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Purpose

This preclinical study is to determine whether the capacity of histone deacetylase

(HDAC) inhibitors to enhance radiation response depends on temporal sequences of

HDAC inhibition and irradiation.

Materials and Methods

The effects of HDAC inhibitors trichostatin A (TSA) and SK-7041 on radiosensitivity in

human lung cancer cells were examined using a clonogenic assay, exposing cells to

HDAC inhibitors in various sequences of HDAC inhibition and radiation. We performed

Western blot of acetylated histone H3 and flow cytometry to analyze cell cycle phase

distribution.

Results

TSA and SK-7041 augmented radiation cell lethality in an exposure time-dependent

manner when delivered before irradiation. The impact of TSA and SK-7041 on 

radiosensitivity rapidly diminished when HDAC inhibition was delayed after irradiation.

Radiation induced the acetylation of histone H3 in cells exposed to TSA, while irradi-

ation alone had no effect on the expression of acetylated histone H3 in TSA-naïve

cells. Preirradiation exposure to TSA abrogated radiation-induced G2/M-phase arrest.

When delivered after irradiation, TSA had no effect on the peak of radiation-induced

G2/M-phase arrest.

Conclusion

TSA and SK-7041 enhances radiosensitivity only when delivered before irradiation.

Unless proven otherwise, it seems prudent to apply scheduling including preirradia-

tion HDAC inhibition so that maximal radiosensitization is obtained.
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Introduction

DNA is organized with histone and other proteins to form

nucleosomes, which in turn are packaged into chromosomes.

Histone acetylation is an epigenetic mechanism regulating

chromosome configurations and gene expression. Two

groups of enzymes control the acetylation status of histones:

histone acetyltransferase (HAT) and histone deacetylase

(HDAC) [1]. Since aberrant HDAC activity leads to transcrip-

tional repression of tumor suppressor genes, HDAC 

inhibitors have been investigated for their anti-tumor effects

[2]. Several preclinical studies found that HDAC inhibitors

augment the effects of anti-cancer agents such as chemother-

apy and ionizing radiation [2-4]. Numerous in vitro and 

animal experiments note that HDAC inhibition enhances 

radiosensitivity of diverse cancer cells [5]. Although HDAC

inhibitors modulate radiosensitivity, the underlying mecha-

nisms are not fully understood. HDAC inhibition may 

enhance radiation response by affecting cell functions such
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as gene expression, cell cycle and DNA damage repair.

In HDAC inhibitors-induced radiosensitization, temporal

sequences between agents have a relevance to clinical 

practicability as well as mechanistic implications. In other

words, clinical application of HDAC inhibitors as adjunct to

radiotherapy should make the most use of a scheduling strat-

egy that is logistically feasible and optimal for radiation 

enhancement. Most studies evaluated the effect of HDAC 

inhibition on radiosensitivity by exposing cells to HDAC 

inhibitors before irradiation. This strategy is likely to elicit

maximum epigenetic modulation, and has generally proven

the effectiveness of preirradiation treatment with HDAC to

enhance radiation response [6-10]. However, some investi-

gators opine that HDAC inhibition after irradiation is crucial

to elicit optimal radiosensitization. Contrary to most studies,

they found that preirradiation treatment with HDAC 

inhibitors has little effect on radiosensitivity, while signifi-

cant radiosensitization is induced when cells are exposed

both before and after irradiation [11-13]. Thus, the question

regarding optimal combination scheduling of HDAC 

inhibitors and irradiation has not been yet answered.

The present study was conducted to investigate the effect

of different sequences of HDAC inhibition and irradiation

on radiosensitivity of human lung cancer cells. Cells were 

exposed to HDAC inhibitors trichostatin A (TSA) and 

SK-7041 before and after irradiation. We found that preirra-

diation TSA and SK-7041 treatment resulted in radiosensiti-

zation, while post-treatment showed much reduced effects.

Materials and Methods

1. Cell culture

A549 cell line was obtained from Korean Cell Line Bank

(Seoul, Korea). Cells were grown as attached monolayers in

RPMI 1640 media (JBI, Daegu, Korea) supplemented with

10% fetal bovine serum (JRH Biosciences, Lenexa, KS) and

12.5 µg/mL gentamicin (Gibco, Grand Island, NY). Cells

were incubated at the exponential growth phase in humidi-

fied 5% CO2/95% air atmosphere at 37°C. Cells from the 

exponential phase were used for subsequent experiments.

