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Purpose  Assessing the metastasis status of the sentinel lymph nodes (SLNs) for hematoxylin and eosin–stained frozen tissue sec-
tions by pathologists is an essential but tedious and time-consuming task that contributes to accurate breast cancer staging. This 
study aimed to review a challenge competition (HeLP 2019) for the development of automated solutions for classifying the metastasis 
status of breast cancer patients.
Materials and Methods  A total of 524 digital slides were obtained from frozen SLN sections: 297 (56.7%) from Asan Medical Center 
(AMC) and 227 (43.4%) from Seoul National University Bundang Hospital (SNUBH), South Korea. The slides were divided into train-
ing, development, and validation sets, where the development set comprised slides from both institutions and training and validation 
set included slides from only AMC and SNUBH, respectively. The algorithms were assessed for area under the receiver operating 
characteristic curve (AUC) and measurement of the longest metastatic tumor diameter. The final total scores were calculated as the 
mean of the two metrics, and the three teams with AUC values greater than 0.500 were selected for review and analysis in this study.
Results  The top three teams showed AUC values of 0.891, 0.809, and 0.736 and major axis prediction scores of 0.525, 0.459, and 
0.387 for the validation set. The major factor that lowered the diagnostic accuracy was micro-metastasis. 
Conclusion  In this challenge competition, accurate deep learning algorithms were developed that can be helpful for making a diagno-
sis on intraoperative SLN biopsy. The clinical utility of this approach was evaluated by including an external validation set from SNUBH.
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Introduction

Breast cancer is the most common cancer among women. 
Digital pathology has contributed significantly to its primary 
and frozen section diagnosis, becoming a common proce-
dure in multidisciplinary clinics [1]. While surgical removal 
of the primary tumor is necessary [2], it is also important 
to determine the metastatic status and surgical extent of  
regional lymph nodes. Sentinel lymph node (SLN) sampling 

or dissection is performed intraoperatively for this purpose 
[3-5]. When the tumor spreads beyond the primary location, 
it first drains into the sentinel nodes, making SLN biopsy a 
significant role in breast cancer cases [6]. Although evaluat-
ing frozen sections is more difficult than formalin-fixed par-
affin-embedded (FFPE) sections because of inferior quality, 
the frozen section technique is recommended since it allows 
immediate consultation during surgery [7]. Recent advances 
in deep learning algorithms may not only aid in an accurate 
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diagnosis but minimize anesthesia time for patients and  
labor for pathologists [8,9].

Some deep learning algorithms showing better diagnos-
tic performance than pathologists have been introduced in 
the CAMELYON 16 and 17 (Cancer Metastases in Lymph 
Nodes Challenge) competitions [10,11], in which FFPE tis-
sue sections are used. For the validation of frozen sections 
in metastases classifications, we held the HeLP Challenge 
2018 (HEalthcare ai Learning Platform), in which automated 
deep learning algorithms for detecting metastases in he-
matoxylin and eosin–stained frozen SLN tissue sections of 
breast cancer patients were developed [12]. The goal of this 
challenge was to discriminate between metastatic and nor-
mal tissues on digital pathology slides provided by Asan 
Medical Center (AMC). Four teams submitted their results to 
the leaderboard in the final stage, and three of them showed 
considerable area under the curve (AUC) values. However, 
major limitations of this competition included that all data-
sets were acquired from a single institution (AMC) and the 
clinicopathologic characteristics of tumors were randomly 
distributed among the training, development, and validation 
sets. The use of datasets from only one institution usually 
restricts the generalization of the model for multisite deploy-
ment owing to a lack of external validation. Different ratios 
of tumor characteristics in each training, development, and 
validation set likely cause overfitting to a particular ratio, 
leading to biased model tuning. Moreover, it is known that 
breast cancer patients with micro-metastasis (≤ 2 mm) in SLN 
do not require axillary node dissection [13]. Thus, determin-
ing metastatic tumor size in SLN is clinically meaningful.

