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RNA Regulation in Neurologic Disease and Cancer

N e u r o l o g i c  D i s e a s e  a n d  C a n c e r :
T h e  P a r a n e o p l a s t i c  N e u r o l o g i c
D e g e n e r a t i o n s

The paraneoplastic neurologic degenerations (PNDs) are a set of
brain disorders that develop in the setting of occult cancer (Table 1).
These disorders arise when common cancers express brain proteins,
triggering an anti-tumor immune response and, at least in some cases,
clinically effective suppression of the malignancy. PNDs come to
clinical attention only when the tumor immune response breaches
immune privilege of the nervous system, and begins to attack the
neurons that are normally expressing the tumor antigen (which we
have termed onconeural antigens). Our laboratory first demonstrated
that genes encoding onconeural antigens can be cloned using high titer
antisera from these patients (1-5), and currently over a dozen well-
described PND antigens have been defined.

cDNAs encoding PND antigens have provided a wealth of

information regarding the nature of the PND antigens (6-8) as well as
their role in disease pathogenesis (9-11). For example, the initial
cloning of a cerebellar antigen from a woman with presumed ovarian
cancer led to the discovery of a long-suspected neuronspecific vesicle
coat protein (4). Cloning of the cerebellar antigen (cdr2) associated
more commonly with gynecologic cancer revealed the presence of
antigen-specific T cells in these patients, establishing a cellmediated
component to the disorders, as well as a means by which tumor antigen
is likely cross-presented from apoptotic cells to dendritic cells to initiate
the anti-tumor immune response (12,13). These studies have led to
clinical cancer vaccine trials in prostate cancer patients that have shown
some evidence of efficacy in Phase I safety studies (14). Moreover,
cloning of the genes encoding T cell receptors from these patients
offers a possible new therapeutic strategy, by passive transfer of these
genes into T cells to induce tumor-cell targeting (15).
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The paraneoplastic neurologic diseases (PNDs) are brain degenerations that develop in the
setting of clinically inapparent cancers. PNDs arise when common cancers express brain
proteins, triggering an anti-tumor immune response and tumor immunity. Research on these
brain-cancer proteins has revealed a new world of neuron-specific RNA binding proteins
whose functions may be aberrantly used by tumor cells. Efforts to gain insight into their
function has led to the development of new methods and strategies to understand RNA
protein regulation in living tissues.
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R N A  B i n d i n g  P r o t e i n s  i n  
N e u r o l o g i c  D i s e a s e  a n d  C a n c e r

Among the set of cloned PND antigens, perhaps none has generated
as much biologic interest as the Nova and Elavl (Hu) family of neuron-
specific RNA binding proteins. The Nova proteins (16,17) are
ectopically expressed in lung or gynecologic cancers, and trigger neu-
rologic symptoms (excess motor movements of the eyes and mu-
sculature) interpreted by neurologists as failure of inhibitory motor
control. Studies of the Nova proteins have established what is arguably
the best data available to understand a tissue-specific RNA regulatory
protein in the brain; these findings will be discussed here. The Elavl
proteins (originally termed the Hu proteins; (18,19) are still in-
completely understood (6,20), but are believed to relate to post-
transcriptional regulation of RNA in the brain. Many of the approaches
used to understand the biology of Nova can be applied more generally-
to the understanding of the biology of the Elavl proteins and other
RNA binding proteins in the brain and cancer. 

B a c k  t o  t h e  B a s i c s - R B P  
F u n c t i o n a l  S t u d i e s

Understanding RBP function requires understanding the protein's
interaction with RNA. Nova has emerged as one of the best understood
mammalian RNA binding proteins in part because there is a good
understanding of its RNA substrates. After recognizing that Nova
harbors three KH-type RNA binding proteins (21), in vitro RNA
selection experiments (22,23) were applied to reveal (17,24) that Nova
recognizes a core 4 nucleotide repeat sequence-(UCAU)3. Mutagenesis
and X-Ray crystallographic studies identified the CA dinucleotide as a
critical invariant component of Nova-RNA binding (25,26), with
specificity restricted to bounding pyrimidines, hence the more general
consensus of YCAY repeats as the core binding motif.

