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Introduction

Despite the use of new interventions and modern antibiotics, sepsis is a common global health issue due to an aging 
population and mortality. The death rate in adult sepsis cases remains as high as 21%–35% [1-3]. Sepsis is defined as 
life-threatening organ failure caused by an uncontrolled host response to infection [4]. Neutrophils are the first cellular 
line of defense of the primary immune system to combat infection. They contribute 40%–60% of the leukocyte popula-
tion in the blood and play a key role in the control of the immune system. At the infection site, neutrophils are recruited 
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Background: Flecainide acetate is a drug used primarily for cardiac arrhythmia. Some studies also imply that flecainide acetate has 
the potential to regulate inflammatory-immune responses; however, its mechanism of action is contended. We determined the effects 
of flecainide acetate on lipopolysaccharide (LPS)-stimulated human neutrophils in vitro and on mortality in a septic rat model.
Methods: Neutrophils from human blood were cultured with varying concentrations of flecainide acetate (1 µM, 10 µM, or 100 µM) 
with or without LPS (100 ng/ml). To assess neutrophil activation, the protein levels of tumor necrosis factor-alpha (TNF-α) and interleu-
kin (IL)-6 and IL-8 were measured after a 4-hour culture period. To assess the intracellular signaling pathways, the levels of phosphory-
lation of p38 mitogen-activated protein kinase (p38), extracellular signal-regulated kinase (ERK) 1/2, and c-Jun N-terminal kinase (JNK) 
were measured after a 30-minute culture period, and the nuclear translocation of nuclear factor (NF)-κB was measured after a 1-hour 
culture period. Additionally, the survival rate was investigated in a rat sepsis model. 
Results: Flecainide acetate down-regulated the activation of proinflammatory cytokines, including TNF-α and IL-6 and IL-8, and intra-
cellular signaling pathways including ERK 1/2 and NF-κB. Flecainide acetate also improved the survival rate in the rat sepsis model.
Conclusions: Collectively, these findings indicate that flecainide acetate can improve survival in a rat sepsis model by attenuating 
LPS-induced neutrophil responses. We therefore suggest that flecainide acetate plays an important role in modulating inflammatory-
immune responses.
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and create the first barrier of the host’s defense. Following 
stimulation, neutrophils synthesize and release important 
inflammatory mediators, including cytokines, chemo-
kines, leukotrienes, and prostaglandins, which contribute 
to phagocytosis, bacterial killing, oxidative bursts, and 
degranulation [5,6]. In this way, neutrophils play a pivotal 
role in the occurrence of organ dysfunction related to 
serious infection. Nontoxic substances that control neu-
trophil-mediated inflammatory-immune responses could 
provide new methods for the treatment of sepsis. 

Flecainide acetate, a potent sodium channel blocker, ex-
erts electrophysiological effects to control supraventricular 
tachycardia and has been widely used in clinical settings. 
In addition to its electrophysiological effects, flecainide 
acetate affects autoimmune neutropenia [7] and the inhibi-
tion of human tumor necrosis factor-alpha (TNF-α) [8]. 
However, the ability of this sodium channel blocker to 
directly participate in neutrophil activation by lipopoly-
saccharide (LPS) has not been studied. In this study, we 
evaluated whether flecainide acetate decreases the activa-
tion of neutrophils induced by LPS and blocks the effects 
of intracellular signaling pathways, including mitogen-
activated protein (MAPK) kinase, nuclear factor (NF)-κB, 
and proinflammatory cytokines (TNF-α, interleukin [IL]-6 
and IL-8), on neutrophils. Additionally, septic rats treated 
with flecainide acetate were evaluated for mortality.

Materials and Methods

Animals 
Male Sprague-Dawley rats, 8–12 weeks of age, were pur-

chased from Damul Science (Daejeon, Korea). The rats 
were kept on a 12-hour light/dark cycle with free access to 
food and water. All experiments were conducted in accor-
dance with Chonnam National University’s Institutional 
Animal Care and Use Committee.

Materials 
Escherichia coli O11:B4 endotoxin (LPS) was purchased 

from Sigma-Aldrich (St. Louis, MO, USA). RPMI-1640 

medium (containing 25 mM 4-(2-hydroxyethyl)-1-pi-
perazineethanesulfonic acid (HEPES) and L-glutamine), 
fetal bovine serum, and penicillin/streptomycin were ob-
tained from Mediatech (Herndon, VA, USA). The bicin-
choninic acid (BCA) protein assay reagent was obtained 
from Pierce (Rockford, IL, USA). Antibodies specific 

for p-p38, p-ERK, and p-JNK (c-Jun N-terminal kinase), 
as well as total p38, extracellular signal-regulated kinase 
(ERK), and JNK, were purchased from Cell Signaling 
Technology (Beverly, MA, USA). 