2. HDAC inhibitors

TSA was purchased from Sigma Chemical Co. (St. Louis,

MO). SK-7041 (4-dimethylamino-N-[4-(2-hydroxylcarbamoyl

-vinyl) benzyl] benzamide 1), class I HDAC inhibitor previ-

ously reported [14], was a kind gift from Prof Yung-Jue Bang

(Department of Internal Medicine, Seoul National University

College of Medicine, Seoul). HDAC inhibitors were 

dissolved as concentrated stock solutions in dimethyl sulfox-

ide (DMSO), stored at ‒20°C and diluted in culture medium

before use. Control groups were treated with medium 

containing an equal concentration of DMSO.

3. Clonogenic assay

Details of the clonogenic assay methods were previously

reported [8,9]. Cells were harvested from exponentially

growing culture, and specified numbers were seeded into

each well of six-well culture plates. Cells were treated with

HDAC inhibitors for specified time, and the media was 

replaced by fresh inhibitor-free media before irradiation.

Cultures were irradiated using 4-MV X-ray from a medical

linear accelerator (Clinac 4/100, Varian Medical Systems,

Palo Alto, CA) at a dose rate of 2.46 Gy/min. Cells were 

incubated for 14-21 days after irradiation till they were fixed

with methanol and stained with 0.5% crystal violet. Colonies

containing at least 50 cells were counted as clonogenic. Cell

survival data were fitted to a linear-quadratic model using

JMP software (SAS Institute Inc., Cary, NC). Surviving 

fractions were represented as a mean from triplicate experi-

ments. Sensitizer enhancement ratio (SER) was defined as the

ratio of radiation dose in the absence of HDAC inhibition to

that in the presence of HDAC inhibition to produce a speci-

fied surviving fraction. Comparison of SER was done using

paired t-test (Microsoft Excel 2010) between cells treated with

HDAC inhibitors and untreated cells. Null hypotheses of no

difference were rejected if p-values were less than 0.05. Type

1 error is not corrected for multiple comparisons.

4. Western blot for acetyl histone H3

Cells were washed, scraped and resuspended in cold lysis

buffer (iNtRON Biotechnology, Seoul, Korea). The lysates

were solubilized by sonication and centrifuged at 13,000 rpm

for 20 minutes at 4°C, and the supernatant was collected.

Equal amounts of protein were separated by 12.5% sodium

dodecyl sulfate polyacrylamide gel electrophoresis and 

electroblotted onto polyvinylidene difluoride membranes

(Millipore Corp., Bedford, MA). Membranes were blocked

with TBST blocking solution containing 10 mM Tris-HCl 

(pH 7.5), 150 mM NaCl, 0.1% Tween 20 and 5% dry milk for

1 hour. Then, membranes were probed with polyclonal 

rabbit anti-acetyl-histone H3 immunoglobulin G (Upstate,

Lake Placid, NY) at 1:2,000 dilution in 4°C overnight, and

washed and incubated with peroxidase-conjugated goat anti-

rabbit immunoglobulin G (Jackson Immuno Research Labo-

ratories, West Grove, PA) at 1:3,000 dilution for 1 hour. The
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same membranes were probed with monoclonal anti-α-tubu-

lin antibody (Sigma) at 1:5,000 dilution at room temperature

for 2 hours and incubated with peroxidase-conjugated goat 

anti-mouse immunoglobulin G (Jackson Immuno Research

Laboratories) at 1:3,000 dilution for 1 hour. Antibody binding

was detected using enhanced chemiluminescence detection

kit (Amersham Biosciences, Piscataway, NJ). The optical 

density of each band was measured using Image J version

1.33u (National Institute of Health, Bethesda, MD). For quan-

titative analysis, density of acetylated histone H3 bands was

standardized by that of corresponding α-tubulin bands.

5. Flow cytometric analysis

Cells were harvested using 0.25% trypsin and fixed in 1

mL of 80% ethanol (1-2×106 cells per sample). Cells were

washed twice with phosphate buffered saline (PBS) and 

incubated in dark for 30 minutes at 37°C in 1 mL of PBS 

containing 5 µg/mL propidium iodide (Molecular Probes,

Eugene, OR) and 0.1% RNase A (Sigma). Flow cytometric

analysis was done using FACScan flow cytometer (Becton

Dickinson, Franklin Lakes, NJ). At least 1×104 events were

counted.
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Fig. 1. Plating efficacy and surviving fraction of A549 cells

treated with histone deacetylase inhibitors (HDACI). Cells

were exposed to trichostatin A (TSA) of 200 nM or SK-7041

of 200 nM for various times. HDAC, histone deacetylase.

