
234 Copyright  2022 by  the Korean Cancer Association
 This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) 

which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction

Adenocarcinoma of the prostate (PCa) is the most common 
cancer among males from the Unites States, with over 170,000 
estimated new cases in 2019 [1]. Although not as frequently 
diagnosed as in western countries, the incidence of PCa is 
also rapidly rising in Korea [2]. For localized PCa patients 
who are not candidates for active surveillance, primary radi-
otherapy (RT) with or without androgen deprivation therapy 
is one of the standard treatment modalities throughout all 
risk groups [3,4].

In external beam RT for PCa, accurate target volume  
delineation is crucial due to the routine use of intensity-mod-
ulated RT and the increasing utilization of hypofractionated 

RT, including stereotactic body RT [5]. For intermediate-to-
high risk localized PCa, extra-margins to cover potential  
extracapsular extension (ECE) should be considered, as well 
as the inclusion of the seminal vesicles (SVs) in the target vol-
ume [6]. Therefore, precise prediction of the risk of ECE or 
seminal vesical invasion (SVI) is of importance for patients 
without clinically overt ECE and SVI, since larger RT-target 
volumes would result in unnecessary excess radiation expo-
sure to the bladder and rectum. For example, based on path-
ological findings, the European Organisation for Research 
and Treatment of Cancer (EORTC) recommends the clinical 
target volumes to include at least the proximal 1.4 cm and 2.2 
cm of the SV for intermediate- and high-risk patients, respec-
tively [6]. The current Radiation Therapy Oncology Group 
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Purpose  This study aimed to develop a model for predicting pathologic extracapsular extension (ECE) and seminal vesicle invasion 
(SVI) while integrating magnetic resonance imaging-based T-staging (cTMRI, cT1c-cT3b).
Materials and Methods  A total of 1,915 who underwent radical prostatectomy between 2006-2016 met the inclusion/exclusion 
criteria. We performed a multivariate logistic regression analysis as well as Bayesian network (BN) modeling based on possible con-
founding factors. The BN model was internally validated using 5-fold validation.
Results  According to the multivariate logistic regression analysis, initial prostate-specific antigen (iPSA) (β=0.050, p < 0.001), per-
centage of positive biopsy cores (PPC) (β=0.033, p < 0.001), both lobe involvement on biopsy (β=0.359, p=0.009), Gleason score 
(β=0.358, p < 0.001), and cTMRI (β=0.259, p < 0.001) were significant factors for ECE. For SVI, iPSA (β=0.037, p < 0.001), PPC 
(β=0.024, p < 0.001), Gleason score (β=0.753, p < 0.001), and cTMRI (β=0.507, p < 0.001) showed statistical significance. BN 
models to predict ECE and SVI were also successfully established. The overall area under the receiver operating characteristic curve 
(AUC)/accuracy of the BN models were 0.76/73.0% and 0.88/89.6% for ECE and SVI, respectively. According to internal comparison 
between the BN model and Roach formula, BN model had improved AUC values for predicting ECE (0.76 vs. 0.74, p=0.060) and SVI 
(0.88 vs. 0.84, p < 0.001).
Conclusion  Two models to predict pathologic ECE and SVI integrating cTMRI were established and installed on a separate website for 
public access to guide radiation oncologists.
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(RTOG) protocols include the proximal 1.0-2.0 cm portion for 
intermediate- to high-risk patients. These recommendations 
are convenient and simple for radiation oncologists to adopt. 
However, further individualization based on risk factors 
might be necessary because discrepancies between clinical 
and pathologic stages exist, even in low-risk PCa [7].

The current National Comprehensive Cancer Network 
(NCCN) risk grouping for PCa is mainly based on clinical 
staging, initial prostate-specific antigen (iPSA), and Gleason 
score (GS) obtained from biopsy [4]. Of these, the clinical  
T-stage should be determined only by the findings of a digital 
rectal exam. Referring to findings from magnetic resonance 
imaging (MRI) or tumor laterality from biopsy specimens is 
discouraged in the 8th American Joint Committee on Cancer 
(AJCC) staging system [8]. However, the yield of predicting 
ECE or SVI by digital rectal exam alone is low. Furthermore, 
it has been reported that the addition of preoperative MRI 
increases the accuracy of predicting whether the disease is 
pathologically organ-confined or not [9-11].

