bands of artifacts, 
the frequency range of the signals of interest should be 
considered when selecting the filters, such as slow oscilla-
tions (0.3-1 Hz) in non-REM (rapid eye movement) sleep and 
high-frequency oscillations (>80 Hz) in epilepsy.

Reject of bad EEG segments
Bad EEG segments are those that are extremely contaminat-
ed with artifacts in the entire channel, and they should be 
removed from the raw EEG signals. For example, excessive 
electromyography bursts that are widely spread over 20 Hz 
and instantaneous popping bursts with relatively large am-
plitudes around the forehead, ears, and neck are considered 
as bad segments. The common approach to remove bad 
segments is the manual inspection of individual segments 
by well-trained experts. Another common approach is to 
use automatic rejection criteria, such as when the peak-to-
peak amplitude exceeds a certain threshold.

Independent components analysis for artifact removal
Independent components analysis (ICA) is a source-sep-
aration technique that attempts to identify independent 
sources of variance.8,9 Applying ICA to multichannel EEG 
data involves breaking down the EEG time-series data into a 
set of independent components (ICs), which include brain, 
eye, cardiac, and muscle activities. Artifacts can be rejected 
with minimal loss of the actual brain activity by subtracting 
artifact-related ICs from EEG signals.10,11 Artifact-related ICs 
can be identified based on their topographic characteristics, 
across-trial temporal distributions, and frequency distribu-
tions. Artifact-embedded ICs can be distinguished from 
brain-related ICs either manually or automatically. After arti-
fact-embedded ICs have been removed, the remaining ICs 
are reorganized into artifact-removed EEG data.

Spectral analysis
A frequency-domain analysis is important for characterizing 
specific rhythmic or oscillating patterns of neural activity. 
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Spectral density estimations can quantify brain oscillations 
in the form of the signal power or energy distribution across 
frequency. The Fourier transform is used to identify the fre-
quency components in a temporal signal. Welch’s method is 
the most-popular method for estimating the spectral densi-
ty in EEG analysis.12 This method first divides the signal of N 
samples into K data segments of length M overlapping by D 
points. The periodogram of each segment is then calculated 
by computing the discrete Fourier transform. Finally, the 
spectral density is estimated by averaging the periodograms 
of all segments. 

Some aspects need to be considered when applying 
Welch’s method to EEG data. The EEG segments should be 
long enough to provide the required frequency resolution. 
The appropriate length of the overlapping samples, which 
subsequently influences K and the variance of the spectral 
estimate, should also be considered. Choosing the appro-
priate window function is crucial for optimizing spectral es-
timation. A rectangular window provides the best ability to 
resolve adjacent sinusoids (i.e., high resolution), but its wide-
ness might mask important details even at lower levels (i.e., 
low dynamic range). Nonrectangular windows such as the 
Hamming and Hann windows can redistribute the spectral 
leakage to places where it causes the least harm (i.e., high 
dynamic range), at the expense of increasing this leakage in 
the vicinity of the original component (i.e., low resolution).

Connectivity analysis
One of the most-informative features of EEG data is the 
functional connectivity underlying the interregional neural 
interactions in the brain. EEG connectivity analysis can pro-
vide important evidence of functional interactions between 
the neural systems operating in each frequency band. Below 
we introduce several promising connectivity measures used 
in EEG data analysis.

Coherence
A coherence analysis can assess the linear relationship be-
tween two time series within each frequency bin.13 Assume 
that X(t) and Y(t) represent the EEG signals measured by 
electrodes X and Y, respectively. Time-domain signals X(t) 
and Y(t) are first converted into the frequency domain using 
the fast Fourier transform or wavelet transform. For each fre-
quency bin f, the individual spectral power density Sxx(f) and 

Syy(f) and their cross-spectrum power density Sxy(f) are then 
estimated. Coherency function Kxy(f) is calculated as the ratio 
between the cross-spectrum power density and the individ-
ual spectral power density of the two signals:

Finally, the coherence in frequency bin f is computed as

The coherence value ranges from 0 to 1, where a value 
of 0 indicates no linear dependence between X(t) and Y(t) 
at frequency f, and a higher coherence value indicates the 
presence of greater statistical dependence between the two 
signals. 