Fig. 2. The effect of histone deacetylase (HDAC) inhibition on tumor cell radiosensitivity. (A) A549 cells were treated for 3

to 24 hours with trichostatin A (TSA; 200 nM) and irradiated with graded doses of X-ray. After irradiation (IR), cells were

grown in HDAC inhibitor-free media till colony formation was determined 14-21 days afterwards and survival curves were

generated. Values represent the mean±SD from at least triplicate experiments. (B) As described previously (A), cells were

treated with SK-7041 (200 nM) and irradiated. (C) Sensitizer enhancement ratioof HDAC inhibition prior to IR. Values 

represent the mean±SE from triplicate experiments.
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Fig. 3. The effect of postirradiation histone deacetylase (HDAC) inhibitors (HDACI) on tumor cell radiosensitivity. (A)

Schema of HDACI treatment and irradiation (IR). A549 cells were treated with HDACIs prior to or after IR with graded

doses of X-ray. Cells were exposed to 200 nM trichostatin A (TSA) or 200 nM SK-7041 for 18 hours (represented by open

horizontal bars). For postirradiation treatment, cells were subjected to HDACI immediately, at 3 hours, 6 hours, and 12 hours

after IR. Drugs were washed off immediately after intended exposure time and cells were grown in HDACI-free media there-

after. (B, C) Clonogenic survival of A549 cells treated with TSA and SK-7041. Values represent the mean±SD from at least

triplicate experiments. (D) Sensitizer enhancement ratio of preirradiation and postirradiation HDAC inhibition calculated

from previous data (B, C). Values represent the mean±SE from triplicate experiments.
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Results

1. HDAC inhibition before irradiation

Treatment with HDAC inhibitors showed time-dependent

cytotoxicity in A549 cells (Fig. 1). Both TSA and SK-7041 

pretreatments enhanced radiosensitivity in A549 cells (Fig.

2A and B). Pretreatment-induced radiosensitization was

closely associated with duration of HDAC inhibition. As

A549 cells were treated for a longer time prior to irradiation,

SER increased for both TSA and SK-7041 (Fig. 2C). SER of 

18-hour treatment of TSA and SK-7041 were 1.68 and 1.60,

respectively.

2. HDAC inhibition after irradiation

To investigate the effect of HDAC inhibition after irradia-

tion, A549 cells underwent a series of combination sequences

of HDAC inhibitor treatment and irradiation. HDAC 

inhibitors were added to culture medium immediately, at 3

hours, 6 hours, or 12 hours after exposure to X-rays, and

clonogenic survival was determined (Fig. 3A). Compared

with preirradiation TSA treatment, TSA post-treatment 

decreased the extent of radiosensitization (Fig. 3B). In 

contrast to SK-7041 treatment prior to irradiation, cell 

radiosensitivity was not apparently altered when A549 cells

were exposed to SK-7041 immediately following irradiation

or afterwards (Fig. 3C). Immediate postirradiation TSA and

SK-7041 exposure induced radiosensitization by SER of 1.64

and 1.17, respectively. As treatment of HDAC inhibitors was

delayed further following irradiation, their effect on cell 

radiosensitivity gradually diminished (Fig. 3D).

3. Histone H3 acetylation and irradiation

To address the mechanism through which HDAC 

inhibitors enhance radiation cell killing, analysis of acetyl 

histone H3 assessed the association of HDAC inhibition and

the extent of radiosensitization. A549 cells were treated with

TSA prior to or following irradiation and acetyl histone H3

was immunoblotted. Acetyl histone H3 increased by 5.7-fold

in cells exposed to TSA compared to in untreated cells (Fig.

4). X-ray by itself had no effect on the level of acetyl histone

H3. In contrast to irradiation of untreated cells, irradiation of

TSA-treated cells induced additional 2-fold increase in acetyl

histone H3 compared with TSA treatment without irradia-

tion. When the sequence was reversed, postirradiation TSA

treatment induced 6.7-fold increase in the level of histone H3

acetylation, comparable to that by TSA treatment only (5.7-

fold increase).