The Bayesian network (BN) model is a statistical frame-
work that represents the conditional dependencies of vari-
ables via a directed acyclic graph (DAG). In DAG, nodes  
indicate clinical variables and edges demonstrate condition-
al dependencies. The strength of BN is accommodating the 
heterogeneity between clinical or non-clinical variables and 
providing interpretable clinical scenarios or probabilities to 
clinicians. Previous studies have facilitated the use of BN for 
the prediction of prognosis various in cancers, such as breast 
cancer and gallbladder cancer [12,13]. BN can mimic the  
human decision-making process, which reveals the surgical 
indication for patients with gallbladder cancer [14].

Thus, in the current study, we sought BN modeling to 
predict pathologic findings, such as ECE and SVI in patients 
with PCa. Specifically, in order to guide radiation oncologists 
for further individualized target contouring based on MRI 
findings, we established BN models to accurately predict 
the risk of pathological ECE and SVI by integrating the MRI 
findings into clinical T-staging. Furthermore, the positiv-
ity rate of the resection margin (RM+ve) was also predicted 
since these patients are future candidates for salvage RT with 
increased risk of biochemical relapse [3,4]. This information 
would be useful not only for radiation oncologists, but for 
urologists planning surgery.

 

Materials and Methods
 
1. Patients and imaging

Patients with PCa confirmed by transrectal ultrasound-
guided biopsy and who are undergoing preoperative MRI 
with radical prostatectomy between 2006 and 2016 were 

included in the study. All patients were required to have 
at least eight or more biopsy cores obtained at diagnosis. 
To minimize patient heterogeneity, those who met the fol-
lowing criteria were excluded: (1) incidentally diagnosed 
PCa by transurethral prostatectomy for benign prostatic 
hyperplasia, (2) clinically overt T4 or N1 disease on preop-
erative imaging, (3) non-adenocarcinoma PCa, (4) history 
of any anti-PCa treatment such as neoadjuvant androgen 
deprivation therapy prior to radical prostatectomy, and (5) 
no information regarding iPSA or MRI within 6 months 
preoperately. A total of 1915 patients met the inclusion 
and exclusion criteria. Patient characteristics are shown in  

Table 1.  Patient and tumor characteristics

Variable	 No. (%)

Total	 1,915 (100)
Age, median (range, yr)	 67 (41-86)
iPSA (ng/mL)	
    Below 4	 190 (9.9)
    4-10	 1,126 (58.8)
    10-20	 387 (20.2)
    20 or higher	 212 (11.1)
TRUS-Bx	
    PPC, median (range, %)	 25.0 (5.0-100.0)
Both lobe involvement	
    Yes	 797 (41.6)
    No	 1,076 (56.2)
    Unknown	 42 (2.2)
Gleason score	
    6 	 863 (45.1)
    7(3+4)	 389 (20.3)
    7(4+3)	 297 (15.5)
    8 	 277 (14.5)
    9 	 78 (4.1)
    10 	 11 (0.6)
cTMRI stagea)	
    1c	 243 (12.7)
    2a-2b	 718 (37.5)
    2c	 694 (36.2)
    3a	 110 (5.7)
    3b	 150 (7.8)
Pathologic findingsb)	
    ECE	 702 (36.7)
    SVI	 227 (11.9)
    RM+ve	 719 (37.5)
cTMRI, magnetic resonance imaging–based T-staging; ECE, extra-
capsular extension, iPSA, initial prostate-specific antigen; PPC, 
percentage of positive biopsy cores; RM+ve, positive resection 
margin; SVI, seminal vesicle invasion; TRUS-Bx, transrectal  
ultrasound-guided biopsy. a)Clinical stage according to magnetic 
resonance imaging findings, b)Radical prostatectomy specimen.
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Table 1.
All patients were preoperatively evaluated with at least 

T2-weighted and T1-weighted images. Diffusion-weighted 
and dynamic contrast-enhanced imaging were optional. 

