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Purpose
Despite advances in treatment, lung cancer remains the leading cause of cancer mortality. 
This study aimed to characterise genome-wide tumorigenesis events and to understand 
the hypothesis of the multistep carcinogenesis of lung adenocarcinoma (LUAD).

Materials and Methods
We conducted multiregion whole-exome sequencing of LUAD with synchronous atypical 
adenomatous hyperplasia (AAH), adenocarcinoma in situ, or minimally invasive adenocar-
cinoma of 19 samples from three patients to characterize genome-wide tumorigenesis 
events and validate the hypothesis of the multistep carcinogenesis of LUAD.  We identified 
potential pathogenic mutations preserved in preinvasive lesions and supplemented the 
finding by allelic variant level from RNA sequencing.     

Results
Overall, independent mutational profiles were observed per patient and between patients. 
Some shared mutations including epidermal growth factor receptor (EGFR , p.L858R)  were 
present across synchronous lesions.   

Conclusion
Here, we show that there are driver gene mutations in AAH, and they may exacerbate as a 
sequence in a histological continuum, supporting the Darwinian evolution model of cancer 
genome. The intertumoral and intratumoral heterogeneity of synchronous LUAD implies 
that multi-biomarker strategies might be necessary for appropriate treatment. 
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Introduction

Although molecular targeted therapies and immune check-
point inhibitors have markedly improved treatment out-
comes in lung cancer, it remains the leading cause of cancer 
deaths [1]. Lung adenocarcinoma (LUAD) is the most com-
mon subtype of lung cancer, accounting for approximately 
28%-50% of all cases [2,3], and its incidence is continuously 

increasing. LUAD is often diagnosed at an advanced stage, 
leading to a poor prognosis. Multiregional sequencing in lung 
cancer showed high degree of intratumoral heterogeneity 
[4], highlighting that understanding the processes of LUAD 
genome evolution by accumulating somatic mutations over 
time is important for the early diagnosis and prevention of 
LUAD.

LUAD with ground-glass/lepidic feature is hypothesised 
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to follow a multistep tumorigenesis starting from atypical 
adenomatous hyperplasia (AAH), to adenocarcinoma in situ 
(AIS), to minimally invasive adenocarcinoma (MIA), and  
finally to invasive or lepidic-predominant adenocarcinoma 
(ADC) as a histologic stepwise continuum [5,6]. AAH is the 
only reported precursor lesion to LUAD and is occasionally 
discovered in the surgically resected lung tissue harboring 
lung cancer [6]. However, studies on AAH are limited due to 
its rarity and small lesion size.

The first targeted sequencing study on AAH and paired 
ADC lesions reported increasing mutational abundance 
of synchronous epidermal growth factor receptor (EGFR), 
KRAS, and TP53 mutations in the tumor [7]. Another target-
ed sequencing study combined with transcriptome analysis 
suggested that exclusive pathways in the driver gene BRAF 
or KRAS mutate and initiate the progression of precursor  
lesions to malignancy [8]. Recently, we reported targeted 
deep sequencing in sequential lesions [9]. The increased pro-
portions of overall mutated lesions in advanced lesions and 
shared mutations of EGFR between synchronous lesions  
implied a linear stepwise progression of LUAD [10]. Howev-
er, the interlesional and intralesional heterogeneity reported 
in previous AAH studies and the analysis being limited to the 
focused gene list make it difficult to understand the overall 
genetic alteration events.

This study aimed to characterize genome-wide tumorigen-
esis events and to elucidate the hypothesis of the multistep 
carcinogenesis of LUAD. Towards this goal, we conducted 
multiregion whole-exome sequencing (WES) of LUAD and 
preinvasive lesions and paired normal tissue samples.  

Materials and Methods

1. Sample selection
We used patients’ specimens collected in the previous tar-

geted sequencing study [9]. Histologic slides from patients 
who underwent wedge resection or lobectomy were stained 
with haematoxylin and eosin for routine pathologic diagno-
sis. From each formalin-fixed, paraffin-embedded (FFPE) tis-
sue, 10 µm-thick sections were cut for DNA extraction after 
minimum trimming, and pathologists reviewed cases and 
microdissected the area containing > 60% neoplastic cells. 
Three patients (P1, P5, and P8) with complete AAH-AIS-
MIA-ADC sequences of synchronous lesions were chosen. 
For WES, the remaining extracted DNA from the FFPE tis-
sues were prepared. The characteristics of the entire paired 
samples for WES, targeted sequencing, and RNA sequencing 
are summarized in S1 Table. 

