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Introduction

Gastric cancer (GC) ranks as the third leading cause of 
cancer-related death worldwide. Every year, approximately 
one million people are diagnosed with GC, over half of which 
reside in Asia [1]. Surgical resection remains the most effec-
tive treatment for early and some advanced forms of GC, 
and over the last decade, chemotherapy has been considered 
a standard therapeutic regimen for patients with advanced 
or metastatic GC [2]. However, most patients with GC will 
eventually metastasize or relapse and the prognosis is still 
unsatisfactory [3]. Therefore, there is an urgent need to exp-
lore novel prognostic biomarkers to increase the accuracy of 
prognosis prediction and seize therapeutic opportunities for 
GC patients.

GC has substantial biological differences between Asian 
and non-Asian populations [4], which makes it difficult to 
have a unified predictive measure for all people. Due to the 
complex biological and molecular mechanisms underlying 
GC, traditional predict methods relying on clinical data such 
as serum examination, imaging examination, and pathologic 
information are limited.

In this genomic era, high-throughput platforms such as 
sequencing and microarrays play an increasingly important 
role in the field of oncology and make precision medicine 
possible. Using the hepatocellular carcinoma data set of The 
Cancer Genome Atlas (TCGA) and Gene Expression Omni-
bus (GEO), Long et al. [5] established a prognostic model for 
overall survival (OS) prediction, suggesting that these appro-
aches and data have a wide range of clinical applications. Hou 
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et al. [6] analyzed the GC expression profile data in the GEO 
database through Lasso regression analysis, and obtained 11 
genes related to prognosis, and thought that the selection of 
more than five genes can predict the prognosis. Cheong et 
al. [7] established a 4-gene chemotherapy prediction model 
based on the expression profile data of GC after D2 surgery, 
which can assess whether patients can benefit from postop-
erative adjuvant chemotherapy. The incidence of GC in Asian 
populations is much higher than that of other races. However, 
at present, there is no prognostic model based on comprehen-
sive clinical data and gene expression data, which can make 
a more accurate judgment on the prognosis of Asian GC pati-
ents.

In our study, we used a GEO dataset from Korea to estab-
lish a four-gene prognostic model, including mRNA process
ing factor 2 (RBPMS2), regucalcin (RGN), pleckstrin homol
ogy domain containing S1 (PLEKHS1), and cancer/testis 
antigen 83 (CT83). All patients were classified into a low-risk 
group and a high-risk group. The prognostic model was vali-
dated in the Asian GC cohort in the TCGA database. Finally, 
a nomogram including clinical characteristics and prognostic 
model was established for OS prediction. As a whole, these 
predictive methods will help stratify Asian patients with GC 
more accurately and promote more precise treatment for all 
of them.

Materials and Methods

1. Microarray data
The gene expression profile matrix of GSE66229 was down-

loaded from the GEO database, and the clinical information 
was obtained from the corresponding published literature 
[8]. GSE66229 is composed of the GSE62254 and GSE66222 
datasets, which were based on the GPL570 platform (Affy-
metrix Human Genome U133 Plus 2.0 Array, Santa Clara, 
CA). The GSE62254 dataset contains 300 GC samples, and 
the GSE66222 dataset contains 100 adjacent nontumorous 
gastric tissues. Patients with GSE66222 are all included in 
GSE62254. We excluded two patients with multiple primary 
tumors. A total of 298 patients with 397 samples (99 adjacent 
nontumorous and 298 tumor tissues) were selected for fur-
ther analyses.

2. RNA-sequencing data
The RNA-sequencing data and the corresponding clinical 

information used for validation were downloaded from the 
TCGA database. Among these GC patients, there were 348 
patients with 373 samples (30 adjacent nontumorous and 
343 tumor tissues). We excluded 35 patients with incomplete 
clinical information. Finally, 313 patients with 336 samples 

(28 adjacent nontumorous and 308 tumor tissues) were  
selected as the TCGA global cohort. According to the patients’ 
race, the cohort was further divided into an Asian cohort  
and a non-Asian cohort. The Asian cohort contained 63 pati-
ents with 68 samples (6 nontumorous and 62 tumor tissues), 
and the non-Asian cohort contained 250 patients with 268 
samples (22 nontumorous and 246 tumor tissues). 