MRIs were reviewed by 1 of 3 genitourinary imaging-spe-
cialized radiologists (S.H.K., J.Y.C., or S.Y.K.). Definite low 
signal abnormality on T2-weighted imaging was regarded as 
a clinically overt disease (Fig. 1). These findings were inte-

Fig. 1.  A preoperative multiparametric 3.0T magnetic resonance imaging using T1-weighted (A), T2-weighted (B), diffusion-weighted (C), 
and dynamic contrast-enhanced (D) images in a 67-year-old male diagnosed as prostate cancer by biopsy. Lesion with suspected seminal 
vesicle invasion (cTMRI3b) shows low signal intensity on T2- (B) and diffusion-weighted (C) images with contrast enhancement (D).

A B

DC

Table 2.  Results of multivariate logistic regression analysis

Variable
	                        ECE		                        SVI		                         RM+ve

	 β	 p-value	 β	 p-value	 β	 p-value

iPSA (ng/mL)	 0.050 	 < 0.001	 0.037 	 < 0.001	 0.038 	 < 0.001
PPC (%)	 0.033 	 < 0.001	 0.024 	 < 0.001	 0.021 	 < 0.001
BLI-Bx	 0.359 	 0.009 	 –0.003 	 0.988 	 –0.177 	 0.161 
Gleason scores on biopsy	 0.358 	 < 0.001	 0.753 	 < 0.001	 0.131 	 0.037 
cTMRI stagea)	 0.259 	 < 0.001	 0.507 	 < 0.001	 0.149 	 0.006 
Constant	 –5.486 	 < 0.001	 –10.459 	 < 0.001	 –2.894 	 < 0.001
cTMRI, magnetic resonance imaging–based T-staging; BLI-Bx, both lobe involvement on biopsy; ECE, extracapsular extension; iPSA, ini-
tial prostate-specific antigen; PPC, percentage of positive biopsy cores; RM+ve, positive resection margin; SVI, seminal vesicle invasion.  
a)Clinical stage according to magnetic resonance imaging findings.
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grated for MRI-based clinical T-staging (cTMRI).

2. Multivariate logistic regression model
Multivariate logistic regression analysis (backward step-

wise) was performed using SPSS ver. 22.0 (IBM Corp.,  
Armonk, NY). The iPSA, percentage of positive biopsy cores 
(PPC), both lobe involvement on biopsy (BLI-Bx), GS, and  
cTMRI stage were considered as risk factors for predicting 

ECE, SVI, and RM+ve. All factors were regarded as continu-
ous variables, except BLI on biopsy. GS of 7(4+3) was coded 
as 7.5 to distinguish from the GS of 7(3+4). The level of statis-
tical significance was set at p < 0.05.

3. Establishing and validation of BN models
Three aforementioned pathologic findings were defined 

as class variables: ECE, SVI, and RM+ve. For each class 

Fig. 2.  (A) BN structure to estimate the probability of ECE. Each node demonstrates the associated variable, the discretized state, baseline 
prevalence, mean, deviation values in the study population. (B) The graph showing the impact of each variable on the probability of ECE. 
x-axis represents the normalized mean-value of each variable, and y-axis shows the mean probability of ECE. BN, Bayesian network; ECE, 
extracapsular extension; iPSA, initial prostate-specific antigen; MRI, magnetic resonance imaging.
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variable, three different BN models were generated [15]. We 
adopted the naïve Bayes classifier algorithm to establish each 
BN model and all variables were conditionally independent 
of the class variable. Therefore, we first selected the variables 
to be incorporated into the BN model from the multivariate 
logistic regression model. Afterwards, they were categorized 
into two to four states. Discretization of continuous variables 
was applied mostly based on the NCCN risk-grouping sys-
tem.