Isolation of Neutrophils 
For human neutrophil isolation, peripheral blood was 

obtained from healthy volunteers under a protocol ap-
proved by Institutional Review Board of Chonnam Na-
tional University Hospital (IRB No. CNUH-2012-048). 
Neutrophils were isolated using plasma-Percoll gradients 

after dextran sedimentation of erythrocytes as described 
previously [9]. The neutrophil purity, as determined using 
Wright-stained cytospin preparations, was greater than 
97%. The cell viability, as determined using trypan blue 
exclusion, was consistently greater than 98%. 

Cytokine Enzyme-Linked Immunosorbent Assay 
Immunoreactive TNF-α, IL-6 and IL-8 were quantified 

using commercially available enzyme-linked immuno-
sorbent assay (ELISA) kits (R&D Systems, Minneapolis, 
MN, USA) according to the manufacturer’s instructions 
as described previously [10].

Western Blot Analysis 
Western blots to detect the levels of phosphorylated and 

total p38, ERK, and JNK were performed essentially as 
previously described [10,11]. The neutrophils were lysed 
in ice-cold lysis buffer (20 mM Tris-HCl pH 7.5, 150 mM 
NaCl, 1 mM ethylenediaminetetraacetic acid [EDTA]-
Na2, 1% Triton X-100, 1 mM ethylene glycol tetraacetic 
acid, 1 mM Na3 vanadate, 2.5 mM Na pyrophosphate, 1 
mM β-glycerophosphate, 1 mM phenylmethanesulfonyl 
fluoride [PMSF], 1 µg/ml leupeptin) and sonicated for 30 
seconds. The debris from the lysed cells was pelleted via 
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centrifugation at 14,000 for 20 minutes. The supernatant 
was then removed and stored at –86°C. The protein con-
centration of each sample was assayed using the BCA 
protein assay kit (Pierce) standardized to bovine serum al-
bumin (BSA) according to the manufacturer’s protocol. 

For the Western blots, 50 µg of protein was electropho-
resed in each well of a 10% Tris-HCl sodium dodecyl sul-
fate-polyacrylamide gel. The proteins were then electro-
transferred to a nitrocellulose membrane and blocked with 
20 mM Tris-buffered saline containing 5% nonfat dry 
milk and 0.1% Tween 20. After blocking, the membrane 

was incubated overnight at 4°C with rabbit polyclonal pri-
mary antibodies specific to p-Akt, p-JNK, or p-p38 
(1:1000 dilution) in 1% BSA, followed by an anti-rabbit 
or anti-rat immunoglobulin G horseradish peroxidase-cou-
pled secondary antibody (1:2000 dilution) in 5% nonfat 

dry milk. After washing five times, the bands were detect-
ed using electrochemiluminescence Western blotting de-
tection reagents (Amersham Pharmacia Biotech, Piscat-
away, NJ, USA). The membranes were then stripped 
using stripping buffer (63 mM Tris-HCl pH 6.8, 2% sodi-
um dodecyl sulfate, 100 mM 2-ME; Bio-Rad, Hercules, 
CA, USA) and reprobed with antibodies specific to total 
ERK, JNK, and p38. Densitometry was performed using a 
chemiluminescence system and the included analysis 
software (Bio-Rad) to determine the ratio between the 
phosphorylated and total kinases.

Electrophoretic Mobility Shift Assay 
Electrophoretic mobility shift assays were performed as 

previously described [10,12]. To obtain nuclear extracts 
from the neutrophils, the cells were resuspended in buffer. 
A containing 10 mM HEPES (pH 7.9), 1.5 mM MgCl2, 
10 mM KCl, and 0.5 mM dithiothreitol, and the samples 
were incubated on ice for 20 minutes. After the cytoplasm 
was removed from the nuclei using 15 passages through a 
25-gauge needle, the nuclei were collected using centrifu-
gation at 600 ×g for 6 minutes at 4°C. The pellets were 
suspended in buffer C containing 20 mM HEPES, 1.5 mM 
MgCl2, 420 mM NaCl, 0.2 mM EDTA, 25% glycerol, and 
0.5 mM PMSF. After a 30-minute incubation on ice, the 

suspension was centrifuged at 14,000 ×g for 20 minutes 
at 4°C, and the supernatant was collected. The protein 