In the second competition, HeLP Challenge 2019, we  
expanded our task to determine the presence of metasta-
sis and also measure the longest diameter of the metastatic 
tumor, if one existed. Additional data were collected from 
Seoul National University Bundang Hospital (SNUBH) to 
allow for external validation. In addition, clinicopathologic 
characteristics of the tumor slides were distributed in the 
training, development, and validation sets as evenly as pos-
sible to balance the ratios among them. As the p-values are 
calculated, the p-value for each clinicopathologic factors 
was less than 0.001 except for one, which indicated that the 
dataset distribution was statistically significant, compared to 
the previous challenge setting [12]. Through this modified 
challenge setting, we aimed to evaluate the performance of 
deep learning models for classifying metastases per slide, 
measuring the largest metastatic tumor size, and ensuring 
the adaptability of the external dataset in hematoxylin and 
eosin‒stained frozen SLN tissue sections of breast cancer  
patients.

Materials and Methods

1. Data description
We acquired 524 digital slides of SLNs from the two dif-

ferent institutions for routine frozen section surgical proce-
dures [14]. At SNUBH, each excised SLN was immediately 
submitted, cut into 2-mm slices, entirely embedded in opti-
mum cutting temperature compound, and frozen at ‒25°C. 
Each 5-µm-thick frozen section was cut, mounted on glass 
slides, and stained with hematoxylin and eosin (H&E). A 
total of 227 slides were scanned using a digital microscopy 
scanner (Pannoramic 250 Flash II, 3DHISTECH Ltd., Buda-
pest, Hungary) in the MIRAX format (.mrxs) with a resolu-
tion of 0.389 µm per pixel (MPP) from SNUBH. As already 
introduced in our previous study [12], the data acquisition 
protocol was the same for AMC with negligible differences. 
At AMC, lymph nodes were cut into 2-3-mm slices and fro-
zen at ‒20°C to ‒30°C. A total of 297 slides were scanned  
using a digital microscopy scanner (Pannoramic 250 Flash II, 
3DHISTECH Ltd.) in .mrxs format with a resolution of 0.221 
MPP. The most important and notable difference between 
the two institutes was the resolution (MPP) [15].

The dataset comprised 236 slides from AMC as the train-
ing set, 107 slides (61 from AMC and 46 from SNUBH) as the  
development set, and 181 slides from SNUBH as the valida-
tion set. The validation set consisted of primarily external 
institution data, and the purpose was to validate the adapt-
ability of the deep learning models to generalize in external 
dataset. Each set involved sufficient consideration of the dis-
tribution of histologic type. Of the total dataset, 163 slides 
were obtained from patients who had received neoadjuvant 
therapy, which would be more challenging to histologically 
examine [16], prior to submission of the SLN samples for fro-
zen sectioning. Table 1 summarizes the participants’ demo-
graphic details.

2. Reference standard
For the AMC dataset, a single rater provided manual 

segmentation of all digital slides, and two clinically expert 
pathologists with 6 and 20 years of experience in breast  
pathology confirmed the annotations. A similar procedure 
was performed for the SNUBH dataset, where a single rater 
provided manual segmentation of the digital slides and an 
expert breast pathologist with 15 years of experience con-
firmed the annotations. Metastatic carcinomas with regions 
larger than 200 µm in the greatest digital slide dimension 
were annotated as the cancers.