For each BN model, we validated the model performance 
by 5-fold validation. The mean area under the receiver  
operating characteristic curve (AUC), calibration index, and 

accuracy were measured. We visualized the impact of each 
node on the mean value of the class variable while holding 
the probability distributions of other variables fixed. Addi-
tionally, mutual information (MI) was calculated between 
each node and the class variable to estimate the probabilistic 
dependence. MI between two random variables X and Y is 
defined as the difference between the marginal entropy H(X) 
and its conditional entropy H(X|Y) [16]. H(X) is the entro-
py for X and H(X|Y) is the conditional entropy for X given 
Y. MI is intended for measuring the mutual dependence  
between two random variables. Normalized and relative MIs 
were computed. In each BN, a clinically interpretable deci-
sion tree was generated to estimate the probabilities of risk 
factors. Finally, each BN model was uploaded to a public 
Bayesian license server, providing public access to our mod-
els. A G-test of independence was performed for MI between 
two random variables. BN analysis was performed using the 
BayesiaLab 9.1 (Bayesian Limited Company, France).

4. Internal comparison between the BN model and the 
Roach formula

The risk of pathological ECE and SVI were calculated in all 
patients based on the Roach formula as the following: ECE risk 
(%)=1.5×iPSA+(10×(GS-3)); SVI risk (%)=iPSA+(10×(GS-6)) 
[17]. Values exceeding 100% were considered as 100%. The 
DeLong’s comparison method was used to compare the per-
formance of BN and Roach models [18].

Table 3.  Performance of BN models

	
	 5-Fold validation metrics

	
Overall

	 Overall	
OverallBN models

	
AUCa)	 Calibration 	

accuracy (%)
		  Index (%)

ECE	 0.76 	 79.7	 73.0 
SVI	 0.88 	 62.6	 89.6 
RM+ve	 0.70 	 75.1	 69.1 
AUC, area under the curve; BN, Bayesian network; ECE, ext-
racapsular extension, RM+ve, positive resection margin; SVI, 
seminal vesicle invasion. a)Interpretation: 0.5, no discrimination; 
0.7-0.8, acceptable; 0.8-0.9, excellent; > 0.9, outstanding [19].

Table 4.  Node significance to the class variable

Node
	 Normalized mutual	 Relative mutual	 Relative	

p-valuea) 	
 	 information (%)	 information (%)	 significance

Node significance to the probability of ECE		
    PPC	 8.22	   8.67	 1.000	 < 0.001
    iPSA (ng/mL)	 7.74	   8.17	 0.942	 < 0.001
    Gleason scores of biopsy	 7.56	   7.97	 0.920	 < 0.001
    cTMRI stageb)	 6.63	   6.99	 0.807	 < 0.001
    Both lobe involvement	 2.62	   2.76	 0.319	 < 0.001
Node significance to the probability of SVI				  
    cTMRI stageb)	 9.85	 18.75	 1.000	 < 0.001
    Gleason scores of biopsy	 9.02	 17.17	 0.916	 < 0.001
    iPSA (ng/mL)	 7.25	 13.81	 0.736	 < 0.001
    PPC	 7.15	 13.61	 0.726	 < 0.001
Node significance to the probability of RM+ve				  
    iPSA (ng/mL)	 6.40	   6.70	 1.000	 < 0.001
    PPC	 5.26	   5.51	 0.822	 < 0.001
    cTMRI stageb)	 3.76	   3.94	 0.588	 < 0.001
    Gleason scores of biopsy	 3.57	   3.74	 0.559	 < 0.001
cTMRI, magnetic resonance imaging–based T-staging; ECE, extracapsular extension; iPSA, initial prostate-specific antigen; MRI, magnetic 
resonance imaging; PPC, percentage of positive biopsy cores; RM+ve, positive resection margin; SVI, seminal vesicle invasion. a)G-test,  
b)Clinical stage according to magnetic resonance imaging findings.
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Results

1. Concordance between cTMRI and pathological T-stage
When cTMRI and pathological T-stage were classified in 

three groups (T1c-T2c, organ-confined; T3a, ECE; T3b, SVI), 
the concordance rate between cTMRI and pathological T-stage 
was 66.0% (1,293/1,915). Pathological T-stage was down-
staged in only 4.8% (92/1,915). However, up-staging was 
frequently observed with 29.2% of patients (560/1,915) dem-
onstrating higher pathological T-stage compared to cTMRI. 
Among 110 patients with cTMRI3a, 14 (12.7%) and 36 (32.7%) 
patients were up-staged to pT3b and down-staged to pT2, 
respectively. In 150 patients with cTMRI3b, 32 (21.3%) and 24 
(16.0%) patients were down-stage to pT2 and pT3a, respec-

tively.