concentration in the supernatant was determined using the 
BCA protein assay kit (Pierce). The nuclear extracts (5 µg) 
were incubated at room temperature for 20 minutes in 20 µl 
of reaction buffer (10 mM Tris-HCl pH 7.5, 1 mM MgCl2, 
0.5 mM EDTA, 0.5 mM dithiothreitol, 50 mM NaCl, 
and 4% glycerol) with a 32P end-labeled, double-stranded 
oligonucleotide probe specific for the κB site (5’-AGTT-
GAGGGGACTTTCCCAGGC-3’; Geneka, Burlington, VT, 
USA) and 1 µg of poly(dI-dC)·poly(dI-dC). In some ex-
periments, unlabeled NF-κB or cAMP responsive element 
binding protein oligonucleotides (Promega, Madison, WI, 
USA) were added to the samples at a 200-fold excess be-
fore the addition of the labeled probe and incubated for 15 
minutes on ice. The complexes were resolved on 5% poly-
acrylamide gels in Tris-HCl (pH 8.0)-borate-EDTA buffer 
at 10 V/cm. The dried gels were exposed to Kodak Biomax 

MS film (Rochester, NY, USA) for 1–24 hours at –70°C. 

In vivo Sepsis Model 
Sepsis was induced via intraperitoneal (IP) administra-

tion of 25 mg/kg of O4:B111 E. coli endotoxin (LPS) into rats. 
Animals were randomly assigned to one of five groups: 
(1) subcutaneous (SC) infusion of saline and IP injection 
saline (S-S group, negative control, n = 10), (2) SC infu-
sion of saline and IP injection of E. coli LPS (25 mg/kg) 
(S-E group, positive control, n = 10), (3) SC infusion of 
flecainide acetate (0.2 mg/kg/hr) and IP injection of saline 
(F-S group, n = 10), (4) SC infusion of flecainide acetate 
(0.1 mg/kg/hr) and IP injection of LPS (F0.1-E group, 
low-dose, n = 10), and (5) SC infusion of flecainide ac-
etate (0.2 mg/kg/hr) and IP injection of LPS (F0.2-E group, 
high-dose, n = 10). The SC infusion of saline or flecainide 
acetate using a mini osmotic pump was initiated 3 hours 
before the IP injection of saline or LPS and continued until 
the end of the experiment. The mortality rates were calcu-
lated 24 hours after the IP injection of saline or LPS.

Statistical Analysis 
The data are presented as the mean ± standard error for 
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each experimental group. One-way analysis of variance 
and the Tukey-Kramer multiple comparisons test (for 
multiple groups) or the Student t-test (for comparisons be-
tween two groups) was used. Null hypotheses of no dif-
ference were rejected if the P-values were less than 0.05.

Results 

The Effects of Flecainide Acetate on Cytokine 
Expression (TNF-α, IL-6 and IL-8) in LPS-Stim-
ulated Neutrophils

To evaluate the effects of flecainide acetate on cytokine 
expression (TNF-α, IL-6 and IL-8) in LPS-stimulated 

neutrophils, neutrophils were cultured with or without 
LPS (100 ng/ml) and flecainide acetate (1, 10, or 100 μM) 
for 4 hours. The neutrophils stimulated with LPS had 
increased levels of inflammatory cytokines (TNF-α, IL-6 
and IL-8) compared to those in the control or flecainide 
acetate groups. However, treatment with a combination 
of LPS and flecainide acetate significantly inhibited cyto-
kine expression in neutrophils, specifically at a flecainide 
acetate concentration of 100 µM (Figure 1).

The Effects of Flecainide Acetate on MAPK 
Pathway Activation in LPS-Stimulated Neutro-
phils

Western blot analyses demonstrated notably higher 

Figure  1. The effects of flecainide acetate on proinflammatory cyto-
kine (A: IL-6, B: IL-8, C: TNF-α) expression in LPS-stimulated neu-
trophils. Neutrophils (5 × 106/ml) from human blood were incubated 
for 4 hours with or without flecainide acetate (1, 10, or 100 μM) 
and with or without LPS (100 ng/ml) with the control group (CON) 
receiving no treatment. The protein levels were obtained using en-
zyme-linked immunosorbent assays. A representative experiment, in 
which each condition was examined in triplicate, is shown. Two ad-
ditional experiments provided similar results. The data are presented 
as mean ± standard error for each experimental group. IL: interleukin; 
LPS: lipopolysaccharide; TNF-α: tumor necrosis factor-alpha. aP < 0.05, 
vs. CON; bP < 0.05, vs. LPS. 
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protein expression of JNK, ERK 1/2, and p38 in the LPS 
group compared to the control or flecainide acetate groups. 
Treatment with a combination of LPS and flecainide ac-
etate (100 µM) had no effect on the JNK or p38 pathways. 
However, the combination significantly reduced activa-
tion of the ERK 1/2 pathway compared with the LPS group 
(Figure 2).