3. Challenge competition environment
The platform for the contest was developed by Kakao 

Brain, and the competitors were allowed to access the data 
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only through the given paths using Docker image files. 
More details of the challenge platform and environment are  
introduced in our review of the previous challenge [12]. The 
competitors were informed about the details of the challenge 
environment and the dataset two days prior to the start of 
the competition. They were also notified of the difference 
between the two datasets from the two institutions, such as 
MPP, magnification, and staining intensity. However, more 
details involving the organization of the slides in the data-
set were kept undisclosed to ensure fairness of the contest. 
For the first five weeks of the challenge, 343 digital slides 
were provided as training and development sets. Anno-
tated masked images were provided in addition to the 236 
digital slides of the training set to train the model. For the 
next two weeks, an additional 181 digital slides consisting 
of only SNUBH data were opened for the competitors to use 
as the final validation of their best-tuned models. During 
this period, the digital slides from the development set were 
no longer available, as the competitors were not allowed to  
additionally tune the model based on the development set 
once the validation set is open. The model’s final perfor-
mance was submitted to the leaderboard, and the scores and 
ranks were displayed in real time. Details of the algorithms 
for each team are presented in S1 Table.

4. Evaluation metric
The algorithms were evaluated for their ability to classify 

the digital frozen tissue section slides as “metastasis slides” 
or “normal slides” and measure the size of the longest diam-
eter of the metastatic tumor. For the statistical analysis of the 
classification task, receiver operating characteristic (ROC) 
analysis at the slide level was performed, and the AUC was 
measured to compare the algorithms. As for the size meas-
urement task, the assessment was made in terms of accu-
racy regarding the size of the largest metastasis. The error 
range for the size measurement evaluation was ±5%. Positive  
labels were given for predictions of size within the given  
error range, while negative labels were given for any other 
predictions outside this range. These binary labels, either 
positive or negative, were compared with the labels of  
metastasis in each digital slide and evaluated in terms of 
accuracy. This accuracy score was named “Scores of Major 
Axis” throughout the challenge.

5. Competitors
Registration for this challenge began in mid-November 

2019 and lasted for 3 weeks. Ten teams were selected for par-
ticipation from among the total registered teams. Toward the 
end of the contest, nine teams submitted their results to the 
leaderboard for the development set; finally, only four teams 
submitted their results for the validation set. The top three 
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Table 1.  Clinicopathologic characteristics of the patients in the AMC and SNUBH datasets (resolution [width×height] of the digital slide: 
93,615×232,948 pixels [AMC] and 56,462×132,956 pixels [SNUBH])

	 Training set	                          Development set		 Validation set	
p-valuea)

	 AMC (n=236)	 AMC (n=61)	 SNUBH (n=46)	 SNUBH (n=181)

Age (yr)	 50 (30-72)	 49 (28-80)	 51 (38-73)	 52 (25-87)
Female sex	 236 (100)	 61 (100)	 46 (100)	 181 (100)	 > 0.99	
Metastatic carcinoma					   
    Size > 2 mm	 113 (47.9)	 30 (49.2)	 18 (39.1)	 65 (35.9)	 0.114
    Size ≤ 2 mm	 28 (11.9)	 6 (9.8)	 8 (17.4)	 36 (19.9)	
    Absent	 95 (40.2)	 25 (41.0)	 20 (43.5)	 80 (44.2)	
Neo-adjuvant therapy					   
    Not received	 122 (51.7)	 30 (49.2)	 42 (91.3)	 167 (92.3)	 < 0.001
    Received	 114 (48.3)	 31 (50.8)	 4 (8.7)	 14 (7.7)	
Histologic type					   
    IDC	 201 (85.2)	 50 (82.0)	 46 (100)	 177 (97.8)	 < 0.001b)

    ILC	 18 (7.6)	 4 (6.5)	 0 (	 2 (1.1)	
    Others	 17 (7.2)	 7 (11.5)	 0 (	 2 (1.1)	
Histologic grade					   
    1 or 2	 188 (79.7)	 49 (80.3)	 28 (60.9)	 112 (61.9)	 < 0.001
    3	 48 (20.3)	 12 (19.7)	 18 (39.1)	 69 (38.1)	
Values are presented as median (range) or number (%). AMC, Asan Medical Center; IDC, invasive ductal carcinoma; ILC, invasive lobular 
carcinoma; SNUBH, Seoul National University Bundang Hospital. a)p-values, calculated using the chi-square test, b)For the histologic type, 
a chi-square test was conducted between IDC and non-IDC.
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teams were the GoldenPass, MediTrain, and DeepRunning-
Machine (DRM) teams, and their methodological descrip-
tions are shown in S1 Table. The results of only these three 
teams, who demonstrated meaningful outputs, were used 
for the review and analysis of this challenge.