2. Multivariate logistic regression model
In the multivariate logistic regression model, an increase 

in iPSA, PPC, GS, and cTMRI were significant risk factors for 
ECE, SVI, and RM+ve. BLI-Bx was only significant for ECE. 
Table 2 summarizes the multivariate logistic regression mod-
el.

3. Prediction of ECE with BN
The BN structure predicting the probability of ECE is 

demonstrated in Fig. 2A. Each node of the BN structure 
had a baseline probability distribution. Five-fold valida-
tion revealed that this network had an AUC of 0.76 and an 

Fig. 3.  (A) BN structure to estimate the probability of SVI. Each node demonstrates the associated variable, the discretized state, baseline 
prevalence, mean, deviation values in study population. (B) The graph showing the impact of each variable on the probability of SVI.  
x-axis represents the normalized mean-value of each variable, and y-axis shows the mean probability of SVI. BN, Bayesian network; iPSA, 
initial prostate-specific antigen; MRI, magnetic resonance imaging; SVI, seminal vesicle invasion.
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overall accuracy of 73.0% (Table 3). In addition, the most 
well-calibrated BN model was the ECE model (calibration  
index=79.7%). The nodes of the BN model were PPC, iPSA, 
GS, cTMRI, and BLI-Bx. These nodes all had a linear relation-
ship with the probability of ECE (Fig. 2B). Of these, PPC 
had a normalized MI of 8.22% (G-test, p < 0.001) as the most  
important factor. On the other hand, BLI-Bx had the lowest 
normalized MI of 2.62% (G-test, p < 0.001) (Table 4). Based on 
this BN model, the individualized scenarios with the highest 
risk of ECE are summarized in S1 Fig. It is important to note 
that the tree does not represent every possible clinical sce-
nario, which can be found in a separate web-user interface.

4. Prediction of SVI with BN
The BN model to predict the probability of SVI included 

cTMRI, GS, iPSA, and PPC (Fig. 3A). Among the three BN 
models, SVI prediction model showed the best performance 
with AUC of 0.88 and overall accuracy of 89.6%. However, 
its calibration index (62.6%) was the lowest among the BN 
models (Table 3). The cTMRI and GS of biopsy exponentially 
increased the probability of SVI (Fig. 3B), with cTMRI being 
the most important factor for the risk of SVI (normalized MI, 
9.85%; p < 0.001) (Table 4). Similarly, GS also had significant 
relative importance (normalized MI, 9.02%; p < 0.001). By 
contrast, both iPSA and PPC showed low relative signifi-
cance in terms of the risk of SVI. The clinical scenarios with 
the highest probability of pathological SVI are schematized 

Fig. 4.  (A) BN structure to estimate the probability of RM+ve. Each node demonstrates the associated variable, the discretized state, 
baseline prevalence, mean, deviation values in study population. (B) The graph showing the impact of each variable on the probability of 
RM+ve. x-axis represents the normalized mean-value of each variable, and y-axis shows the mean probability of RM+ve. BN, Bayesian 
network; iPSA, initial prostate-specific antigen; MRI, magnetic resonance imaging; RM+ve, positive resection margin.
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in S2 Fig.

5. Prediction of RM+ve with BN
To predict the probability of RM+ve, we established a BN 

network model that contained iPSA, PPC, cTMRI, and GS of 
biopsy (Fig. 4A). The AUC, calibration index, and overall 
accuracy of this model were 0.70, 75.1%, and 69.1%, respec-
tively (Table 3). The impact of each node on the probability 
of RM+ve is illustrated in Fig. 3B. Increasing iPSA and PPC 
were linearly associated with an increased risk of RM+ve. 
On the other hand, cTMRI and GS exponentially increased 
the chance of RM+ve (Fig. 4B). The most influential factor 
was iPSA (normalized MI, 6.40%; p < 0.001) followed by 
PPC (normalized MI, 5.51%, p < 0.001) (Table 4). Similar MI 
and relative importance were observed between cTMRI and 
GS with regard to the risk of RM+ve. We then generated an  
interpretation tree of several clinical scenarios with the high-
est risk of RM+ve (S3 Fig.).