Coherence has been widely used in EEG connectivity stud-
ies, but it has some limitations: 1) it can only assess the linear 
dependence between two signals, and hence any nonlineari-
ty in the relationship is ignored, 2) it is significantly influenced 
by the signal amplitudes, and 3) it cannot dissociate volume 
conduction from true interactions between the brain regions.

Phase-locking value 
Phase-synchronization-based measures utilize the phase 
components of EEG signals within a given frequency band. 
If two oscillatory activities are synchronized with a constant 
phase difference, it can be assumed that phase synchro-
nization exists. Among the various connectivity methods, 
the phase-locking value (PLV) is the most commonly used 
measure of phase synchronization.14,15 To analyze the PLV, 
bandpass filtering is applied to transform EEG signals into 
narrowband signals within specific frequency bands. The in-
stantaneous phase at each time point is calculated from the 
narrowband signal and its Hilbert transform as follows:

To quantify the degree of phase synchronization, the PLV 
between two electrodes j and k is calculated for each time 
point t by averaging the phase difference over N segments 
as follows:
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Where N represents the total number of segments, n 
denotes a specific segment, and ϕj denotes the phase of sig-
nals of electrode j at time t of the nth segment. It is then de-
termined whether the PLVs between two specific electrodes 
indicate the presence of significant phase synchronization. 
This involves checking whether the PLV change under inves-
tigation is meaningful with respect to the PLVs of surrogate 
data (obtained by randomly shuffling the segments). The 
level of significance is determined using the distribution of 
the PLVs calculated from the surrogate data.14,15 The signif-
icance cutoff is generally set at 1%, which means that the 
phase synchronization is significantly increased if it is higher 
than the first percentile of the PLV values from surrogate 
data.

Weighted phase-lag index 
Long-range phase synchronizations between EEG signals 
can be calculated using the weighted phase-lag index 
(wPLI), which is based on the imaginary component of the 
cross-spectrum between a pair of EEG signals and is known 
to be minimally affected by volume conduction.16 A short-
time Fourier transform is used to extract the instantaneous 
phase perturbation of the oscillations in EEG signals. The 
cross-spectrum between EEGs from electrodes i and j (des-
ignated as Xi,j) is calculated using the extracted complex-val-
ued Fourier spectra vector Z as follows:

The wPLI between two electrodes is calculated as follows:

where  is the imaginary part of cross-spectrum X 
between signals i and j, and sgn(∙) denotes the sign function. 
wPLI ranges from 0 to 1, where 0 indicates no coupling and 
1 indicates perfect phase synchrony between the two sig-
nals (Fig. 1).

Graph-theory analysis
A network is defined as a set of nodes (vertices) and edges 
(connections), where the edge between two vertices rep-
resents some kind of interaction or connection between 
them (Fig. 2). Graph theory is a mathematics technique that 
can be used to understand the topological properties of 

complex brain networks, such as their modularity, hierarchy, 
and centrality, and the distribution of network hubs. There 
is a wide variety of graph-theory measures, among which 
the essential ones are the degree distribution, clustering 
coefficient, and path length.17 First, the degree refers to the 
number of connections that link a node to the rest of the 
network, and its distribution is defined as likelihood p(k) 
that a randomly chosen vertex will have degree k. Random 
networks have a symmetrically centered degree distribution, 
whereas complex networks generally have non-Gaussian 
distributions with a long tail toward high degree values. Sec-
ond, clustering coefficient C is a measure of the clustering of 
local networks. When the nearest neighbors of a vertex are 
directly connected to each other, they can be considered to 
form a cluster. Clustering coefficient Ci is therefore defined 
as the ratio of the number of real edges between neighbors 
of a vertex i to the maximum possible number of edges. 
Random networks have low clustering coefficients, whereas 