Results

The model performances were sorted in descending order 
for the development set and validation set as shown in Tables 
2 and 3. Nine teams submitted their results to the leaderboard 
for the development set, while five teams submitted their  
results for the validation set. Among them, the results of only 
the top three teams were considered meaningful because the 
lower-ranked teams showed AUC values below 0.500, which 
is too low to be accountable. For the development set, the 
three teams showed AUC values of 0.901, 0.838, and 0.542 
for the slides and 0.523, 0.411, and 0.402 for the major axis. 
For the validation set, which consisted of 181 digital slides 
from SNUBH, the GoldenPass team showed the highest 
AUC (0.891) for the validation set (vs. those of the MediTrain 
and DRM teams of 0.809 and 0.736, respectively). All teams 
showed a decrease in AUC when the slides from AMC were 
eliminated in the validation set except for the DRM team, 
which demonstrated a large increase in performance for the 
external dataset only. For the major axis measurement, all 
teams showed an increase, although small, while the DRM 
team had a decreased score. A comparison of ROC curves 

for calculating the AUC values for each team is illustrated in 
Fig. 1. The first-place team, GoldenPass, showed confidence 
scores of 0-1 for each inference of their results, whereas the 
other two teams showed only a binary form of the prediction 
results with a 0 or 1. This difference is shown in Fig. 1, where 
the ROC curve of the GoldenPass team shows the staircase 
phenomenon, while the curves of the MediTrain and DRM 
teams were drawn from only three points. From the ROC 
curves, the optimal cut-off threshold was determined by the 
Youden’s Index to evaluate each algorithm.

While the curves in Fig. 1 demonstrate the model perfor-
mances of classifying normal and metastasis slides, the AUC 
values and ROC curves, as shown in Fig. 2, were additionally 
computed for performances of classifying micro-metastasis 
(≤ 2 mm) and macro-metastasis (> 2 mm). The slides with 
metastasis smaller than 2 mm were counted as the same label 
as normal slides in this case, and comparison of AUC val-
ues are shown in Table 4, along with the corresponding ROC 
curves in Fig. 2. When micro-metastases were considered as 
normal, the top two teams showed higher AUC values, and 
the values between the teams showed larger gaps. The per-
formance comparison for both evaluations is visually sum-
marized in confusion matrix representation in S2 Fig.

Model performance was additionally evaluated by com-
paring performance according to clinicopathologic charac-
teristics. This clinical information (Table 5) includes the size 
of the metastatic tumor (whether its greatest dimension is 
smaller or larger than 2 mm), neoadjuvant therapy status, 
histologic type, and histologic grade. The top two teams 

Table 2.  Final scores of performances of classification of tumor slides and prediction of major axes

Team	                                     
Phase 1. Development set (AMC+SNUBH)	                                      Phase 2. Validation set (SNUBH)	

	 AUC of slides	 Scores of major axis	 Total score	 AUC of slides	 Scores of major axis	 Total score

GoldenPass	 0.901	 0.523	 0.712	 0.891	 0.525	 0.708
MediTrain	 0.838	 0.411	 0.624	 0.809	 0.459	 0.634
DRM	 0.542	 0.402	 0.472	 0.736	 0.387	 0.561

AMC, Asan Medical Center; AUC, area under the curve; DRM, DeepRunningMachine; SNUBH, Seoul National University Bundang 
Hospital.