Information regarding patient characteristics and sample 
collections was detailed in the previously reported paired 
targeted sequencing study [9]. 

2. DNA and total RNA preparation 
For RNA sequencing (RNA-seq), total RNAs were extrac-

ted from additional FFPE tissue sections from the same pati-
ents, and cDNA were synthesized according to the manufac- 
turer’s protocol. Non-tumorous samples were used as con-
trols for RNA-seq. Genomic DNA was extracted using the 
Maxwell (R) 16 FFPE Plus LEV DNA Purification Kit (Pro-
mega, Mannheim, Germany) and quantified with PicoGreen 
dsDNA quantitation assay (Molecular Probes, Eugene, OR). 
All samples passed the in-house quality control criteria of 
next-generation sequencing library. The library preparation 
was performed through Agilent SureSect V5 (Agilent Tech-
nologies, Santa Clara, CA) and TruSeqProtocol with TruSeq 
Exome Enrichment (Illumina, San Diego, CA). DNA sequenc-
ing and RNA-seq was performed using an Illumina HiSeq 
2500 with 100 bp×2 paired-end reads. 

3. Somatic DNA variant calling 
WES variants were called with three different caller strate-

gies: Genomon2 pipeline, Mutect (ver. 1.1.4), and MuTect2 
(S2 Fig.). Genomon2 pipeline with default parameters iden-
tified any potential somatic mutation if Fisher exact test  
resulted in a p-value < 0.05. For Mutect and MuTect2, raw 
reads were aligned using BWA (ver. 0.7.12) and then pre-
processed using GATK (ver. 32.6) per the best practices rec-
ommended by the Broad Institute. To maximize sensitivity, 
MuTect2 was run with a low cut-off (--max_alt_alleles_in_
normal_count 10000000 --max_alt_allele_in_normal_fraction 
0.10). Single-nucleotide variants (SNVs) were filtered with a 
minimum read depth of 20 in the lesions and the matched 
control, and variant allele frequency (VAF) of being greater 
than 4% in any lesions and less than 1% in the matched con-
trol was set as cut-off values. The 4% cut-off was decided 
based on the paired comparison between the WES samples 
and the targeted sequencing samples (S2 Fig.). Variants were 
annotated via ANNOVAR (ver. 2016-02-01) or Cancer Geno-
me Interpreter [11], and only exonic variants were further 
filtered. Read depth was obtained via bam-readcount (ver. 
0.8.0). Insertions and deletions (indels) were identified with 
the same read-depth and VAF filter criteria and manually  
reviewed using the Integrative Genomics Viewer. 

4. Copy number analysis 
Copy number analysis was performed using Sequenza 

(ver. 2.1.2) and Excavator2. Segmental somatic copy number 
alterations (CNAs) were defined according to the intersec-
tion between Sequenza (filtered by Bayes factor > 0.3) and 
Excavator2 (filtered by call probability > 0.9).

5. Inferred clonal tree construction  
An individual inferred clonal tree was constructed based 

on the VAF matrix with SNV as rows and samples as col-
umns. Clonal sequences rather than multiregion trees were 

Soyeon Ahn, Genetic Alterations in Preinvasive Lung Lesions



used to avoid biased inference of the underlying subcolonal 
structures [12]. For each patient, two VAF and read-depth 
matrices (size of [no. of SNVs]×number of lesions) were  
decomposed into a genotype matrix (size of [no. of SNVs]× 
no. of clones) and a clone frequency matrix (size of [no. of 
clone]×no. of lesions) using an Expectation-Maximization 
algorithm. The algorithm required a fixed clone number, 
which we set as four. As a result, the genotype matrix deter- 
mined the clonal membership of each variant, and each clone 
was linked to lesions according to the estimated clone fre-
quencies. An unrooted phylogenetic tree was drawn from 
the inferred clones based on the minimum evolution algo-
rithm. The Clomial and ape R packages were used. LUAD 
driver genes taken from Bailey et al. [13] were depicted in 
the trees. 

6. Pathway analysis/functional annotation  
The mutated genes were investigated further via pathway 

enrichment analysis using REACTOME (ver. 66, https:// 
reactome.org). The pathogenic status of mutations of driver 
genes were reviewed via the NCBI ClinVar (https://www.
ncbi.nlm.nih.gov/clinvar/, accessed on November 18, 2018). 