The Effects of Flecainide Acetate on the Activa-
tion of NF-κB in LPS-Stimulated Neutrophils

To assess the effects of flecainide acetate on transcrip-
tional regulation in LPS-stimulated neutrophils, we 
examined the nuclear levels of NF-κB in neutrophils cul-
tured with LPS alone or with a combination of flecainide 
acetate and LPS. Incubation of neutrophils with LPS re-
sulted in activation of NF-κB. The addition of flecainide 
acetate to the neutrophil cultures produced a decrease in 
the LPS-induced activation of NF-κB (Figure 3). 

The Effects of Flecainide Acetate on Mortality in 
an LPS-Induced Rat Sepsis Model

To determine the effects of flecainide acetate in a rat 
sepsis model, rats were intraperitoneally injected with 

25 mg/kg of LPS, and mortality was evaluated after 24 
hours. Mortality was over 40% in the S-E (positive con-

Figure  3. The effects of flecainide acetate on the nuclear transloca-
tion of nuclear factor (NF)-κB in lipopolysaccharide (LPS)-stimulated 
neutrophils. Neutrophils (5 × 106/ml) from human blood incubated 
for 1 hour with 100 ng/ml of LPS (LPS) showed more nuclear trans-
location of NF-κB than neutrophils incubated for 1 hour without LPS 
(Control) or with 100 μM flecainide acetate (Flecainide). Coincubation 
of neutrophils with 100 μM flecainide acetate and 100 ng/ml LPS (LPS 
+ flecainide) resulted in less nuclear translocation of NF-κB compared 
to LPS alone. Three replicate experiments provided similar results.
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Figure  2. The effects of flecainide acetate on mitogen-activated protein (A: ERK, B: p38, C: JNK) pathway activation in LPS-stimulated neu-
trophils. Neutrophils (5 × 106/ml) from human blood were incubated for 30 minutes with or without flecainide acetate (100 μM) and with 
or without LPS (100 ng/ml) with the control group (CON) receiving no treatment. The histogram shows mean ± standard error from three 
experiments. ERK: extracellular signal-regulated kinase; LPS: lipopolysaccharide; p38: p38 mitogen-activated protein kinase; JNK: Jun N-
terminal kinase. aP < 0.05, vs. CON; bP < 0.05, vs. LPS. 
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trol) group, whereas mortality was markedly reduced to 
less than 20% in the F0.1-E (low-dose flecainide acetate) 
group. Interestingly, all rats in the F0.2-E (high-dose fle-
cainide acetate) group survived (Figure 4).

Discussion 

The main result of this study is that flecainide acetate 
has potential anti-inflammatory activities, including de-
creasing the activation of NF-κB and proinflammatory 
cytokines, in LPS-stimulated neutrophils in vitro. In addi-
tional in vivo studies, rats treated with flecainide acetate 
were protected from endotoxemia-induced sepsis as de-
termined by mortality rates. 

Binding sites for NF-κB are present in the promoter re-
gions of the TNF-α, IL-6 and IL-8 genes, and NF-κB plays 

a pivotal role in the transcriptional control of each of 
these cytokines [10]. Additionally, p38 and ERK are in-
volved in enhancing the activation of NF-κB and NF-κB-
dependent genes in LPS-stimulated neutrophils [10,13].

Proinflammatory cytokines, such as TNF-α, IL-6 and 
IL-8, are major inflammatory mediators [14]. LPS-
stimulated neutrophils up-regulate many kinases associ-
ated with the activation of proinflammatory cytokines. 
Among them, signaling pathways that bring about the 
activation of MAPKs (p38 and ERK 1/2) are especially 
important because the attenuation of MAPK-activation 
remarkably inhibits the activation of mediator cytokines 
that is induced by LPS [10,13,15]. Conversely, some 
studies also suggest that JNK, one of the members of the 
MAPK family, is activated in the proinflammatory events 
induced neutrophils [16,17]. Under these signaling path-
ways, neutrophils increase the release of oxygen radicals, 
proteases, leukotrienes, and proinflammatory cytokines 
(TNF-α, IL-1β and IL-8) [18-21]. Blocking the activation 
of these signaling pathways is a key strategy in the treat-
ment of sepsis.