Table 3.  Performance comparison of classification task of tumor slides

Team
			    Phase 2. Validation set (SNUBH)

	 ACC	 TPR	 TNR	 PPV	 NPV

GoldenPass	 0.845	 0.772	 0.938	 0.940	 0.765
MediTrain	 0.790	 0.644	 0.975	 0.970	 0.684
DRM	 0.724	 0.634	 0.838	 0.831	 0.644

ACC, accuracy; DRM, DeepRunningMachine; NPV, negative predictive value; PPV, positive predictive value; SNUBH, Seoul National 
University Bundang Hospital; TNR, true-negative rate; TPR, true-positive rate.

Cancer Res Treat. 2023;55(2):513-522
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showed a higher true-positive rate (TPR) and a lower false-
negative rate (FNR) in slides with metastatic tumors larger 
than 2 mm, while the third-place team showed the opposite 
with a higher TPR and lower FNR for smaller metastatic 
tumor slides. Two teams showed a lower TPR for slides 
obtained from patients who had not received neoadjuvant 
therapy, while the other team showed lower TPR for slides 
of samples from patients with a history of neoadjuvant ther-
apy. Two teams showed a lower true-negative rate (TNR) for 
slides with a neoadjuvant therapy history, while the first-
place team (GoldenPass) showed an especially significant 
drop in TNR. For cases in which the metastatic carcinoma 
was invasive lobular carcinoma (ILC), all of the top three 
teams showed higher TPR and TNR values in contrast to cas-
es of invasive ductal carcinoma (IDC). In terms of comparing 
performance according to histologic grade, the GoldenPass 
team showed better performance, although there was a very 
small difference in the classification of SLN with a histologic 
grade of 1 or 2, while higher values in both TPR and TNR 
were obtained for histologic grade 3 for the other two teams 
with the exception of the MediTrain team, which showed a 
higher TNR for histologic grade 1 or 2 samples.

The top three teams correctly classified 100 slides, includ-

ing 39 true-positive and 61 true-negative, and all three incor- 
rectly classified nine slides as negative (false-negative) 
among the 181 slides in the validation set. The first-place 
team had five false-positive slides that the other two teams 
correctly classified. These wrongly categorized slides are rep-
resented in Fig. 3. The second- and third-place teams incor-
rectly classified one slide as positive (false-positive), while 
the DRM team incorrectly classified 12 slides as positive. One 
false-positive slide obtained by the two teams was IDC his-
tologic grade 2 without a history of neoadjuvant therapy. All 
nine false-negative slides were obtained from patients with 
the IDC histologic type who did not receive neoadjuvant sys-
temic therapy: six were from patients with histologic grade 
1 or 2 cancer, while the other three were from patients with 
histologic grade 3 cancer. Among those false-negative slides, 
all nine had micro-metastases (size range, 0.15 to 1.91 mm).

Among the 65 lymph nodes with a metastasis greater than 
2 mm, the GoldenPass team predicted 44 of them as being  
larger than 2 mm; of them, 15 were within the allowed  
error range. The MediTrain and DRM teams predicted 37 
and 40 cases, respectively, as being larger than 2 mm, and 
four and three of them, respectively, were within the allowed 
error range. For the 36 SLN samples with micro-metastasis, 

Fig. 1.  Receiver operating characteristic (ROC) curve compari-
sons of models trained by the three algorithms for the validation 
set. AUC, area under the curve.
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Fig. 2.  Receiver operating characteristic (ROC) curve compari-
sons of models for classifying micro-metastasis as normal (The 
original ROC curves from Fig. 1 are shown with dotted lines.). 
AUC, area under the curve.
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Table 4.  Performance comparison of classifying micro-metastasis as tumor versus micro-metastasis as normal

Team	                                                                                             
AUC (validation set) 	

	 Absent vs. Tumor (including ≤ 2 mm) (Fig. 1)	 Absent (including ≤ 2 mm) vs. Tumor (Fig. 2)

GoldenPass	 0.891	 0.976
MediTrain	 0.809	 0.823
DRM	 0.736	 0.648

AUC, area under the curve; DRM, DeepRunningMachine.

