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Introduction

Neurogenesis is a highly regulated process that leads to 
the production of new neurons. Adult mammalian neuro-
genesis mainly involves the subgranular zone (SGZ) in the 
dentate gyrus of the hippocampus and the subventricular 
zone (SVZ) of the lateral ventricles [1, 2]. In addition, it has 

been reported that it can occur in the basal forebrain [3], 
amygdala [4], subcortical white matter [5], and the hypo-
thalamus [6]. Moreover, it has been suggested that neural 
progenitor cells (NPCs) in the hypothalamus may represent 
self-renewing cells that give rise to new tanycytes, astrocytes, 
and neurons [7]. On the other hand, the decline in neurogen-
esis has been linked to the progression of neurodegenerative 
disorders including Alzheimer’s disease, Parkinson’s disease, 
physical wave and others [8]. These disorders are charac-
terized by the loss of neurons in specific brain regions [9], 
whereas stimulation of neurogenesis is one of the strategies 
suggested to help functional recovery [10].

The use of dietary factors to induce neurogenesis is con-
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sidered a promising therapeutic approach in neuroscience 
[11]. It is much easier and practical to stimulate neurogen-
esis by alteration of exogenous factors, such as diet, than by 
manipulating endogenous factors, such as genetic networks. 
Among dietary agents, polyunsaturated fatty acids (PU-
FAs) have been suggested as critical nutritional factors for 
proper neural development and function [12, 13]. It has been 
known for a long time that PUFAs are produced in plants 
and are not synthesized in vertebrates [14]. Linoleic acid (LA, 
C18:2n-6) is the main n-6 PUFA found in plant oils, such as 
soybean and corn, and which are extensively used in western 
diets [15]. In our previous in vitro study, we demonstrated 
that Safflower (Carthamus tinctorius L.) seed oil (SSO) is a 
rich source of LA (73.64%) that affected the proliferative and 
differentiative capacities of neural stem cells (NSCs) and in-
creased the number of neurons (β-III tubulin positive cells). 
In contrast, synthetic LA, at similar concentrations to natu-
ral SSO LA, could not affect the number of neurons [16].

In this study, we investigated whether natural LA of SSO, 
in comparison to synthetic LA, could induce hypothalamic 
neurogenesis in vivo, when administered orally to mice. In 
addition, the potential increase in hypothalamic neurogen-
esis was then tested for its association with brain-derived 
neurotrophic factor (BDNF) serum levels.

Materials and Methods

Animals
Young adult C57BL/6J mice (8–10 weeks old, 30–35 g) 

were used in this study. The experimental procedures were 
approved by the Institutional Animal Care and Use Com-
mittee (IACUC) and Ethics Committees of the University of 
Yasuj, which conforms to the provisions of the Declaration 
of Helsinki (as revised in Brazil in 2013). Animals had free 
access to food and water and were housed under pathogen- 
free conditions.

Safflower seed oil
The safflower seed oil species chosen were Carthamus. 

Tinctorius (genotype: C4110), identical to that used previ-
ously [17]. Chemically, this seed oil contains 73.64% LA, 
15.14% oleic acid (OA), 5.7% palmitic acid (PA), and a total 
of 2.15% myristic (C14:0), palmitoleic (C16:1), stearic (C18:0), 
arachidic (C20:0), and behenic (C22:0) acids.

Treatment 
Mice were divided into four groups (n=10 per group) as 

follows: (i) control mice (Ctrl); (ii) vehicle mice (Vehicle), re-
ceived an equal volume of solution containing 0.5% DMSO 
solvent (iii) synthetic LA-treated mice (300 mg/kg) and (iv) 
SSO-treated mice (407.4 mg/kg). All treatments were done 
orally for eight weeks.