G e n e t i c  S y s t e m s  a n d  R B P  F u n c t i o n

These studies prompted a search for brain transcripts harboring such
repeat elements. This relatively pedestrian approach yielded three
targets, which were characterized by mutagenesis, boundary mapping,
and functional analyses in some detail. The first target transcript
harboring a Nova-regulated YCAY cluster was the inhibitory glycine
receptor α2 (GlyRα2). Interestingly, this cluster was located within an
intronic sequence upstream of an alternatively spliced exon (E3A) of
GlyRα2. Analysis of alternative splicing of minigenes transfected into
tissue culture cells demonstrated that Nova acted specifically on the
YCAY cluster to mediate an increase in inclusion of E3A (24).

Subsequently, analogous studies demonstrated that Nova was able to
bind intronic YCAY elements to mediate an increase in the γ2L exon
of the GABAA transcript (27), and to bind exonic and intronic YCAY
elements to autoinhibit splicing of Nova1 exon 4 (28). This led to the
hypothesis that Nova might regulate alternative splicing of these and
other transcripts in neurons.

This hypothesis was tested in vivo by generating Nova null mice.
GlyRγ2 E3A and GABAA γ2L splicing showed consistent two and
three-fold decreases in utilization, respectively, in Nova1 KO mice
(25), while Nova E4 exclusion was decreased -0.75-fold in Nova1
heterozygous mice (28). These studies established Nova as the first
bona-fide mammalian tissue specific splicing factor whose actions were
validated in live animals, and set the stage for more global studies of
Nova function. These were further stimulated by recognizing the
correlation between Nova targeting in PND patients, who show defects
in inhibitory motor control, and the observation that 2/2 Nova-regulated
transcripts encoded inhibitory neurotransmitter receptors (29).

B i o i n f o r m a t i c s ,  G e n e t i c s  a n d  
B i o c h e m i s t r y :  B e g i n n i n g s  o f  a
H o l i s t i c  A p p r o a c h  t o  R B P  F u n c t i o n

Initial studies aimed at discovering the general nature of Nova action
on alternative splicing were done using a new (at the time) Affymetrix
exon junction array. Applying WT or Nova KO RNA to these arrays,
whose probesets were designed to detect alternative splice junctions,
revealed a wealth of new target transcripts that could be independently
validated as Nova targets in vivo. Most surprisingly, the results revealed
that the vast majority of Nova-regulated transcripts encoded synaptic
proteins. More precisely, the steady-state level of these regulated RNAs
was unaltered in Nova null mouse brain, but their quality manifest by
different ratios of alternative exons-was altered (30).

A limitation of this work came from careful parsing of the term
Nova-regulated transcripts. These transcripts showed Nova-dependent
changes in alternative splicing, but such changes might be a direct
action of Nova-for example, acting on YCAY elements, or an indirect
action-for example through regulation of a different splicing factor.
Hence two series of studies were used to follow-up the finding from
the “correlative” Affymetrix exon junction array. A heuristic bioinfor-
matic algorithm was developed to search for YCAY elements within
this set of Nova targets, revealing an enrichment of elements within
them (although the algorithm was limited, with -50% false positive
rate, in its ability to predict targets de novo) (31).

Surprisingly, a position-dependent action of Nova on these
transcripts was also discovered, such that Nova binding elements
upstream or within alternative exons correlated with inhibition of exon
inclusion, while Nova binding downstream correlated with
enhancement of exon inclusion (31). An effort to further strengthen
these correlations was made, both by undertaking detailed in vitro



splicing assays to provide a mechanistic basis for the positional effects,
and analysis of splicing intermediates by RT-PCR, providing evidence
for asymmetric actions on splicing intermediates that correlated with
the position of the YCAY elements (31).