3. Identification of differentially expressed mRNA
Firstly, we obtained the original mRNA expression pro-

files of GC from the GSE66229 dataset and merged them 
into one file. The RMA algorithm is used to normalize and 
Log2 transform the expression data in R environment. The 
average value of gene expression was taken when duplicate 
data were found. Genes with an average expression value  
> 1 were retained, while the low abundance sequencing data 
were deleted. The mRNA microarray includes 20,486 mRNA 
expression profiles. Next, we calculated the identification of 
differentially expressed genes (DEGs) with the help of the 
Limma package [9], where genes with logFC > 2 or logFC 
< –2 and adjusted p < 0.001 were considered for subsequent 
analysis, the cutoff value of LogFC was also used in other 
study [10]. The Pheatmap package and Volcanomap package 
were applied to describe the DEGs via the R language.

4. Establishment and verification of the prognostic model
Univariate, Lasso-penalized, and multivariate Cox regres-

sion analyses were performed to reduce candidate genes and 
explore the correlation between the mRNA expression levels 
and patient OS. 

In the univariate Cox regression, mRNA expression was 
considered to be significant when the p < 0.001. Then, we 
conducted Lasso-penalized Cox regression to further reduce 
the number of genes. For the selection operator of Lasso-
penalized Cox regression, we sub-sampled the dataset that 
was replaced one thousand times and selected markers with 
a repetition frequency greater than 900. The tuning param-
eters were determined by the expected generalization error,  
which was estimated by 10-fold cross-validation and infor-
mation-based Akaike Information Criteria/Bayesian Infor-
mation Criteria. To ensure that the error was within one 
standard error from the minimal (MSE), the maximum value 
of the lambda was adopted, which was defined as “1-MSE” 
lambda. Then, the expression data of candidate genes was 
standardized through the scale method in R Software (R 
Foundation for Statistical Computing, Vienna, Austria). To 
evaluate individual genes as independent prognostic factors 
for OS, we performed a multivariate Cox regression analysis. 
The stepwise approach was applied to further select the best 
model. Ultimately, a prognostic model based on four genes 
was established. The risk score was based on a linear combi-
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nation of the expression levels of individual genes multiplied 
by their multivariate Cox regression coefficients (β): risk 
score=(expression level of RBPMS2×β)+(expression level of 
RGN×β)+(expression level of PLEKHS1×β)+(expression lev-
el of CT83×β). The X-tile software was used to determine the  
optimal cutoff value [11]. Kaplan-Meier survival analyses 
were performed for the low-risk group and the high-risk group 
and the log-rank test was used to compare survival rates. 
A time-dependent receiver operating characteristic (ROC)  
curve was performed to assess the predictive power of the 
predictive model. Independence analysis of diagnostic mod-
els with other clinical characteristics was conducted by uni-
variate and multivariate Cox regression analysis.

The relationship between the expression of the four genes 
and OS in the GSE62254 dataset was verified in a Kaplan-
Meier plotter (KmPlot, https://kmplot.com/analysis/index.
php?p=service&cancer=gastric). Validation of the prognostic 
model was performed using the TCGA database. The expre-
ssion data of the four genes was standardized by the scale 
method as well in validation cohorts. 

5. Validation of the expression levels of the four genes in 
TCGA cohorts

We extracted the expression levels of the four genes in the 
GEO cohort, TCGA global cohort, and TCGA Asian cohort 
to further explored the expression patterns of the four genes. 
The different expression patterns between the low-risk group 
and the high-risk group in the three cohorts were analyzed by 
Wilcoxon signed-rank test. And the analysis was performed 
with statistical software GraphPad Prism ver. 7.0 (GraphPad 
Software, Inc., San Diego, CA). The p-values are two-sided, 
and p < 0.05 was considered statistically significant.