Culture of hypothalamic NSCs
Isolation of hypothalamic NSCs was performed as de-

scribed previously [18]. Brief ly, the hypothalamus was 
micro-dissected from adult mice (7 mice per group) on day 
21 of the study under sterile. Hypothalamic pieces were then 
mechanically disrupted into single cells by repeated pipet-
ting in serum-free neurosphere N2 medium. The desired cell 
population was suspended in a growth medium containing 
DMEM/F12 (1:1), 0.6% (w/v) glucose, 0.1125% (w/v) sodium 
bicarbonate, 2 mM L-glutamine, 5 mM HEPES, 100 μg/ml 
human apo transferrin, 20 nM progesterone, 30 nM sodium 
selenite, 60 μM putrescine, and 25 μg/ml insulin. Cells were 
then seeded in T25 flasks in suspension at a density of 1×105 
cells/ml in a proliferation medium consisting of the above 
N2 medium supplemented with 20 ng/ml basic fibroblast 
growth factor (bFGF; R&D Systems) and 2 mg/ml heparin 
(Sigma-Aldrich). Cells were maintained in an incubator with 
a humidified atmosphere containing 5% CO2 at 37°C for 7 
days. Neurospheres were then harvested by centrifugation, 
dissociated using trypsin and EDTA (Sigma-Aldrich), and 
reseeded for the following experiments.

NSC proliferation assay
Neurosphere-forming cells obtained from passage-1 flasks 

were then dissociated into single cells using 0.05% trypsin-
EDTA (Sigma-Aldrich), and reseeded for the following ex-
periments after determining the cell density, using trypan 
blue exclusion assay. Cells were then cultured at 25 cells/μl 
in 0.2 ml media in uncoated well plates. The total number of 
neurospheres, with a diameter of >50 μm, was counted after 
5 days using an Olympus inverted light microscope and ex-
pressed as the neurosphere-forming frequency per well.

Tissue preparation
At the end of the study, mice (7 per group on day 21) were 

deeply anesthetized with ketamine/xylazine (5/1) and then 
intracardially perfused with phosphate-buffered saline (PBS), 
followed by 3.7% paraformaldehyde in PBS (0.1 M). Brains 
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were carefully harvested and placed in the same fixative 
overnight. Fixed tissues were then paraffin-embedded and 
cut as 6 μm sections.

Immunohistochemistry 
Fixed tissue sections were performed by standard histo-

chemistry method against anti-glial fibrillary acidic protein 
(GFAP), anti-neuronal nuclei (NeuN), or anti-doublecortin 
(DCX) antibodies, and then incubated overnight at 4°C. 
The next day, sections were incubated for 1 hours with ap-
propriate secondary antibody. Representative pictures for 
each mouse were then taken using a fluorescent microscope 
(Olympus IX-71) equipped with a Canon EOS digital cam-
era. Cell counts were performed (4 fields/section, 4 sections/
mouse for a total of 16 fields/mouse) and data was presented 
as the mean frequency of positive cells in each group.

Quantifying serum BDNF by enzyme-linked 
immunosorbent assay (ELISA)

Simultaneously with the isolation of NSCs on day 21, 
then Serum was obtained by centrifugation of blood sample 

at 2,500 rpm for 10 minutes and then frozen at −80°C until 
ELISA was performed. Serum levels of BDNF were measured 
using an ELISA Kit according to the manufacturer’s protocol 
(Sigma Aldrich).

Statistical analysis
Results are presented as the mean with error bars indicat-

ing the standard error of the mean (Mean±SEM). GraphPad 
Prism (Version 6.01) software was used to perform statistical 
analyses. Following the assessment of normality, ordinary 
one-way ANOVA followed by Tukey post-hoc test was used 
to analyze the data.