7. Mutational signature analysis   
Somatic mutational signatures were generated and com-

pared to the 30 known mutational signatures in the Cata-
logue of Somatic Mutations in Cancer database (http://can-
cer.sanger.ac.uk/cosmic/signatures) using deconstructSigs 
R package. It quantified the linear combination of well-anno-
tated Catalogue of Somatic Mutations in Cancer (COSMIC) 
signatures from a single sample input. SNVs were annotated 
with one of 96 trinucleotide-context substitutions, and the 
prevalent mutation signatures were illustrated as lego plots. 

8. Somatic allelic imbalance 
Mutational abundance between the genome and the tran-

scriptome was generally consistent, showing that the mutat-
ed allele was expressed according to its mutational frequen-
cy in the genome. By contrast, somatic allelic imbalance is a  
deviation of a consistent expression of somatic alleles, and 
several studies reported that preferentially allelic selections 
may be associated with the functionality of cancer genomes 
[14]. We first included genes with a minimum RNA read 
depth of 20 and fitted a regression model between RNA VAF 
versus WES VAF. We then defined somatic allelic imbalance 
using a data-driven binomial model. For each SNV found in 
WES, unlikely observation of the read number of RNA was 
calculated given the WES VAF as the expected probability of 
binomial distribution. Either SOM-L or SOM-E was defined if 
the adjusted p-value of Hochberg method is < 0.05. The pro-
tein-protein interaction graph was drawn using Cytoscape 
(ver. 3.7.0) with a STRING database (ver. 10.5) plugin.

9. Ethical statement  
This study was approved by the Institutional Review 

Board of Seoul National University Bundang Hospital and 
all the patients provided written informed consent (IRB No. 
B-1607/355-301), and all methods were performed in accord-
ance with the relevant guidelines and regulations.

Results

1. Mutational landscape of synchronous LUAD
Initially, 26 samples from three patients were prepared for 

WES. Of these, four AAH samples that did not pass the qual-
ity control and three non-tumorous normal samples were 
excluded in the analysis. In total, 19 samples (5 AAH, 3 AIS, 
4 MIA, 4 ADC, and 3 matched lymph node controls) were  
included. WES was conducted with an on-target average 
depth of 217× (range, 185 to 268) per sample. We found an 
average of 205 exonic mutations (range, 45 to 682) per sam-
ple, and 63% (range, 51% to 70%) of these were nonsyn-
onymous somatic mutations (S2 and S3 Figs.). On average, 
we identified 251 mutations in smokers (P1 and P8) and 66  
mutations in a nonsmoker (P5), consistent with previous 
studies showing that smoking contributed to higher muta-
tional burden [15]. There was no increasing pattern in tumor 
mutational burden across sequential lesions (75, 341, 196, 
and 275 variants in AAH, AIS, MIA, and ADC, respectively), 
but the VAF tended to increase from preinvasive to invasive 
lesions (6.1%, 9.7%, 9.2%, and 15.2%) (S4 Fig.). A total of 
2,198 genes were affected in all patients, and 172 genes were  
mutated in more than one patient. Mutations were largely 
private (82%), that is, mutations were observed in a sin-
gle sample. Among the driver genes in LUAD, EGFR had  
mutated across two patients (P1 and P5). Moreover, other 
frequently mutated genes in LUAD had recurrently mutat-
ed within one patient (TP53 for P1 and KRAS and BRAF for 
P8) (Table 1). Our data also showed that mutations in KRAS 
and EGFR genes are mutually exclusive [16], while TP53 and 
EGFR genes are commutated [17]. However, we observed 
concomitant KRAS and BRAF mutations, which were in con-
trast to previous studies [8,18]. On average, 62%, 61%, and 
65% of the mutations were annotated as passenger mutations 
in P1, P5, and P8, respectively. Similarly, the proportion of 
passenger mutations or not protein-affecting mutations were 
92%, 89%, and 94%, respectively, which implies that most of 
mutations in smokers were non-driver mutations. 

2. Interlesional heterogeneity
To characterize interlesional heterogeneity, multiregional 

VAF distributions were mapped (Fig. 1). We found some 
shared mutations that existed in multiple samples, includ-
ing EGFR mutation (encoding p.L858R) in P5 with increasing 
mutational abundance throughout the sequential histologi-
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cal continuum. MUC4 in P1 (p.P1952S) and P8 (p.N2437D), 
and HLA-DQB2 in P8 (p.G250S and p.R247H) also showed 
increase VAF in advanced lesions (Table 1). However, the 
multiregional heatmaps in the overall population indicat-
ed few overlapping mutations (S5 Fig.). Indels of DNAH7, 
NDUFA10, and WDR88 recurrently occurred in more than 
one patient, and 129 detected indels were mutated within 
one patient. 