6. Establishment and validation of the results in a nomo-
gram

Nomogram is widely used as prognostic devices in onco-
logy research. This approach can generate an individual pro-
bability of a specific clinical event via the integration of dif-
ferent determinant and prognostic variables [12-14]. In our 
study, we established a nomogram to evaluate the 1-year, 
3-year, and 5-year OS probability of GC patients in the GEO 
cohort. We adopted Harrell’s concordance index (C-index) to 
evaluate the predictive power of the nomogram (combined 
model). The C-index is calculated using a 1,000 resampled 
boot method, whose values range from 0.5 to 1.0. In general, 
the C-index is less accurate at 0.50-0.70, moderately accurate 
at 0.71-0.90, and highly accurate above 0.90. The calibration 
of the nomogram was accomplished by drawing a compari-
son between the prediction probabilities and the observation 
probabilities. The closer the probabilities were to the refer-
ence line, the higher the consistency of the model. Simulta-

neously, single prognostic factors were utilized to construct 
the nomograms, and the prediction accuracy with the nomo-
gram was compared by using C-index, ROC analysis, and 
decision curve analysis (DCA). DCA is a novel method for 
evaluating prognostic strategies, with the ability to visual-
ize the clinical effectiveness of the nomogram [15]. All of the 
above methods were implemented in the R language.

Results

1. Identification of DEGs between GC and nontumorous 
tissues

To better illustrate our research, we have drawn an analy-
sis process flow chart (Fig. 1). In the mRNA expression pro-
file of GC patients (n=298), a total of 252 DEGs (LogFC > 2 or 
LogFC < –2, adjusted p < 0.001) were found in comparison 
with normal tissues (n=99). Among these DEGs, 163 genes 
were downregulated and 89 genes were overexpressed. Dif-
ferentially expressed mRNA heatmaps and volcano maps are 
shown in S1 and S2 Figs.

Then, univariate Cox regression analysis was applied to 
explore the DEGs related to OS, and 130 genes (p < 0.001) 
were identified after primary filtration (Fig. 1). To further  
reduce the candidate genes, we conducted a Lasso-penalized 
Cox analysis. As a result, five genes met the screening crite-
ria, which appeared more than 900 times in 1,000 screenings 
(S3 Fig.). Ultimately, we performed a stepwise multivariate 
Cox regression analysis, and four candidate genes were final-
ly selected to establish the prognostic model. Among them, 
RNA binding protein, RBPMS2, and RGN were downregu-
lated in tumor tissues, and the other two genes, PLEKHS1 
and CT83, were overexpressed in tumor tissues.

2. The prognostic model shows good performance in risk 
stratification and ROC curve verification for GC patients

We built a predictive model using the four genes selected 
above and divided the GC patients into a low-risk group 
and a high-risk group according to the risk scores. The risk 
score=(expression level of RBPMS2×0.308)+(expression level 
of RGN×0.192)+(expression level of PLEKHS1×–0.197)+ 
(expression level of CT83×–0.190). RBPMS2 (hazard ratio 
[HR], 1.360; 95% confidence interval [CI], 1.172 to 1.579) 
and RGN (HR, 1.211; 95% CI, 1.010 to 1.453) showed posi-
tive coefficients, indicating that these two genes are high-risk 
factors in GS, while PLEKHS1 (HR, 0.821; 95% CI, 0.680 to 
0.991) and CT83 (HR, 0.827; 95% CI, 0.694 to 0.985) showed 
negative coefficients, suggesting that their overexpression 
signified a longer OS. Verification in KM Plot supports the 
assumption (Fig. 2A), the high expression of RBPMS2 and 
RGN was negatively correlated with the patient’s prognosis, 
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while the expression of PLEKHS1 and CT83 was opposite, 
and it was positively correlated with the patient’s progno-
sis. The optimal cutoff value of the risk score determined by  
X-tile software was 1.2 (S4 Fig.). As a result, 88 patients were 
classified into the high-risk group, and the other 210 patients 
were classified into the low-risk group. The Kaplan-Meier 
survival curves of the two risk groups showed significant 
differences (low-risk group vs. high-risk group: median OS, 
> 100 months vs. 21.9 months, respectively; p < 0.001) (Fig. 
2B). ROC analysis confirmed the sensitivity and specific-
ity of the prognostic model. The area under curves (AUCs) 
of the prognostic model were 0.684, 0.697, 0.699, 0.736, and 

0.750 for 0.5-year, 1-year, 2-year, 3-year, and 5-year survival,  
respectively (Fig. 2C). In general, the prognostic model shows 
good performance in risk stratification for GC patients.