Flecainide acetate is an antiarrhythmic agent and func-
tions as a sodium channel blocker. It also appears to mod-
ulate neutrophil action, suggesting that flecainide acetate 
may participate in controlling cellular recruitment during 
bacterial infection. This study extends the spectrum of 
activity of flecainide acetate to include anti-inflammatory 
effects on neutrophil activation. 

In this study, the combination of LPS with flecainide 
acetate resulted in decreased activation of proinflamma-
tory cytokines and ERK 1/2 compared with the group 
treated with LPS alone. In particular, flecainide acetate 
significantly reduced the activation of ERK 1/2, but not 
p38 or JNK, in LPS-stimulated neutrophils, suggesting 
that the effects on cytokine activation occur via an intra-
cellular signaling pathway related to ERK 1/2 activation. 

When primary neutrophils are exposed to inflammatory 
agents, such as bacterial LPS, it leads to the activation of 
transcriptional signaling pathways, including MAPK and 
NF-κB, resulting in the synthesis of cytokine mRNA and 
proteins [22,23]. Patients with sepsis have altered leuco-
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Figure  4. The effects of flecainide acetate on mortality in a lipopoly-
saccharide-induced rat sepsis models. The mortality rates were 
calculated 24 hours after the intraperitoneal (IP) injection of saline 
or lipopolysaccharide. Mortality was over 40% in the S-E (positive 
control) group, whereas mortality was markedly reduced to less 
than 20% in the F0.1-E (low-dose flecainide acetate) group. All rats 
in the F0.2-E (high-dose flecainide acetate) group survived. Each 
value represents mean ± standard error from 10 rats. S-S: subcu-
taneous (SC) infusion of saline and IP injection saline (n = 10); 
F-S: SC infusion of flecainide acetate (0.2 mg/kg/hr) and IP injec-
tion of saline (n = 10); S-E: SC infusion of saline and IP injection of 
Escherichia coli endotoxin (25 mg/kg, n = 10); F0.1-E: SC infusion 
of flecainide acetate (0.1 mg/kg/hr) and IP injection of endotoxin (n = 
10); F0.2-E: SC infusion of flecainide acetate (0.2 mg/kg/hr) and IP 
injection of endotoxin (n = 10). aP < 0.05, vs. the S-S negative-con-
trol group; bP < 0.05, vs. the S-E positive-control group.
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cytes and ERK and p38 kinase activation, which may be 
useful in detecting patients with sepsis and distinguishing 
them from those with systemic inflammatory response 
syndrome [24].

Our results showing that flecainide acetate inhibits neu-
trophil activation through an ERK 1/2-mediated pathway 
help explain why ERK 1/2 attenuation causes a decrease 
in the severity of conditions caused by neutrophil-associated 
acute sepsis such as acute respiratory distress syndrome. 

The effects of flecainide acetate on important neutrophil 
functions, such as priming for superoxide production and 
chemotaxis, are almost reported. Therefore, this study’s 
major focus was to demonstrate whether flecainide ac-
etate can attenuate the neutrophil activation induced by 
LPS under in vitro conditions. 

The JNK and p38 MAP kinase pathways play an im-
portant role in inflammatory responses in LPS-stimulated 
neutrophils [13], but they are not involved in the alterna-
tion of neutrophil responses caused by flecainide acetate. 

Flecainide acetate did not affect neutrophil regulation 
through the p38 or JNK pathways. Coincubation of neu-
trophils with LPS and flecainide acetate did not result 
in decreased JNK and p38 activation. In contrast, LPS-
induced phosphorylation of ERK 1/2 was remarkably 
attenuated when neutrophils were cultured with a com-
bination with LPS and flecainide acetate. Inhibition of 
Na-H exchanger-1 by amiloride improved experimental 
colitis and was associated with the reversal of IL-1ss and 
ERK kinase [25]. Sikes et al. [26] also reported that the 
inhibition of Na/H exchange activity ameliorates sepsis-
induced cardiac dysfunction. These findings suggest that 
the sodium channel blocking-effect of flecainide acetate 
plays a key role in reducing LPS-induced neutrophil acti-
vation.

In this study, we demonstrated the ability of flecainide 
acetate to attenuate neutrophil action in vitro and improve 
survival rates in an LPS-induced rat sepsis model. These 
effects suggest that flecainide acetate plays a major role 
in the regulation of neutrophil-mediated inflammatory 
responses. 
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