Young-Gon Kim, Diagnostic Assessment of Deep Learning Algorithms  
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Fig. 3.  Representative examples of false-negative and false-positive cases in hematoxylin and eosin stains. (A) A case with micro-metasta-
sis (741 µm in diameter), which was predicted as negative by the three teams (visual field: 9.6×). (B) A case with sinus histiocytosis (shown 
with arrows) mimicking metastasis, which was predicted as positive by GoldenPass team (visual field: 8.9×).

A B

Table 5.  Performance comparison of determining clinicopathologic characteristics of tumors

		  Team

	 GoldenPass	 MediTrain	 DeepRunningMachine

Metastatic tumor size
    Absent (n=80)			 
        TPR	 0.938	 0.975	 0.838
        FNR	 0.063	 0.025	 0.163
    ≤ 2 mm (n=36)			 
        TPR	 0.361	 0.389	 0.667
        FNR	 0.639	 0.611	 0.333
    > 2 mm (n=65)			 
        TPR	 1.000	 0.785	 0.615
        FNR	 0.000	 0.215	 0.385
Neoadjuvant therapy			 
    Not received (n=167)			 
        TPR	 0.766	 0.649	 0.628
        TNR	 0.959	 0.986	 0.836
    Received (n=14)			 
        TPR	 0.857	 0.571	 0.714
        TNR	 0.714	 0.857	 0.857
Histologic type			 
    IDC (n=177)			 
        TPR	 0.765	 0.643	 0.633
        TNR	 0.937	 0.975	 0.835
    ILC+mixed (n=4)			 
        TPR	 1.000	 0.667	 0.667
        TNR	 1.000	 1.000	 1.000
Histologic grade			 
    1 or 2 (n=112)			 
        TPR	 0.794	 0.619	 0.619
        TNR	 0.939	 0.980	 0.796
    3 (n=69)			 
        TPR	 0.737	 0.684	 0.658
        TNR	 0.935	 0.968	 0.903

FNR, false-negative rate; IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma; TNR, true-negative rate; TPR, true-positive rate.

Cancer Res Treat. 2023;55(2):513-522
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whose size was less than or equal to 2 mm, the GoldenPass 
and DRM teams did not have predictions smaller than 2 mm, 
while the MediTrain team predicted 10 of them as smaller 
than 2 mm, with one being within the given error range.

Discussion

Recent advances in technology and equipment have led to 
the expansion of digital pathology in many countries. Digital 
pathology includes primary diagnosis based on whole slide 
imaging, telepathology, and computer-aided diagnosis using 
image analysis software [17]. A computer-aided diagnosis is 
defined as the interpretation of digitized histological images 
using a computational diagnostic system [18]. Currently, 
deep learning is generally considered the most promising 
computer-aided diagnosis method. Computer-aided diagno-
sis using deep learning methods showed good performance 
for classification, prognostication, and prediction of breast 
cancer, prostate cancer, gastrointestinal cancer, skin cancer, 
etc. [19-24].

Digital pathology has also been implemented and vali-
dated for intraoperative frozen section diagnosis [25-27]. For 
primary diagnosis, most frozen section slides were success-
fully scanned, and findings of glass and digitalized slides 
showed excellent agreement. In addition, digital pathology 
has apparent advantages for consultation since pathologists 
can save a considerable amount of time and effort if they 
simply use telepathology instead of actually moving to see 
glass slides or show them to other pathologists. However, 
the application of computer-aided diagnosis in frozen sec-
tion pathology is still in its infancy. There have been several 
studies on the quantification of steatosis using deep learn-
ing for frozen liver biopsy sections [28,29] but few studies 
on computer-aided diagnosis in frozen section pathology of 
cancer surgery. Our group previously held HeLP Challenge 
2018 to develop a deep learning algorithm for the diagnosis 
of SLN sections in breast cancer surgery as summarized in 
the introduction section. We then held HeLP Challenge 2019, 
which aimed to expand the dataset, measure the metastatic 
tumor sizes, and improve the overall algorithm performance.