  
3. Univariate and multivariate Cox regression analysis 
proves that the prognostic model has good independence

We conducted univariate and multivariate Cox regression 
analyses on the diagnostic model to assess its independent 
predictive value with other conventional clinical factors in 
298 GC patients from the GEO cohort. The univariate Cox 
regression showed that Lauren type (intestinal/diffuse/
mixed), lymphatic and lymphovascular invasion (yes/no), 

Fig. 1.  The flowchart is used to describe the establishment and verification of the prognostic model. AIC, Akaike Information Criteria; 
GEO, Gene Expression Omnibus; OS, overall survival; ROC, receiver operating characteristic; TCGA, The Cancer Genome Atlas.  
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Fig. 2.  Relationship between gene expression and prognosis of the four prognostic genes in KmPlot (A). Kaplan-Meier curve (B) and time-
dependent receiver operating characteristic (ROC) curve (C) of the prognostic model in the Gene Expression Omnibus (GEO) cohort. The 
Kaplan-Meier curve shows the overall survival of patients in the high-risk group and the low-risk group distinguished by the optimal 
cutoff value. The ROC curve confirms the sensitivity and specificity of the prognostic model. (Continued to the next page)
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Borrmann type (1/2/3/4), pTNM stage (stage III+IV/stage 
I+II), and prognostic model (high/low) were correlated with 
OS (Fig. 2D). However, age, sex, Epstein-Barr virus in situ 
hybridization status, and tumor location had no prognos-
tic value in univariate Cox regression. Then, we performed 
multivariate Cox regression analysis on meaningful indica-
tors in the results of univariate Cox regression analysis, and 
age was also included in the analysis. Finally, age, Borrmann 
type, pTNM stage, and prognostic model were shown to be 
independent predictors of OS (Fig. 2D).

4. The predictive model works well in the TCGA Asian 
population and is not effective in non-Asian populations

Validation of the prognostic model was conducted using 
TCGA database. In the TCGA global cohort, 110 patients 
were classified into the high-risk group, and the other 198 
patients were classified into the low-risk group. Consistent 
with the result in the training set, patients in the low-risk 
group had a better prognosis than the higher-risk group 
(p=0.008) (Fig. 3A). However, the difference in OS is not as 
obvious as in the training set. Considering that GC has signif-
icant biological differences between different races, we fur-
ther validated the prognostic model in TCGA Asian cohort 
and TCGA non-Asian cohort. In TCGA Asian cohort, a total 
of 23 patients were classified into the high-risk group, and 39 

patients were classified into the low-risk group. The survival 
curves are highly consistent with the GEO cohort (p=0.002) 
(Fig. 3C). However, in the TCGA non-Asian cohort, the sur-
vival curve was similar to the TCGA global cohort, but it is 
not statistically significant (p=0.115) (Fig. 3E). Furthermore, 
ROC analysis confirmed the sensitivity and specificity of the 
prognostic model in the TCGA Asian cohort (AUC, 0.694), 
and AUCs for 0.5-year, 1-year, 2-year, 3-year, and 5-year sur-
vival were 0.694, 0.748, 0.741, 0.754, and 0.754 respectively 
(Fig. 3D). In the TCGA global cohort and TCGA non-Asian 
cohort, the AUCs are 0.593 and 0.567 (Fig. 3B and F), suggest-
ing that the prognostic model has limited predictive power 
in these two cohorts.

5. Verification of the expression levels of the four genes in 
TCGA datasets

In the GEO cohort, RBPMS2 and RGN were overexpressed, 
while PLEKHS1 and CT83 were downregulated in the high-
risk group (Fig. 4A). To further verify the accuracy of this 
result, we compared the expression of these four genes in the 
TCGA global cohort (Fig. 4B) and the TCGA Asian cohort 
(Fig. 4C). The results were similar to the GEO cohort.