3. Intrapatient heterogeneity  
To explore intrapatient heterogeneity, a clone relationship 

was inferred by estimating the hidden clonal status using 
observed VAFs (Fig. 2). Associated driver genes were por-
trayed on the inferred clonal trees. In P1, one clone contain-
ing TP53 mutation (c.240_240delinsT-) was detected in AIS, 
and an EGFR mutation (p.G719D) was detected in ADC. 
Another clone in P1 lacked TP53 (p.Q60X) in ADC. In P5, 

Fig. 1.  Multiregional variant allele frequency. Blue and red colours denote the heatmap of variant allele frequency (VAF) of the genome 
and the transcriptome, respectively. The upper panel shows the private mutations, while the lower panel shows gene mutations found in 
at least two patients. (A) Atypical adenomatous hyperplasia (AAH). (Continued to the next page)
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Fig. 1.  (Continued from the previous page) (B) Adenocarcinoma in situ (AIS). (Continued to the next page)
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EGFR mutation (p.L858R) appeared pre-dominant at the 
root, and other clones were divergent from each other. Only 
one clone included NF1 mutation (p.N1388K) in AAH. In P8, 
however, multiple clones simultaneously had pathogenic or 
likely pathogenic mutations. One clone had KRAS mutation 

(p.G12V) coupled with BRAF mutation (p.G464R) in MIA, 
and another clone had KRAS (p.G13C) and BRAF (p.G466V) 
in ADC. 

CNAs were recurrently observed in 1p13.3, 3q13.33, 4q13.2, 
5q35.1, 5q35.3, 8q23.1, 10q21.3, 11p15.5, 14q11.2, 14q13.2, 16p-

Fig. 1.  (Continued from the previous page) (Continued to the next page)
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13.3, 19q13.42, 20p13, and 22q11.23 (S6 Fig.). 

4. Mutation signature analysis
We observed that C:G>A:T transitions were more domi-

nant types in smokers (41% in P1, 51% in P8) than in non-
smokers (30% in P5). Meanwhile, C:G>T:A transitions were 
more frequent in nonsmokers (38% in P5, 32% in P1, and 27% 
in P8) [15]. We then further performed the mutation base-

substitution signatures (Fig. 3, S7 Fig.) [19]. Overall, signa-
tures associated with smoking (signature 4 [smoking] and 
29 [tobacco] chewing]) and aging (signature 1) were highly 
enriched. Signature 1, composed of C:G>T:A single-base sub-
stitutions at CpG sites, was frequently observed in all can-
cer types. Signatures 4 and 29 were characterized mainly by 
C:G>A:T mutations with transcriptional strand bias. P1 was 
a 20 pack-year male current smoker who showed smoking-

Fig. 1.  (Continued from the previous page) (C) Minimally invasive adenocarcinoma (MIA). (Continued to the next page)
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related signatures, whereas P5 was a never-smoker female 
and showed abnormalities in DNA maintenance across all 
lesions (signatures 6 and 15 [DNA mismatch repair (MMR)] 
and 3 and 20 [defective DNA repair]). P8, a previous smoker 
male patient with a 30 pack-year history, showed a combina-
tion of smoking-related and DNA MMR-related signatures. 
Exposure to ultraviolet light, which is a mutagenic agent, 
was common in the AAHs of P1 and P5. The TRACERx 
study reported a significant relationship between pack-years 
and smoking-related signature in late clonal mutations, 
consistent with the enrichment of signature 4 or 29 in our 
data [20]. Interestingly, differential signature patterns were 
observed in P1, where signature 4 was dominant in AAH1 
and signature 1 was common in AAH2 and AAH3. This sug-
gested that clonal compositions even in preneoplasia lesions 
could be different, which was also implied in the clonal sta-
tus analysis (Fig. 2).