Fig. 1. Functional connectivity maps in patients with idiopathic rapid 
eye movement (REM) sleep behavior disorder. The weighted phase-
lag index (wPLI) values during phasic and tonic REM sleep are depicted. 
The color scale indicates the connectivity strengths as quantified by the 
mean wPLI values of the nodes (electrodes), and the thicknesses of the 
black lines indicate the wPLI values of the edges (connections).
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regular and complex networks are characterized by high 
clustering coefficients. Third, the characteristic path length 
is a graph measure to characterize the global network struc-
ture. It is defined as the minimum number of edges that 
have to be traveled between two vertices, which indicates 
how easily (or efficiently) information is transferred within 
the network. 

Further information on other graph-theory measures can 
be found in the literature.18 It is important to choose an ap-
propriate graph-theory measure that reflects the network 

characteristics of interest. The network measures can be cal-
culated and the differences between groups or conditions 
can be compared to assess whether and how the network 
structure has changed, such as in pathological conditions. 

EEG ANALYSIS IN EPILEPSY

Epilepsy is a chronic condition of the brain characterized by 
an enduring predisposition to the generation of recurrent 

Fig. 2. Network topology in patients with idiopathic rapid eye movement sleep behavior disorder (A) and controls (B). Resting-state electroenceph-
alography functional connectivity in the theta band was measured by the phase-lag index, and the network structures were determined using the 
minimum spanning tree algorithm. 

A B
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and unprovoked seizures.19 Epileptic seizures are charac-
terized by excessive synchronous neuronal activities in the 
brain that result in the transient occurrence of various signs 
and symptoms, such as abnormal sensations, behavior ar-
rest, and tonic and clonic movements. EEG has played an 
important role in the diagnosis of epilepsy, classification of 
seizure types, localization of the epileptogenic focus, and 
treatment follow-up of patients with epilepsy. 

There is increasing evidence that epilepsy is a network 
disease.20 Multiple brain regions and their abnormal con-
nections are involved in the generation of seizures and 
the maintenance of epileptogenicity. Previous stereo-EEG 
(SEEG) studies investigated ictal and interictal functional 
connectivities in patients with mesial temporal lobe epilepsy 
(mTLE).21,22 A nonlinear correlation coefficient was measured 
for estimating the functional connectivity between two re-
gions of interest within the mesial temporal lobe. The func-
tional connectivity between the limbic structures was found 
to increase significantly during the preictal period, which 
might represent a synchronized condition required for the 
initiation of seizure activity.21 During the interictal period, 
patients with mTLE showed higher functional connectivity 
within the mesial temporal lobe structures in the theta, al-
pha, beta, and gamma frequency bands compared with pa-
tients with non-mTLE.22 This finding suggests that functional 
connectivity during the interictal period is also enhanced in 
the epileptogenic zone (EZ). 

Previous imaging studies of patients with epilepsy have 
shown that the disruption of structural and functional net-
works is widely distributed beyond the EZ.23 Furthermore, 
the degree of functional connectivity has been found to be 
associated with postsurgical outcomes in patients with epi-
lepsy. Patients with mTLE who were not free of seizures after 
surgery showed a higher connectivity between structures 
involving not only the ipsilateral temporal lobe but also the 
extratemporal and contralateral lobes.24 Since complete 
resection of the EZ is a major prognostic factor, an increased 
extent and strength of functional connectivity around the 
resection area might be associated with the poor seizure 
outcome. Another SEEG study investigated functional con-
nectivity in the EZ, propagation zone (PZ), and noninvolved 
zone (NIZ) in patients with malformation of cortical devel-
opment,25 and found that connectivity was stronger in both 
the EZ and PZ than in the NIZ. Compared with seizure-free 

patients, not-seizure-free patients exhibited increased func-
tional connectivity both within the NIZ and between the 
NIZ and PZ. These findings suggest that a wider extent of 
the epileptogenic brain network is associated with a worse 
surgical outcome, and that the boundaries of the EZ cannot 
be determined based only on the presence of interictal epi-
leptiform discharges and ictal activity. 