6. Establishment and validation of the nomogram
To establish a more convenient and accurate survival pre-

Fig. 2.   (Continued from the previous page) Univariate and multivariate Cox regression analysis of prognostic model and other conventional 
clinical factors with overall survival (D). Red is not statistically significant and blue is statistically significant. AUC, area under curves; CI, 
confidence interval; EBV, Epstein-Barr virus; HR, hazard ratio; ISH, in situ hybridization. 
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diction method for patients with GC, we built a nomogram 
using the results of multivariate Cox regression analysis. The 
OS-related factors include age, pathologic stage (III+IV/I+II), 
Borrmann type (1/2/3/4), and prognostic model (high/low) 
(Fig. 5A). We used calibration plots to verify the nomogram 
(Fig. 5B). The C-index for the nomogram (combined model) 

was 0.74 (95% CI, 0.71 to 0.78), which was significantly high-
er than in other models. (Table 1). ROC analysis and DCA 
were performed to compare the prediction accuracy between 
single clinical factors and the nomogram. The DCA curve 
showed that the nomogram had the strongest predictive 
power and accuracy among several predictive models (Fig. 

Fig. 3.  Kaplan-Meier curve and time-dependent receiver operating characteristic (ROC) curve for the verification set in The Cancer  
Genome Atlas (TCGA) global cohort (A, B), TCGA Asian cohort (C, D), and the TCGA non-Asian cohort (E, F). The Kaplan-Meier curve 
shows the overall survival of patients in the high-risk group and the low-risk group distinguished by the same cutoff point as the prog-
nostic model. AUC, area under curves.
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Fig. 4.  The expression of the four prognostic genes in low-risk groups and high-risk groups of each cohort (*p < 0.01, ***p < 0.0001). The 
expression levels of the four genes in the Gene Expression Omnibus (GEO) cohort (A), in the The Cancer Genome Atlas (TCGA) global 
cohort (B), and in the TCGA Asian cohort (C). (Continued to the next page)
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6A). The results of the ROC analysis show that the AUC of 
the nomogram was the largest (Fig. 6B).

Discussion

GC remains one of the most commonly diagnosed malig-
nancies and leads to cancer death worldwide, especially in 
Asia [1]. There is tremendous pressure on developing tech-
niques for the prevention and treatment of GC. Survival 
prediction affects the choices of further treatment options. 
Traditional survival prediction methods using pathologi-
cal information and serum tumor marker levels as the main 
means have played an important role in clinical practice over 
the past few decades [16]. However, with the advent of the 
era of precision therapy, it is gradually becoming difficult for 
this predictive approach to meet clinical needs. GC has sig-
nificant biological and epidemiological differences between 
Asian and non-Asian populations; it is difficult to find a one-
size-fits-all approach for all patients. Therefore, in order to 
improve the efficacy of GC and reduce mortality, there is an 
urgent need for different survival prediction methods for  
patients of different races.

The GSE66229 dataset contains microarray profiles of 

gastric tumors from Asian patients. Previously, Cristescu et 
al. [8] used multi-omics data (including GSE66229) to clas-
sify GC into MSS/TP53+, MSS/TP53-, MSS/EMT, and MSI 
molecular types and described the molecular characteristics 
of GC at the genetic level. Moreover, Zhang et al. [17] used 
the GSE66229 dataset to investigate the significance of cross-
talk between long non-coding RNA and mRNA in GC. In 
our study, we used the GEO dataset GSE66229 to select four 
genes, RBPMS2, RGN, PLEKHS1, and CT83, to establish a  
diagnostic model. The coefficient and hazard ratio showed 
that RBPMS2 and RGN are high-risk factors in GC, while the  
overexpression of PLEKHS1 and CT83 signify a longer OS. 
The AUCs of the ROC curves were 0.684, 0.697, 0.699, 0.736, 
and 0.750 for 0.5-year, 1-year, 2-year, 3-year, and 5-year sur-
vival, respectively. This model performed well in survival 
prediction. In this model, patients can be assigned to low-
risk or high-risk groups based on risk scores, providing a 
basis for further precision treatment. Diagnostic models can 
also be used to guide postoperative adjuvant chemotherapy. 
For patients in the high-risk group, a more potent combi-
nation chemotherapy regimen should be used to inhibit 
and destroy tumor cells. Moreover, in response to high-risk 
groups, a more detailed review strategy can be developed 
to enable early detection of recurrent cases. We also demon-