5. RNA-seq for allele-specific expression  
A total of 14 RNA samples were used in this study. We  

determined allele-specific expression to compare RNA VAF 
and WES VAF. A linear regression model showed that RNA 
VAF was concordant with WES VAF (RNA VAF-1.1×WES 

VAF; Pearson correlation coefficient, 0.46) (S8 Fig.). Although 
we did not find similar findings that missense or silent vari-
ants in the genome implicated overexpression of certain 
alleles (S9 Fig.), somatic variant lost in the transcriptome 
(SOM-L) and somatic variant overexpressed in the tran-
scriptome (SOM-E) variants were discovered in P1, and pro-
tein interaction graphs within each lesion type in P1 were 
derived (S10 Fig.). In AIS, oncogene Yes-associated protein 
1 and enzyme ubiquitin-specific peptidase 9, X-linked were 
found, indicating that preinvasive lesion is related to loss of 
function in suppressed tumor growth related to the Hippo 
signaling pathway [21]. In MIA, genes related to mitochon-
drial outer member, including voltage-dependent anion 
channel 1 and inner mitochondrial membrane 22, were over-
expressed. In ADC, loss alleles of integrin alpha 1 (ITGA1) 
and Versican core protein precursor (VCAN) interacted with 
overexpressed allele of EGFR [22]. ITGA1 and EGFR are well-
documented prognostic markers, whereas VCAN enhances 
tumor recurrence [23]. 

In genes in which mutant allelic expression levels were 
maintained at least 4%, REACTOME analysis revealed that 
the biological processes of P1, P5, and P8 were regulation of 
TP53 expression (TP53), fibroblast growth factor receptor 2 

Fig. 1.  (Continued from the previous page) (Continued to the next page)
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Fig. 1.  (Continued from the previous page) (D) Adenocarcinoma (ADC). (Continued to the next page)
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(FGFR2) mutant receptor activation, PI3K cascade (FGFR2), 
and RAS signaling downstream of NF1 loss-of-function vari-
ants and RAF activation (KRAS and BRAF), respectively (S11 
Table).  

 
Discussion

In this study, we identified the genomic alterations in the 
precursor lesions of LUAD and inferred clonal evolution in 
LUAD development through WES supplemented with tran-
scriptome analysis. Shared EGFR pathogenic mutation was 
observed across synchronous lesions, indicating that identi-
cal mutations occurred in the early tumorigenesis. Overall 
increase in VAF but not in tumor burden (mutation number) 
in invasive lesions indicated that accumulated mutation of 
certain driver genes is functionally important in cancer deve- 
lopment [24]. Furthermore, heterogeneous mutation pro-
files strongly implied that each lesion underwent largely 
independent genetic alteration events. Although mutation 
signature analyses beyond single-gene mutations helped 
in understanding the combinatory base change mechanism  

associated with smoking and aging, the individual pathway 
was evitable.

The receptor tyrosine kinase/RAS/RAF pathway was fre-
quently mutated and crucial in the development of LUAD 
[6]. Our results are consistent with those of previous studies 
on AAH showing the exclusive nature of EGFR mutation and 
KRAS mutations, and they were frequently observed in non-
smokers and smokers, respectively. EGFR is a receptor tyros-
ine kinase belonging to the ERBB family, and its mutations 
are more widespread in the Asian population and more com-
mon in women and nonsmokers. P5, a nonsmoker female 
Asian patient, harbored the most common pathogenic muta-
tions in EGFR (p.L858R) across all lesions, which exemplified 
the role of EGFR-L858R mutation in tumor invasiveness dur-
ing the early stage of lung cancer. Meanwhile, KRAS onco-
genes encoding guanosine-5’-triphosphate-binding proteins 
contribute to invasive lesions when supplementary genomic 
alternations occur. P8, a male current smoker patient with 
a 30 pack-year history, had KRAS mutation in preinvasive 
and invasive lesions and UTAF1 and BRAF mutations in  
invasive lesions. We can further postulate the interaction bet-
ween KRAS and human leukocyte antigen (HLA) genes in 

Fig. 1.  (Continued from the previous page) ADC-N, non-invasive portion of ADC. 
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this patient because HLA-DQB2 mutations were prevalent. 
The specific role of HLA-DQB2 in cancer genomics was not 
reported, but immunological function may be affected by 
mutant neoantigen peptides of hotspot mutations [25]. 

P1, a 20 pack-year previous smoking male patient, showed 

combination pathways related to chromatin remodeling 
(SETD2 and RBM10) and clinical prognosis (co-mutation of 
TP53 and EGFR) [26]. We found that recurrent mutations of 
tubulin tyrosine ligase-like protein 5 (TTLL5) appeared in pre-
invasive lesions among known co-mutated genes with SET 