In this study, all of the participants of the top three teams 
included convolutional neural network–based deep learning 
methods for classification or segmentation networks, which 
resulted in adequately high performance with AUC values of 
0.891, 0.809, and 0.736. Notably, the performances of the top 
three teams were better than those of HeLP Challenge 2018, 
which were AUC values of 0.805, 0.776, and 0.760. We believe 
that this enhancement could be due to dataset expansion and 
algorithm improvement. Further data collection and training 
might enable the implementation of computer-aided diagno-

sis in frozen section pathology.
The model performances were compared and evaluated 

according to the clinicopathologic characteristics of the pati-
ents. Although the top two teams showed a lower TPR in 
micro-metastasis than in the macro-metastasis, the third-
place team showed a paradoxical result with a higher TPR 
in micro-metastasis. The models of the top two teams were 
generally trained well to distinguish metastatic tumor slides, 
and they showed similar aspects that smaller the tumor sizes, 
the more difficult it was to classify. On the other hand, while 
the model of DRM team was not trained generally enough to 
classify metastatic tumors, the result was in consistence with 
the previous study that revealed Inception-v1, also known as 
GoogLeNet, as the best performing network in micro-metas-
tasis [10]. Although it is a previous version of Inception-v4 
employed by DRM team, they both share the same incep-
tion modules, which may have contributed in robustness in 
micro-metastasis. Such aspect may have seen amplified since 
the number of slides for the micro-metastasis was the small-
est of the three categories in metastatic tumor size.

A main modification in this second competition was the 
addition of the dataset from SNUBH to enable the evalua-
tion of deep learning models for adaptability in an exter-
nal dataset. Interestingly, two of the teams showed higher 
total scores for the validation set than for the development 
set. The first-place team, GoldenPass, had a decreased total  
score in the validation set, but the absolute value of the dif-
ference was the smallest among the three teams. In other 
words, this can be interpreted as the GoldenPass team show-
ing the most similar performance in the development and 
validation sets. Since the purpose of external validation is 
to assess the model’s adaptability in a dataset from another 
domain, such results may be an indication of deep learning 
model robustness. This might be due to the difference in 
pre-processing methods, particularly with regard to the han-
dling of input data acquired from two different institutes. As 
already mentioned in the previous section, the primary dif-
ference between the AMC and SNUBH datasets is related to 
the definite size of each pixel, referred to as MPP, which is 
determined at the point of slide scanning. If input patches 
are extracted from the same slide layer level, the patch reso-
lution in the AMC data would be approximately 1.7 times 
that of the SNUBH data patch. To minimize the influence 
of this domain gap, the GoldenPass team extracted patches 
from level 4 for the AMC slides and level 3 for the SNUBH 
slides and rescaled them. They also applied stain normaliza-
tion, which can reduce the variations in color and intensity 
in H&E-stained images obtained at different time points and 
in different laboratories (S1 Table). This suggests that con-
sideration of the domain gap during the training led to the 
maintenance of a small change in performance between the 
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development and validation sets.
The model architecture employed by the top two teams  

involved a feature pyramid network (FPN), known as a 
multi-scale feature extractor, while the third-place team  
employed Inception-v4 and support vector machine (SVM). 
Based on the model architectures, the use of FPN may  
expect to minimize the influence of MPP difference between 
the datasets, since the network makes use of feature maps 
extracted from various scales. This may have contributed in 
increasing the performance of major axis measurement task. 
On the other hand, implementation of Inception-v4 and SVM 
to train the geometric features extracted by the model may 
have optimized the output for the classification task only.  
Although the top two teams both equally employed FPN 
architectures, consideration of MPP in the patch extraction 
stage by the first-place team may have further contributed to 
the enhancement in the final performance.