H I T S - C L I P  a n d  t h e  D e v e l o p m e n t
o f  a  C o m p r e h e n s i v e  A p p r o a c h  t o
R B P  F u n c t i o n

The heavy use of the word “correlation” in the previous section
emphasis what was missing from the microarray and bioinformatic
studies-evidence of direct Nova-RNA interaction. Although such
evidence was possible on a case-by-case basis, made most persuasively
with Nova's action on the GABAA transcript (27,31), it was not
possible to undertake such studies, nor develop an entirely compelling
description of Nova action, on what begain to approach 100 putative
Nova-regulated transcripts. Hence a new approach was needed, and
developed in the form of cross-linkimmunoprecipitation (CLIP) (32).
CLIP takes advantage of the finding that UV-B irradiation induces
covalent complexes between protein-nucleic acids when contact
distances are within -1 Å (33). By applying UV-irradiation to acutely
dissected mouse brains, Nova-RNA complexes in situ were stabilized,
allowing rigorous purification. After purification, removal of the
protein with proteinase K, CLIP also established that RNA could be
efficiently sequenced, using RNA linker ligation and reverse
transcription-PCR. Analysis of 34 transcripts identified independently
among the first 340 CLIP targets sequenced revealed that they were
enriched in YCAY elements, that 71% encoded neuronal synaptic
proteins, and that they included Nova-regulated alternative exons (32).
Hence CLIP was established as a genome-wide unbiased means of
identifying functional RNA-protein interaction sites.

To broaden the observations made with CLIP, high throughput
sequencing (HITS) methods were applied, termed HITS-CLIP, to the
study of Nova-RNA interactions in 2008 (34). In these experiments,
millions of Novacrosslinked RNA fragments of -50-100 nt were
sequenced, and very conservatively winnowed into a pool of 168,632
unique tags mapping across the mouse genome. These validated
predicted Nova-regulated alternative exons that had been correlated
with Nova by exon junction array and bioinformatic strategies. They
also identified new clusters of Nova tags surrounding alternative exons
that were in fact predictive of de novo regulated exons, and they
confirmed the position-dependent bioinformatic map. Moreover, these
studies also identified many previously unknown Nova binding sites.

For example, clusters of Nova-RNA tags within 3’ UTRs were found
in some cases to surround alternative poly (A) sites, and this led to
biochemical validation and the discovery that Nova was able to
regulate alternative polyadenylation choice in the brain.

These studies were thus able to close the loop on a new approach to
genomewide, unbiased discovery of RBP-RNA function. Application of
basic biochemical principles to identify high affinity targets, descriptive
analysis of RNA variants under conditions of a defined variable, such as
a genetic null, and HITS-CLIP to discriminate direct from indirect target
transcripts, offers a powerful approach to discovery (35).

Future directions for this approach are several. The wealth of data
coming from HITS-CLIP suggests that new bioinformatic approaches
will be important in synthesizing information. Indeed, recent studies
have demonstrated the use of Bayesian networks to combine data from
such datasets as exon junction arrays, HITS-CLIP, and motif analysis
to both validate and produce new discovery regarding RBP-RNA
interaction (36). The approaches worked out for Nova provide general
solutions. A number of other RBPs have now been studied by HITS-
CLIP (33,37-41), in efforts that, when combined, may provide the
groundwork for development of a true combinatorial map of RNA
regulation. Finally, HITS-CLIP analysis has been extended to the study
of ternary interactions-between small non-coding RNAs, mRNA and
regulatory proteins. This was first established for the mammalian Ago
protein, demonstrating that Ago-mRNA crosslinked tags cluster
directly over microRNA binding seeds, such that these ternary HITS-
CLIP maps could decode sites of miRNA-mRNA interactions on a
robust, genome-wide basis (42). Subsequently these studies have been
reproduced in C elegans (43) and mammalian tissue culture cells (36),
and have begun with other small RNAs (piRNAs) (44). These studies
offer the exciting possibilities of both developing better understandings
and means of capitalizing upon small RNA regulation of gene
expression, and overlaying such maps with those developed with
HITS-CLIP analysis of more traditional RBPRNA interactions.
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