Fig. 2.  Inferred clone status. For each patient, two variant allele frequency (VAF) and read-depth matrices [(no. of mutations)×(no.  
lesions)] were decomposed into a genotype matrix [(no. of mutations)×(no. of clones)] and a clone frequency matrix [(no. of clone)×(no.  
lesions)]. C1-C3 represents inferred clones. Clone frequencies (i.e., the proportion of a clone in each lesion) are shown in parenthesis. Col-
ours matched to the legions where the mutation occurred (orange, atypical adenomatous hyperplasia [AAH]; green, adenocarcinoma in 
situ [AIS]; blue, minimally invasive adenocarcinoma [MIA]; purple, adenocarcinoma [ADC]; red, all lesions). For example, C3 clone in P1 
occupied 3% of AAH2 and AAH3, 44% of ADC1, and 42% of ADC2.
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domain containing 2 (SETD2), a histone methyltransferase 
(S12 Table). SETD2 has been reported to be co-mutated with 
polybromo 1 (PBRM1), particularly in renal cell cancer [27] 
and in lung cancer [28]. Although WES did not show PBRM1 
mutation in this patient, a previous study using paired tar-
geted sequencing indicated that the patient harbored PBRM1 
mutation (p.K135X) in ADC1 with low frequency (S12 Table, 
S13 Fig.). We also noted enriched mutations in chromatic-
modifying genes (SMARCA4 [p.E1133E]) and RNA-splicing 
genes (RBM10 [c.2337_2337delins-G, and p.G780V]). These 
findings indicate that accumulated SETD2 tumor suppres-
sor mutations along with TTLL5 enzyme mutations in pre-
invasive lesions exacerbated methylation and chromatic 
remodeling dysfunction through SMARCA4, RBM10, and 
PBRM1 mutations [29] (S14 Table). The copy number anal-
ysis indicated that P1 had aberrant copy number status in  
invasive lesions (S15 Fig., S16 Table). In a large cohort of 100  
early stage lung cancer patients, DNA instability was found 
to possibly play a key role in cancer malignancy as it can 
have invasive capacity induced by environmental diversity 
and can thus be a predictor of clinical outcome [20]. 

The cancer evolution models are primarily divided into 
the neutral evolution (‘a big bang model’) [30] and the Dar-
winian evolution, depending on the differential clonal selec-
tion modes and rates [31]. Darwinian evolution selecting the 
fittest subclone was further divided into branched, linear, 
convergent, and parallel evolution. In our study, a linear 
evolutionary pattern can explain the EGFR-driven selective 

sweeps. Our data showed that genes related to epithelial cell 
proliferation and differentiation (MUC4) may be a part of the 
selective subclonal mechanism. We also conjectured that not 
only drive specific genomic changes, but also environmental 
factors contribute to clonal compositions. 

The study has limitations. First, because our samples were 
cross-sectionally obtained at a single time point, the lesions 
may not be in chronological orders. Second, the patient num-
ber was small. Third, our adjusted cut-off value of VAF was 
extremely lower compared to that in conventional next-gen-
eration sequencing studies, although variants with low VAF 
values are frequently observed in clinical cancer samples 
[32]. Meanwhile, the major strengths of this study include 
the series of multiple continuum lesions within a patient and 
the reproducibility of results through multiple sequencing 
platforms (WES, targeted, and RNA-seq). We also observed 
that the mutation signature patterns were consistent to those 
reported in large-scale studies of early lung cancer patients. 
Collectively, the variants repeatedly confirmed in our studies 
may have potential utility for studying neoplastic progres-
sion (S17 Table, S18 Fig.).

In summary, we performed a comprehensive analysis of 
somatic alterations across synchronous lesion mutations and 
identified the multiple evolutionary trajectories of LUAD 
rooted in preinvasive lesions toward advanced lesions. We 
observed few shared somatic mutations and cellular het-
erogeneity in lung cancer, which implied the independent 
tumorigenic event within certain genes. The intertumoral 

Fig. 3.  Mutation signature analysis. Somatic mutational signatures were generated and compared to the 30 known mutational signatures 
in the Catalogue of Somatic Mutations in Cancer (COSMIC) database. AAH, atypical adenomatous hyperplasia; AIS, adenocarcinoma in 
situ; MIA, minimally invasive adenocarcinoma; ADC, adenocarcinoma.
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and intratumoral heterogeneity of synchronous LUAD  
implies that multi-biomarker strategies might be necessary for  
appropriate treatment decisions. The distinct genetic origin 
implicates that individualized screening strategies are need-
ed. Our finding implied that genomic variant in EGFR, TP53, 
KRAS, and BRAF could occur early in the process of tumor 
evolution, and different pathways may involve between a 
smoker and a non-smoker. The multi-modality tests such as 
imaging with diagnostic test like cell free DNA testing may 
lead to identifying certain clonal expansions.
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