4. Cell cycle profile following HDAC inhibition and irra-

diation

To investigate the effect of postirradiation HDAC inhibi-

tion on cell cycle progression, flow cytometric analysis was

used to evaluate cell cycle distribution in A549 cells treated

with various HDAC inhibition sequences. Flow cytometry

revealed that either X-ray or TSA treatment arrested cell 

cycles at the G2/M phase (Fig. 5A). Postirradiation as well

as preirradiation TSA treatment arrested cells in the G2/M

phase. To distinguish the effects of radiation and HDAC 

inhibition, temporal changes in postirradiation G2/M phase

proportion were analyzed. In TSA-naïve cells, the proportion

of G2/M phase peaked (71.7% at 12 hours) after irradiation

and rapidly plummeted below the baseline level at 36 hours

(Fig. 5B). Preirradiation TSA treatment blocked irradiation-

induced G2/M phase arrest. Immediate postirradiation TSA

treatment had no effect on the peak extent of G2/M phase

following irradiation. Delayed postirradiation TSA treatment

(from 12 hours to 30 hours after irradiation) showed no 
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apparent effect on the time course in G2/M phase propor-

tion.

Discussion

Although the radiosensitizing capacity of HDAC inhibitors

has been documented by preclinical studies [6-13,15], the 

optimal sequence of HDAC inhibition and radiation has not

been fully defined. This study showed that preirradiation

HDAC inhibition is essential for sensitization to radiation.

Radiosensitization was directly commensurate with duration

of HDAC inhibition prior to irradiation. These findings have

potentially important implications for clinical application of

HDAC inhibitors as radiosensitizers. Suboptimal scheduling

in the clinical setting might fail to elicit the full effect of 

radiosensitization by HDAC inhibitors. Several preclinical

studies reported that HDAC inhibitors enhanced radiation

response. The majority of these studies found that preirradi-

ation HDAC inhibition effectively induced a sensitization 

response [6-10,15]. Zhang et al. [16] reported that FK228

treatment prior to irradiation augmented cell radiosensitiv-

ity, while FK228 had no effect if cells were exposed to HDAC

inhibitor following radiation. Combined with the present

data, their findings support preirradiation HDAC inhibition

as essential to elicit sensitization. For any given HDAC 

inhibitors, it is crucial that HDAC inhibition should be 

temporally coordinated with radiation to achieve optimal

synergy.

Only a few researchers directly investigated the optimal

sequence of HDAC inhibition and radiation [11-13]. Chin-

naiyan et al. [13] reported that valproic acid induced compa-

rable radiosensitization irrespective of sequences of HDAC

inhibition and irradiation. The most effective scheduling to

induce radiation enhancement is that cells are subjected to

HDAC inhibition both before and after irradiation [13]. Other

studies from the same group, using MS-272 and valproic

acid, corroborated the argument that continued HDAC inhi-
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bition after irradiation is essential for maximal radiosensiti-

zation [11,12]. Given the diverse biologic effects of HDAC in-

hibitors, multiple mechanisms are implicated in enhancing

radiation response. HDAC inhibitors epigenetically change

gene expression profiles [1], which might render cells more

susceptible to radiation killing. Based on the observation that

delayed valproic acid treatment induces radiosensitization

as effectively as preirradiation exposure, HDAC inhibition

might interfere with late phases of DNA repair process by

modulating chromatin remodeling [13]. Van Nifterik et al.

[17] recently reported that postirradiation valproic acid treat-

ment had no effect on radiosensitivity in human glioma cells,

while preirradiation valproic acid exposure effectively 

augmented radiation lethality. Their findings contradict

Chinnaiyan et al. [13]. Using the same HDAC inhibitor 

(valproic acid) and similar in vitro model (human glioma

cells), two groups reported conflicting results with regard to

optimal scheduling of valproic acid with irradiation. The

present findings clearly showed that postirradiation HDAC

inhibition by TSA and SK-7041 had little effect on cell 

radiosensitivity. Only pre-irradiation treatment of TSA or

SK-7041 induces radiosensitization, which corroborates well

the findings of Van Nifterik et al. [17] and Zhang et al [16].

These conflicting results might reflect a complex interplay

between various HDAC inhibitors and different cell types in

inducing radiosensitization. Existing evidence suggests that

the relative contribution of preirradiation and postirradiation

HDAC inhibition might differ among cell types and 

inhibitors. Thus, omission of preirradiation HDAC inhibitor

treatment might risk suboptimal sensitization, until proven

otherwise.