6. Implementation of web-user interface
We implemented each BN model in the web-user interface 

for convenient use by physicians to estimate the risk of path-
ological local findings. The web addresses of each model can 
be found at https://github.com/bigwiz83/SNUHRO_Pros-
tateCancer. Furthermore, individuals accessing the website 
can test the BN models in private desktop using the upload-
ed files. An example of the web interface is demonstrated in 
S4 Fig.

7. AUC values: BN model vs. the Roach formula
In terms of ECE prediction, BN model showed impro-

ved performance with marginal significance compared to 
the Roach formula (AUC, 0.76 vs. 0.74; DeLong’s method 

p=0.060) (Fig. 5A). The BN model for prediction of SVI 
showed significantly improved performance compared to 
the Roach model (AUC, 0.88 vs. 0.84; DeLong’s method p < 
0.001) (Fig. 5B).

Discussion

External beam RT with or without brachytherapy or  
androgen deprivation therapy is a standard treatment option 
for PCa throughout all risk groups [3,4]. With the routine 
utilization of intensity-modulated and image-guided RT for 
PCa, the proportion of PCa patients treated with moderate- 
to ultra-hypofractionated RT has steeply increased, as sup-
ported by biological interpretation of past studies [5]. In this 
context, precise target delineation can never be emphasized 
too much.

The current international RT-target delineation guidelines 
for PCa suggest that ECE and SVI are based on a somewhat 
simplified risk grouping. The recently published EORTC 
guidelines suggest adding a 3-mm margin around the pros-
tate for the clinical target volume in order to sufficiently 
cover possible ECE in intermediate-/high-risk patients [6]. 
Considering SVI, the guideline recommends including the 
proximal 1.4-cm and 2.2-cm of the SV in intermediate- and 
high-risk patients, respectively, when the target is delineated 
on a planning computed tomography scan [6]. However, 
there is a small but noted discrepancy in the risk grouping 
between the EORTC and NCCN guidelines. Clinical T2c dis-
ease is regarded as a high-risk factor in the EORTC guide-
lines, whereas it is an intermediate-risk factor in the NCCN 
guideline [4,6]. Therefore, it might be more reasonable to  
individually estimate the probability of ECE or SVI in pati- 

Fig. 5.  Comparison between the predictive accuracy of BN model and Roach formula for pathological ECE (A) and SVI (B) according to 
the DeLong’s comparison method. AUC, area under the curve; BN, Bayesian network; ECE, extracapsular extension; SVI, seminal vesicle 
invasion.
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ents based on each risk factor that significantly predicts 
the risk of ECE or SVI and implicate the prediction to RT-
target volume delineation. For example, in the PROFIT trial,  
experimenting with a hypofractionated schedule of 60 Gy in 
20 fractions in intermediate-risk PCa, the proximal 1.0-cm SV 
was included in the clinical target volume only when the pre-
dicted risk of SVI exceeded 15% based on Partin’s nomogram 
[20,21]. Similarly, in the CHHiP trial, patients with localized 
PCa were individualized for inclusion of SV in the clinical 
target volume based on the findings from Roach [17], not the 
overall risk grouping [22,23].