Fig. 4.   (Continued from the previous page) 
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Fig. 5.  The nomogram is used to predict 1-year, 3-year, and 5-year survival rates for Asian gastric cancer patients (A). The nomogram is 
applied by adding up the scores projected on the corresponding scale for each factor. The total number of scores project on the bottom scale 
represents the probability of 1-year, 3-year, and 5-year overall survival. (B) The calibration plots of the nomogram, the X-axis represents 
the survival rate predicted by the nomogram, and the Y-axis represents the actual survival rate calculated by Kaplan-Meier analysis. AUC, 
area under curves.
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Table 1.  C-index comparison between nomogram (combined model) and models constructed by single clinical characteristics

Model	 C-index (95% CI)	 p-value

Prognostic model	 0.63 (0.59-0.67)	 < 0.001	
Pathologic stage model	 0.64 (0.61-0.68)	 < 0.001
Age model	 0.55 (0.50-0.60)	  0.534
Borrmann type model	 0.63 (0.58-0.67)	 < 0.001
Nomogram (Combined model)	 0.74 (0.71-0.78)	 < 0.001
Nomogram vs. Prognostic model	 -	 < 0.001
Nomogram vs. Pathologic stage model	 -	 < 0.001
Nomogram vs. Age model	 -	 < 0.001
Nomogram vs. Borrmann type model	 -	  0.002
CI, confidence interval.
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strated the independence of the prognostic model with other 
clinical data in GC.

Next, we validated the diagnostic model in the TCGA 
global cohort. Considering that GC has significant biologi-
cal differences between different races [18], we further vali-
dated it in the TCGA Asian cohort and the TCGA non-Asian  

cohort. And the results were finally verified in the TCGA 
Asian cohort, demonstrating that the prognostic model 
based on the GEO dataset from Korea is capable of dividing 
Asian GC patients into a high-risk group or a low-risk group 
and predicting OS. However, the predictive power was lim-
ited in the non-Asian population. Similar ethnic differences 

Fig. 6.  Decision curve analysis (DCA) curves and the time-dependent receiver operating characteristic (ROC) curves for the nomogram. 
(A) DCA curve can visually evaluate the predictive power of the nomogram. The calculated net benefit (Y-axis) corresponds to the thresh-
old probability of 1-year, 3-year, and 5-year survival rates on the X-axis. The solid gray line represents the probability that no patient will 
survive for 1 year, 3 years, or 5 years. The yellow dashed line represents the probability that all patients will live for 1 year, 3 years, and 5 
years. The black, red, green, dark blue, light blue, and purple represent the nomograms. (B) The time-dependent ROC curve assesses the 
accuracy of the nomogram.
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have also been found in epidemiological investigations in the 
United States. The incidence of GC in Japanese immigrants 
to Hawaii was higher than that of local residents in Hawaii 
[19]. Interethnic differences can, therefore, play an important 
role in the development and progression of GC.

The protein encoded by RBPMS2 is a member of the RNA 
recognition motif-containing protein family and plays an  
important role in regulating the development and dedif-
ferentiation of digestive smooth muscle cells [20]. Previous 
research in chick embryos showed that RBPMS2 was expre-
ssed in the early stages of the visceral smooth muscle cell 
and gradually decreased with the maturity of smooth muscle 
cells. In differentiated primary cultured smooth muscle cells, 
ectopic expression of RBPMS2 upregulates cell prolifera-
tion rates and inhibits cell contractile function [21]. Aberrant  
elevated expression of RBPMS2 can be specifically observed in 
gastrointestinal mesenchymal neoplasm and digestive myo-
pathy syndrome, demonstrating that the regulated expre- 
ssion of RBPMS2 is important for the proper development 
and differentiation of visceral smooth muscle cells [21,22] 
In our research, the expression of RBPMS2 in the high-risk 
group was significantly higher than that in the low-risk 
group. This finding suggests that cases in the high-risk group 
are more likely to invade the muscular layer and cause abnor- 
mal functioning of smooth muscle cells. RBPMS2 can be  
defined as a novel marker of visceral smooth muscle remod-
eling for characterizing smooth muscle layer invasion in gas-
trointestinal cancer.