A graph-theory approach has been used to examine 
changes in structural and functional connectivity, and to 
understand the pathophysiology of epilepsy. The network 
topology can be quantitatively measured and characterized 
from the perspective of global and regional networks. A 
scalp EEG study found that patients with epilepsy showed 
significant increases in both the clustering coefficient and 
characteristic path length compared with controls, sug-
gesting decreased global integration and increased local 
connectivity in the epileptic brain network.26 In agreement 
with this, a higher clustering coefficient with a more-regular 
network structure in the theta band was found in patients 
with temporal lobe epilepsy (TLE) compared with controls.27 
Graph-theory measures were also applied to evaluate the 
brain network changes in intracranial EEG recordings. Be-
tweenness centrality is a measure of the importance of a 
node as a hub, and this was found to decrease during ictal 
propagation, indicating that the epileptic network archi-
tecture is becoming more regular.28 Among the frequency 
bands, the gamma-band betweenness centrality network 
showed the greatest amount of overlap with the seizure-on-
set zone. Furthermore, seizure-free patients had larger num-
bers of activated nodes in the gamma band resected during 
epilepsy surgery compared with not-seizure-free patients. 
This finding might indicate that the gamma-band activity 
in the epileptic brain network plays a significant role in the 
generation and propagation of seizures. 

While several previous studies have attempted to localize 
the epileptic focus using functional connectivity analysis, 
there is no consensus regarding how the connectivity mea-
sures can be used to determine the EZ and the resection 
margin for epilepsy surgery. Further studies utilizing func-
tional connectivity data are therefore necessary to localize 
the EZ. Understanding the network characteristics of epilep-
sy might offer an opportunity to improve the probability of 
achieving seizure freedom after epilepsy surgery. 
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EEG ANALYSIS IN NEURODEGENERATIVE 
DISEASES

Most cognitive functions of the brain are based on inter-
actions between the neural populations in different brain 
regions. There is increasing evidence that cognitive dys-
functions in neurodegenerative diseases are associated with 
abnormal neural synchronization. Alzheimer’s disease (AD) 
is the most-common cause of dementia in older adults, and 
is characterized by a progressive decline in the cognitive 
functions, and it typically begins with memory impairment.29 
Previous studies applying spectral analyses to EEG data have 
found EEG slowing in patients with AD, which is character-
ized by increases in the delta- and theta-band powers and 
decreases in the alpha- and beta-band powers compared 
with controls.30 A strong correlation was found between EEG 
slowing and cognitive deficits, suggesting that dysfunction 
of information processing in the cerebral cortex contributes 
to the cognitive decline in patients with AD. 

The presence of reduced EEG functional connectivity in 
AD has been established by previous studies. Patients with 
AD showed a significant loss of EEG synchrony in the alpha 
and beta bands compared with both patients with mild 
cognitive impairment and healthy controls.31,32 The loss of 
beta-band synchronization was also associated with lower 
cognitive scores, which suggests the importance of the be-
ta-band activity in the pathophysiology of AD. A graph-the-
ory analysis of beta-band synchronization demonstrated 
that the characteristic path length was significantly longer in 
AD patients than in controls, whereas the cluster coefficient 
did not differ between these two groups.33 A longer char-
acteristic path length was associated with lower cognitive 
scores. These findings suggest that the brain network of 
AD patients is characterized by the loss of small-worldness 
and suboptimal organization. A magnetoencephalography 
(MEG) study produced similar results, wherein the phase-lag 
index in the lower alpha and beta bands was significantly 
lower in AD patients than in controls.34 A topographic anal-
ysis found that short-distance connectivity was decreased 
mainly in the frontal regions, while reduced long-distance 
connections were found in the bilateral frontoparietal and 
frontal interhemispheric connections in patients with AD. 
Network modeling indicated that functional connectivity 
was preferentially lost at high-degree nodes, suggesting that 

the network hubs are preferentially affected by the patho-
genesis of AD.