Results

Effect of SSO and LA on the proliferative activity of 
NSCs 

The effect of SSO, compared to synthetic LA, on NSC pro-
liferation was evaluated using the neurosphere assay (Fig. 1A). 
Neurosphere formation reflects the self-renewal capacity of 
NSCs when they are plated at a very low density. In this study, 

Fig. 1. The effect of SSO and LA on NSC neurosphere formation. (A) Representative images of neurospheres in the different groups. Scale 
bar=100 μm. (B) SSO, but not LA, significantly increased neurosphere formation. (C) Cell counts obtained from neurospheres showed an 
increase of the mean cell number for both SSO or LA, compared to vehicle. Data were expressed as mean±standard error of the mean and each 
experiment included 10 replicates per condition (n=10). Statistical analyses were performed by one-way analysis of variance followed by Tukey’s 
test. Significance is indicated by *P<0.05, **P<0.01, and ***P<0.001. SSO, safflower seed oil; LA, linoleic acid; NSC, neural stem cell; Ctrl, 
control mice; Vehicle, vehicle mice.
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NSCs formed neurospheres of various sizes with diameters 
ranging between 50 μm to >100 μm (Fig. 1B). Results showed 
that SSO administration, but not synthetic LA, caused a sig-
nificant (**P<0.01) increase in the number of neurospheres, 
in comparison to vehicle treatment, respectively (85.8±6.4 vs. 
72.4± 4.5 vs. 59.2±4.1; Fig. 1B). Moreover, not only SSO but 
also synthetic LA demonstrated a significant (**P<0.01 vs. 
*P<0.05) increase in the number of single cells obtained from 
neurospheres, compared to vehicle (Fig. 1C).

Effect of SSO and LA on hypothalamic neurogenesis
To examine the role of SSO on neural development in vivo, 

hypothalamic astrocytes and neurons were identified using 
immunofluorescence analysis following oral SSO adminis-
tration in mice for 8 weeks. First, astrocytes were examined 
using an antibody against GFAP (Fig. 2A) and the number of 
GFAP positive cells were counted (Fig. 2B). Results showed 
that SSO, but also synthetic LA, caused a slight but insig-
nificant increase in the frequency of GFAP positive cells, in 
comparison to vehicle treated mice (Fig. 2B). On the other 
hand, mature and immature neurons were examined using 
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Fig. 2. Immunofluorescence staining of hypothalamic astrocytes in vivo. (A) Astrocytes were labeled by an antibody against GFAP. Scale 
bar=100 μm. (B) Quantitative data of astrocytes in the hypothalamus in vivo. Data are presented as mean±standard error of the mean. Statistical 
analyses were performed by one-way analysis of variance followed by Tukey’s test. GFAP, glial fibrillary acidic protein; Ctrl, control mice; 
Vehicle, vehicle mice; LA, linoleic acid; SSO, safflower seed oil.
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Fig. 3. Immunofluorescence staining of hypothalamic mature neurons in vivo. (A) Mature neurons were labeled by an antibody against 
NeuN. Scale bar=100 μm. (B) Quantitative data of neurons in the hypothalamus in vivo. Data are presented as mean±standard error of the 
mean. Statistical analyses were performed by one-way analysis of variance followed by Tukey’s test. Significance is indicated by *P<0.05 and 
****P<0.0001. NeuN, neuronal nuclei; Ctrl, control mice; Vehicle, vehicle mice; LA, linoleic acid; SSO, safflower seed oil.
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Fig. 4. Immunofluorescence staining of hypothalamic immature neurons in vivo. (A) Immature neurons were labeled by an antibody against 
DCX. Scale bar=200 μm. (B) Quantitative data of immature neurons in the hypothalamus in vivo. Data are presented as mean±standard error 
of the mean. Statistical analyses were performed by one-way analysis of variance followed by Tukey’s test. Significance is indicated by *P<0.05, 
***P<0.01, and ****P<0.0001. DCX, doublecortin; Ctrl, control mice; Vehicle, vehicle mice; LA, linoleic acid; SSO, safflower seed oil.
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Fig. 5. Serum levels of BDNF. (A-D) A scatter plot with correlation coefficients for SSO and LA groups. Seven mice per group (n=7) were 
used. Statistical analyses were performed by one-way analysis of variance followed by Tukey’s test. Significance is indicated by *P<0.05, and 
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antibodies against NeuN and protein DCX, respectively (Figs. 
3A, 4A). Quantification of the number of NeuN positive cells 
showed that SSO, but also synthetic LA, caused a significant 
(****P<0.0001 vs. *P<0.05) increase in the frequency of cells 
that were positively labeled for mature neurons (Fig. 3B), in 
comparison to the vehicle group. It is important to note that 
the increase in neuron frequency due to natural SSO was 
significantly (*P<0.05) more potent than that of synthetic 
LA. Furthermore, both SSO and synthetic LA significantly 
(**P<0.01 vs. *P<0.05) increased the number of immature 
neurons, as shown by the increase in DCX positive cells (Fig. 
4B), in comparison to the vehicle group. This increase in im-
mature neurons by SSO or LA was nearly doubled (SSO: 15 
vs. LA: 12 vs. Vehicle: 8, per section respectively), compared 
to the modest increase of mature neurons (SSO: 920 vs. LA: 
812 vs. Vehicle: 750, respectively) (Figs. 3B, 4B).