RGN is a protein-coding gene. Previous studies on breast 
cancer and lung cancer have demonstrated that it may play 
a crucial role in maintaining intracellular Ca2+ homeostasis, 
suppressing cell proliferation, inhibiting oncogene expre-
ssion, and increasing tumor suppressor gene expression 
[23,24]. Our research also found that RGN was downregu-
lated in tumor tissues compared with adjacent nontumor tis-
sues. However, in GC patients, RGN expression is higher in 
the high-risk group than in the low-risk group. To further 
validate the relationship between RGN expression levels and 
survival time, we validated the GEO data using the KmPlot 
website and found that the results regarding RGN expres-
sion in lung cancer and breast cancer are consistent with 
those reported in other works in the literature, but the results 
were reversed in GC. The RGN high-expression group has a 
shorter survival period, which coincides with our findings.

At present, there are few studies on PLEKHS1, and the 
prognostic value of PLEKHS1 in GC has not been verified in 
previous studies. Mutations in non-coding regions of PLE-
KHS1 were found in cancer patients according to a genome-
wide analysis, which may be related to the degree of tumor 
malignancy [25]. Our study found that PLEKHS1 is a pro-
tective factor in patients with GC and that its expression is 

higher in the low-risk group, as in previous reports [26].
CT83, also known as KK-LC-1, is a gene that encodes a 

member of the cancer-testis antigenic protein family and is 
only expressed in malignant tumor tissue and testicular germ 
cells [27-29]. Based on this feature, Marcinkowski et al. [27]
believe that CT83 may become an attractive target antigen 
for chimeric antigen receptor T-cell immunotherapy (CAR-
T). In our results, the expression level of CT83 in the low-
risk group was significantly higher than that in the high-risk 
group. We speculate that CT83 may be related to the body’s 
anti-tumor response. In normal tissues, the expression of 
CT83 is at an extremely low level. When tumors occur, the 
expression level of CT83 may be related to the immune res-
ponse of the body against tumors. The higher the expres-
sion levels of CT83, the stronger the body’s ability to fight 
tumors, so the better the prognosis. Moreover, in the study 
of the early diagnosis of GC, Futawatari et al. [30] found that 
high CT83 expression rates can be frequently detected in the 
early stage of GC. Therefore, CT83 can be used as a potential 
marker for the early diagnosis and treatment of GC. 

The current risk assessment for patients with GC is based 
primarily on the TNM staging system [14]. This anatomical-
based approach has played an important role in clinical prac-
tice over the past few decades, but it is still difficult to explain 
why patients with the same staging receive different progno-
ses. With the advent of the era of precision therapy, doctors 
need more accurate methods for patient risk analysis. Our 
nomogram combines genetic information with GC clinical 
data, to make the prediction ability 15.6% higher than that 
only focus on the pathologic stage (C-index, 0.74 vs. 0.64; p 
< 0.001). Another advantage of our predictive model is that 
it only needs to detect the expression levels of the four genes 
rather than somatic mutations in patients, which can be 
achieved by some simple and economical methods, greatly 
reducing the cost of sequencing.

However, there are still some limitations to this research. 
Our nomograms were not externally validated in the TCGA 
database because of the lack of data on Bormann type. In the 
future, we will detect the expression levels of the four genes 
in more clinical samples to verify and improve this predic-
tion model.

To sum up, our four-gene–related prognostic model and 
the nomogram are reliable tools for predicting the OS of 
Asian patients. However, the predictive power is limited in 
the non-Asian population. Our nomogram will help stratify 
Asian patients with GC more accurately and promote more 
precise treatment for all of them.  
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