Partin’s nomogram as well as Roach’s formula predict the 
risk of ECE or SVI with respect to possible individual risk 
factors, such as clinical T-stage, iPSA, and GS [17,21]. In this 
context, we developed two separate models using multivari-
ate logistic regression analysis and BN to provide convenient 
prediction of ECE, SVI, and RM+ve risk to physicians, and 
to guide RT-target delineation considering all individual fac-
tors such as cTMRI, iPSA, GS, PPC, and BLI-Bx. Although pre-
treatment MRI is an accurate modality when discriminating 
organ-confined vs. ECE/SVI in PCa [9-11], and those find-
ings are an indicator of relapse or metastases [23,24], MRI 
is discouraged from being used as a staging modality in the 
8th edition of the AJCC staging system [8] as well as in the 
models from Partin et al. [21] and Roach [17]. Furthermore, 
detecting SVI with digital rectal exams is prone to error, and 
the correlation between pathological SVI and clinical staging 
with digital rectal exam might be poor compared to other 
risk factors such as iPSA levels, tumor differentiation, or 
PPC on biopsy [25]. To add the value of MRI in predicting 
ECE and SVI, we integrated the MRI findings to clinical stag-
ing, referred to cTMRI staging in the current study. The cTMRI 
had the highest correlation with pathological SVI in the BN 
model (normalized MI, 9.85%; p < 0.001). It was also a sig-
nificant indicator for pathological ECE. The additional value 
of our models is the integration of PPC, which is also known 
to increase the risk of ECE, SVI, and RM+ve [25-27]. Indeed, 
it significantly correlated with all three endpoints in both 
models (all p < 0.001). Due to the wide use of pretreatment 
MRI, a major portion of radiation oncologists and urologists 
might already be using the concept of cTMRI in daily practice, 
although not stipulated in any publication.

A major limitation of using the cTMRI concept is that no 
standardized criteria for local staging with MRI currently  
exist, which is a major limitation of our study as well.  
Although we used a simple criterion of definite low signal 
intensity on T2-weighted imaging as an abnormal finding, 
multiparametric MRI (mpMRI) including diffusion-weight-
ed and dynamic contrast-enhanced imaging is the recom-
mended modality currently [3,4,28]. Consecutive efforts are 
being made to introduce mpMRI findings in clinical practice. 

For instance, Mehralivand et al. [29] suggested a grading sys-
tem for extraprostatic extension with mpMRIs based on find-
ings such as the length of contact with the prostatic capsule, 
capsular bulging, or obliteration of the rectoprostatic angle, 
which were highly correlated with the presence of actual  
extraprostatic invasion in their prostatectomy specimen. A 
report from Giannarini et al. [30] showed that the combi-
nation of only two sequences, diffusion-weighted and T2-
weighted axial imaging, has comparable performance to 
mpMRI in predicting pT3 or higher disease. Grivas et al. [31] 
have also demonstrated a superior accuracy in predicting 
pathological SVI when mpMRI is added to the Partin model 
compared to relying on the Partin table alone. It is overt that 
the more advanced the MRI findings, the higher the risk of 
pathological ECE, SVI, and RM+ve [9-11]. However, stand-
ardization of criterion and quantification of MRI findings in 
order to be used as a standard staging modality are yet to be 
done, as well as the integration into the AJCC T-staging of 
PCa for guiding clinical practice. At this point, cTMRI should 
be determined mostly by genitourinary expert radiologists.

BN is a probabilistic graphical model for decision support. 
In the current study, we could infer important associations 
between variables and class variables such as ECE, SVI, and 
RM+ve by using BN models. These BN models can practical-
ly support risk adapted-treatment of patients because they 
can instantly respond to the clinician’s request or questions 
with a visual and interpretable representation. In addition, 
the BN approach can decompose the prediction model and 
demonstrate how clinical factors affect the predicted class 
variables. The current study revealed non-linear as well as 
linear relationships between risk factors, which are not often 
captured by the logistic regression model. Moreover, MI was 
calculated to measure the relative importance among varia-
bles. The performance of the BN models in the current study 
were acceptable for predicting ECE and SVI (Table 3), espe-
cially SVI. Furthermore, in the internal comparison between 
the BN model and Roach formula [3], our BN model showed 
improved AUC values compared to the Roach model for 
ECE (p=0.060) and SVI (p < 0.001) prediction, although the 
difference for ECE was marginally significant and the abso-
lute difference were modest. This might reflect the necessity 
of integrating MRI findings such as the ‘cTMRI’ as used in our 
study to accurately predict pathological findings. However, 
our BN model warrants external validation in future studies.

In summary, we have successfully developed two models 
based on the multivariate logistic regression analysis and 
BN to estimate the risk of pathologic ECE, SVI, and RM+ve 
based on several clinical factors in PCa. These models are  
expected to be applied in patients with PCa to predict the 
risk of pathological ECE, SVI, and RM+ve, and eventually 
guide radiation oncologists throughout the target-delineat-
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ing process and urologists in deciding treatment modality.
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