Taken together, these data indicate that neither LA nor 
SSO can alter the number of astrocytes; however, they can 
both significantly increase the frequency of mature and im-
mature neurons, with SSO having a significantly higher ef-
fect than LA.

Effects of SSO and LA on the serum levels of BDNF
Using ELISA, administration of LA or SSO for 8 weeks 

showed significant induction of BDNF serum levels, in com-
parison to the vehicle (****P<0.0001 vs. *P<0.05, respectively; 
Fig. 5). Indeed, the concentration of BDNF increased from 
128.7±7.48 µ mol/ml in vehicle mice to 163.8±8.12 in LA-
treated mice and 209.4±6.31 µ mol/ml in SSO-treated mice. 
It is worth noting that the increase in BDNF serum levels 
was significantly higher (*P<0.05) in SSO-, compared to LA-
treated mice (Fig. 5).

Discussion

Neurogenesis and survival of neurons in the hypotha-
lamic nuclei are critical in food intake and other related body 
functions. A dramatic decline in neural stem/progenitor cell 
proliferation and self-renewal occurs due to aging, chronic 
stress, and central nervous system disorders. This may lead 
to weight gain and related diseases [19]. Indeed, herbal ther-
apy is considered the first line of treatment for most types 
of diseases in developing countries [20]. Recently, we have 
shown that SSO affected NSC proliferation and differentia-
tion in vitro [16]. Therefore, we designed the current in vivo 
study to translate the previous in vitro data into an in vivo 

mouse model.
In this study, the number of neurospheres increased 

significantly during the 8-week administration of SSO, 
which contains 56 µM of natural LA, but did not increase 
by synthetic LA. Moreover, not only SSO but also synthetic 
LA demonstrated a significant increase in the number of 
neurosphere-generated single cells, cultured from hypotha-
lamic NSCs. The number of neurospheres and single cells 
was considerably higher in SSO, compared to LA, but did 
not reach statistical significance. In accordance, we already 
showed that SSO promotes the proliferation of NSCs in vitro 
[16]. In addition, it has been revealed that LA enhanced the 
maintenance of embryonic NSCs [21]. It is worth noting that 
SSO contains mainly LA (73%), in addition to 15.1% OA and 
5.7% PA. Interestingly, while one study reported protective 
effects of OA in neurological diseases [22], two other studies 
showed deleterious effects of OA and PA in neurological dis-
eases; respectively [23, 24].

On the other hand, immunofluorescent staining of the 
hypothalamus showed that astrocytes are not affected by 
SSO or LA. However, both caused a significant upregulation 
in the number of mature and immature neurons (NeuN+ and 
DCX+ cells), with a significantly stronger effect for SSO in in-
creasing the number of neurons, in comparison to LA. This 
observation was by the results of our previous in vitro study 
[16]. Furthermore, Okui et al. [25], reported that conjugated 
LA which is an isomer of LA, but not LA, increases the neu-
ronal differentiation of embryonic NSCs.