Several studies found a close association of HDAC and/or

HAT with early responding components of DNA damage 

repair mechanisms. ATM [18] and 53BP1 [19] closely interact

with HDAC early after irradiation. HAT is also closely 

related with DNA damage repair proteins.  Sun et al. [20]

demonstrated that ATM is rapidly acetylated through inter-

action with Tip60 HAT after DNA damage. They observed

that the acetylation of ATM via Tip60 is a prerequisite for 

activation of downstream signal transducers, such as p53 and

chk2. Although abundant literature exists regarding HDAC

inhibitor-induced radiosensitization, research into HAT as a

potential target for radiation response modulation has been

limited. Suppression of Tip60 is associated with increased

sensitivity to radiation lethality [20], suggesting a potential

application of HAT inhibition as radiation response 

enhancer. Corroborating these observations, Sun et al. [21]

reported that treatment with anacardic acid, which inhibits

p300 and PCAF HAT, sensitizes tumor cells to radiation 

toxicity via inhibiting HAT activity of Tip60 and dependent

activation of ATM and DNA-PKs. Existing research suggests

that cellular sensitivity is augmented by pharmacologic 

inhibition of either of counteracting enzyme activity: HDAC

[6-13,15-17] or HAT [20,21]. These counterintuitive results

suggest that the nature of relationship of HDAC/HAT with

radiosensitivity is far from straightforward. The present 

results also suggest that inhibition of HAT activity plays an

important role in modulation of radiosensitivity. Irradiation

induces the expression of acetylated histone H3 only in

HDAC-suppressed cells (Fig. 4). In accord with Sun et al.

[20], our findings imply that immediate early response to

ionizing radiation is regulated by HAT. Radiation-induced

histone H3 acetylation may be a manifestation of cellular 

radiation response driven by uninhibited HAT activity in

HDAC-suppressed milieu. This view is corroborated by 

observations that that radiation-induced histone acetylation

is lost unless irradiation is preceded by HDAC inhibition.

The temporal window for HDAC inhibition to enhance 

radiation lethality coincides with that for irradiation-

triggered histone H3 acetylation. Thus, the interpretation of

the present data might be that both HDAC and HAT are 

involved in immediate responses to ionizing radiation.

HDAC inhibition might induce radiosensitivity by disrupt-

ing coordinated function of HDAC/HAT in the early phase

of DNA damage response.

Peri-irradiation HDAC inhibition is closely associated with

regulation of radiation-induced G2/M-phase arrest. G2/

M-phase arrest is an early response that cells adopt following

exposure to ionizing radiation. The arrest of eukaryotic cells

in G2 phase after irradiation is a universal phenomenon 

regardless of p53 gene status, and is associated with suppres-

sion of cyclin B [22]. There seems a direct association between

G2 delay and cellular susceptibility to ionizing radiation: the

longer the G2 phase delay, the more resistant cells are. This

has led to a speculation among researchers that modulation

in G2/M checkpoint might be a tool to enhance DNA 

damage after irradiation. Studies have demonstrated that

augmentation of radiation lethality follows the inhibition of

G2/M phase delay in human cancer cells by various phar-

macologic agents such as caffeine, staurosporine derivative

[23], c-Met inhibitor [24], and HDAC inhibitors [8,15]. In the

present investigation, radiation-induced G2/M-phase arrest

was blocked by preirradiation HDAC inhibition, but was not

affected by HDAC inhibitor exposure after irradiation 

(Fig. 5). These observations lead to the speculation that preir-

radiation HDAC inhibition is crucial for radiosensitization,

corroborated by the findings that HDAC inhibitors treatment

prior to irradiation augmented radiation lethality in an 

exposure time-dependent manner (Fig. 2).
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Conclusion

The current results demonstrate that the capacity of HDAC

inhibitors TSA and SK-7041 to enhance radiation response

requires preirradiation HDAC inhibition. Mechanisms 

underlying HDAC inhibitor sensitization might involve 

perturbation of early radiation response by suppressing

HDAC activity and rendering HATs uninhibited, thus 

disrupting coordinated HDAC/HAT function in DNA 

damage repair. Before HDAC inhibitors are used as adjuvant

to radiotherapy, optimal scheduling of two agents should be

established from preclinical studies. Until the underlying

mechanism is comprehensively described, it seems sensible

to include preirradiation HDAC inhibition for maximal 

radiosensitization.
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