Model performance in the classification task was nota-
bly low in slides with micro-metastatic tumors and high in 
slides with ILC. Pathologists’ manual examination of intra-
operative SLN biopsy is generally difficult in cases of micro- 
metastases and lobular histology [30]; hence, poor perfor-
mance for discriminating micro-metastatic tumor slides is 
probable. However, the peculiarly high TNR in slides with 
ILC may be due to the amount of data in the validation set, 
which included an extremely low proportion (1.1%) of cases 
of lobular histology. In addition, the model performance in 
the major axis measurement task was generally low for all 
teams. This might be the reason for the strict error range  
allowed in the contest. An error range ±5% was used to 
compute the participants’ scores and ranks, but in fact, error  
ranges of approximately ±15%-20% are acceptable for deter-
mining the sizes of metastases in actual clinical examina-
tions. Relatively low major axis prediction scores could be 
complemented by increasing the allowed error range (Table 
6).

For additional analysis, the slides with no metastatic  
tumor or micro-metastatic tumors only (≤ 2 mm) were con-
sidered as negative, and the slides with macro-metastasis  
(> 2 mm) were considered as positive. There are two reasons 
for this. Firstly, if frozen biopsy reveals micro-metastases only, 

then axillary lymph node dissection is not required. There-
fore, clinical significance of micro-metastasis is much less 
than macro-metastasis. Secondly, when annotating tumor  
areas for this challenge, the pathologist did not annotate 
metastatic tumor clusters smaller than 2 mm because that 
was too labor-intensive. This classification could possibly 
affect the learning ability of tumor detecting algorithms. In 
such setting, the top two teams showed larger AUC values 
and the GoldenPass team showed especially large increase, 
which can be interpreted as that their model was better fit for 
discriminating the macro-metastasis.

Although the current breast cancer treatment guidelines 
do not recommend axillary lymph node dissection in the 
micro-metastasis, some surgeons still prefer to do additional 
lymph node sampling in the setting of micro-metastasis, or 
just. Therefore, it might be helpful for pathologists if deep 
learning algorithms can sensitively detect very small foci of 
metastatic tumor cells, including micro-metastasis or even 
isolated tumor cells. We suggest that further studies includ-
ing more delicate annotation and intense learning process 
can improve tumor detecting ability of the algorithms.

We held a 7-week-long challenge competition to develop 
deep learning algorithms for the analysis of digital pathol-
ogy slides with H&E-stained frozen tissue sections of SLN 
samples from breast cancer patients. In contrast to the previ-
ous challenge we held, here we tried to develop more helpful 
and practical models for the diagnosis of frozen intraopera-
tive SLN biopsy samples by adding the major axis measure-
ment task and external dataset. The measurement task was 
to help determine whether the size of a metastasis requires 
its resection, and an external dataset was used to evaluate 
the models’ robustness and adaptability to data from an-
other institution. The top three ranked teams achieved high 
AUC values and acceptably high scores for major axis pre-
diction despite a strictly limited error range in the evalua-
tion. The deep learning models proposed in this challenge 
may be used for clinical trials in the future to compare the 
performances between the computer-aided diagnosis versus 
the pathologist’s examination. Moreover, follow-up studies 
could be conducted with the expansion cohort to adjust the 
proposed algorithms into routine clinical practice, which our 

Table 6.  Performance differences in major axis prediction according to variations in error range

Team
			   Scores of major axis prediction error range

	 ±5%	 ±10%	 ±15%	 ±20%	 ±30%

GoldenPass	 0.525	 0.552	 0.597	 0.613	 0.630
MediTrain	 0.459	 0.492	 0.508	 0.525	 0.580
DRM	 0.387	 0.475	 0.492	 0.503	 0.514

DRM, DeepRunningMachine.
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future works will focus on. Yet, further studies are required 
to increase the micro-metastases detection accuracy and  
implement concise and time-saving models for application 
in routine clinical settings.
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