Altogether, we found that an enhancement in the pro-
liferation rate of SSO-treated mice was coincident with an 
increase in the differentiation activity of hypothalamic cells 
toward neurons. This simultaneous increase was already 
observed in vitro [16], where SSO promoted the prolifera-
tion and stemness activity of NSCs via the Notch 1 signal-
ing pathway. Indeed, when seeded in differentiating media, 
cells differentiated to all three neural lineages (astrocytes, 
oligodendrocytes, and neurons), of which only the neuronal 
differentiation was statistically significant, in comparison to 
controls. This simultaneous increase suggests an overall in-
crease in cell viability or proliferation rate in the presence of 
SSO.

It has been reported that the proportion of newborn neu-
rons among newborn cells in the adult rodent hypothalamus 
is considerably lower than that of the SGZ and SVZ regions 
(1%–37% vs. 70%–100%) [6, 26]. However, hypothalamic 
neurogenesis can be stimulated by intrinsic factors [27] in-
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cluding fibroblast growth factor 2 [7], insulin-like growth 
factor [28], and BNDF [29]. Particularly, BDNF has a high 
potential to transit the blood-brain barrier (BBB) in both di-
rections [30] which makes it an important factor in hypotha-
lamic neurogenesis. Moreover, it has been suggested that se-
rum levels of BDNF represent an important reserve pool for 
the brain [31]. Therefore, BDNF serum levels were measured 
in this study and were found to be significantly increased 
following the administration of SSO or LA. It is important to 
note that the effect of SSO on BDNF serum levels was signifi-
cantly more potent than that of LA. Given the potential of 
BDNF to transit the BBB, serum BDNF could be an indicator 
of its brain levels. In accordance, it has been demonstrated 
that infusion of BDNF into the lateral ventricle of the adult 
rat caused the generation of new neurons in the hypothala-
mus [9]. Although we have determined the population of 
newly produced neurons through co-labeling with BrdU and 
neuronal markers, three phenomena were increased concur-
rently; (1) the rate of neural proliferation, (2) the number of 
immature (DCX+ cells) and mature neurons (NeuN+ cells), 
and (3) BDNF serum levels. Taken together, this suggests 
that overall increases in hypothalamic cell proliferation and 
the stimulatory effects of BDNF caused the induction of neu-
ral cell differentiation toward neurons. Importantly, DCX-
positive cells resembling immature and developing neurons 
have been recently confirmed to occur in the hypothalamus 
[32].

DCX is expressed by NPCs and immature neurons. NPCs 
begin to express DCX while actively dividing, and their 
neuronal daughter cells continue to express DCX for 2 to 3 
weeks, as the cells mature into neurons [33]. Down regula-
tion of DCX begins after 2 weeks while the cells start to ex-
press NeuN, a marker for mature neurons. Due to the nearly 
exclusive expression of DCX in developing neurons, this 
protein has been widely used as a marker for neurogenesis 
[34, 35]. In accordance, the increase in DCX-expressing cells 
in the current study suggests an increase in neurogenesis. 
Moreover, we hypothesize that higher BDNF serum levels 
following SSO administration could be associated with a 
higher rate of neurogenesis. In support, a study showed that 
a higher level of BDNF was associated with a slower rate of 
cognitive decline in Alzheimer's disease patients [31], which 
could be due to stimulation of neurogenesis by BDNF. This 
further supports that increasing adult neurogenesis can com-
bat neurodegenerative diseases and cognitive decline [11].

Previous studies in rodents showed that consumption of a 

high-fat diet leads to endoplasmic reticulum stress [36] and 
apoptosis of hypothalamic neurons [37]. However, this study 
demonstrates that administration of SSO, a rich source of LA 
with OA, PA, and other fatty acids, not only induced apopto-
sis in hypothalamic cells but also increased neural prolifera-
tion and the population of neuronal cells, associated with an 
increase in BDNF serum levels.

This in vivo study is complementary to our previous in vi-
tro work and provides further confirmation of the beneficial 
role of SSO on neurogenesis in the adult hypothalamus. Con-
sidering the difference between natural SSO and synthetic 
LA, we highlighted that administration of LA alongside 
other fatty acids can increase its efficiency in stimulating 
neurogenesis. Further investigations using various ratios of 
different fatty acids, particularly OA and PA, are still needed.
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