Dementia with Lewy bodies (DLB) is one of the most-com-
mon types of dementia after AD and vascular dementia. It 
is characterized by progressive cognitive decline along with 
fluctuations in attention and cognition, visual hallucinations, 
parkinsonism, and REM sleep behavior disorder (RBD).35 
EEG abnormalities in patients with DLB include the loss of 
alpha-band activity as the posterior dominant rhythm and 
the presence of slow wave transients in the temporal lobe.36 
Dominant frequencies were significantly lower in DLB pa-
tients than AD patients, while the variability in dominant 
frequencies was greater in DLB patients.37 Cognitive fluctu-
ations have been associated with variability in EEG activities. 
An EEG functional connectivity study revealed that the 
connectivity strength was lower in patients with DLB than 
in patients with AD and healthy controls, especially in the al-
pha band.38 A graph-theory analysis of alpha-band network 
topology showed decreases in degree and betweenness 
centrality, and increases in the diameter and eccentricity in 
patients with DLB. These findings suggest that the brain net-
work of DLB patients is characterized by a loss of hub nodes 
along with decreased global efficiency. 

DLB is a neurodegenerative disease exhibiting α-synucle-
inopathy; that is, it is characterized by the abnormal accumu-
lation of α-synuclein deposits.39 The main α-synucleinopathy 
phenotypes include Parkinson’s disease, multiple system 
atrophy, and DLB. One of the main clinical characteristics of 
α-synucleinopathies is RBD, which is a REM-sleep parasom-
nia characterized by dream-enacting behaviors during sleep 
and the loss of REM-sleep atonia.40 It has been established 
that idiopathic RBD (iRBD)—defined as RBD without any 
neurological disorders or triggering factors—is a prodromal 
stage of neurodegenerative α-synucleinopathy.41 More than 
70% of the patients with iRBD eventually developed par-
kinsonism or dementia after a 12-year follow-up. Previous 
EEG studies showed that patients with iRBD had higher the-
ta-band power and lower beta-band power during wake-
fulness compared with healthy controls.42 Moreover, iRBD 
patients with abnormal EEG slowing were more likely to 
subsequently develop overt neurodegenerative diseases.43 
A resting-state EEG functional connectivity study revealed 
that iRBD patients had decreased delta-band connections in 
frontal areas.44 A loss of delta-band functional connectivity 
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was associated with decreased verbal fluency. This is consis-
tent with a MEG study finding that patients with early and 
untreated Parkinson’s disease had lower delta-band connec-
tivity compared with controls.45 The results obtained in iRBD 
studies support the existence of brain network dysfunction 
at the prodromal stage of α-synucleinopathy, and that the 
pattern of network changes differ from those seen in other 
neurodegenerative diseases such as AD. 

CONCLUSIONS

Changes in brain networks are likely to play a pivotal role in 
the disease mechanisms underlying various neurological 
disorders. The patterns of altered networks are mostly asso-
ciated with deviations from the optimal pattern. Local and 
global networks can be differentially affected according to 
the pathogenesis of the underlying disease. EEG produces 
time-series data on neural oscillations, whose analysis can 
provide useful information noninvasively and with a good 
temporal resolution. However, the low spatial resolution 
and inability to measure neural activities from deep brain 
structures are limitations of scalp EEG. Researchers should 
be aware of both the strengths and weaknesses of EEG and 
analyze EEG data using appropriate methodologies when 
attempting to improve the understanding of mysterious 
brain networks.
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