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INTRODUCTION 

The year 2024 marks the centenary of the Nobel Prize in 

Physiology or Medicine being awarded to Willem Eintho-

ven, a Dutch physician and physiologist who developed 

the first practical electrocardiography (ECG) method. Ein-

thoven's pioneering work with ECG, which introduced the 

PQRST (provocation, quality, region [or radiation], severity 

[or scale], and timing) terminology for cardiac waveforms, 
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The integration of artificial intelligence (AI) with electrocardiography (ECG), a technology known as AI-ECG, represents a transforma-
tive leap in the field of cardiovascular medicine. This innovative approach has significantly advanced the capabilities of ECG, tradi-
tionally used for diagnosing heart diseases. AI-ECG excels in detecting subtle changes and interconnected patterns in cardiac wave-
forms, offering a level of precision and sensitivity that was previously unattainable with conventional methods. The scope of AI-ECG 
extends beyond the realm of heart diseases. It has shown remarkable potential in predicting and identifying the impacts of noncar-
diac conditions on heart health, thereby broadening the diagnostic capabilities of ECG. This is especially valuable given the complex 
nature of cardiovascular diseases and their interactions with other health conditions. Despite its groundbreaking potential, AI-ECG 
faces several challenges. One of the primary concerns is the “black box” nature of AI algorithms, which can make the decision-mak-
ing process opaque and difficult to interpret. This poses a challenge in medical settings where understanding the rationale behind a 
diagnosis is crucial. Additionally, the effectiveness of AI-ECG is dependent on the quality and diversity of the datasets used to train 
the algorithms. Limited or biased datasets can lead to inaccuracies and diminish the reliability of the technology. However, the ben-
efits of AI-ECG are significant. It enables faster, more accurate diagnoses and has the potential to greatly enhance the efficiency of 
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remains a cornerstone in the interpretation of electrocar-

diograms to this day. Over the years, the ECG has evolved, 

and in 1954, the American Heart Association officially intro-

duced 12-lead ECG, which has become a widely used and 

easily accessible diagnostic tool for assessing cardiovascular 

conditions [1]. 

For over a century, ECG has been a fundamental tool in 

cardiovascular medicine, as it records the collective electri-

cal activity of millions of cardiac muscle cells. The ECG pro-
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cedure entails placing electrodes on the body's surface to 

record the heart's electrical activity, which is then depicted 

as waveforms. These waveforms are used to diagnose and 

manage heart diseases. 

Traditionally, specific changes on an ECG, such as ST-seg-

ment elevation indicating myocardial infarction, T-wave 

alterations suggesting potassium abnormalities, and other 

noticeable ST-segment variations, have been used to identi-

fy particular clinical conditions. However, the sensitivity to 

detect subtle and interconnected changes present in ECG 

data was limited, as clinically significant changes needed 

to be substantial in size. Additionally, ECG interpretation 

requires considerable time and expertise, necessitating pro-

longed training. 

Recent advancements in artificial intelligence (AI) and 

deep learning neural networks have revolutionized ECG 

analysis by enabling the discrimination of subtle differences 

in ECG signal waveforms. These developments have made 

it possible to detect nuanced and interconnected changes 

that were previously challenging to identify. As deep learn-

ing neural networks have become more sophisticated, re-

search has expanded, demonstrating remarkable accuracy 

in various applications. These include identifying a person's 

gender, detecting left ventricular dysfunction, discovering 

arrhythmias that are difficult for the human eye to discern 

in records, and even recognizing subtle ECG changes re-

sulting from non-cardiac conditions that affect the heart's 

electrical activity. The role of AI-enhanced ECG (AI-ECG) 

is evolving beyond traditional diagnostic functions. AI-

ECG is emerging as a functional biological biomarker with 

a wide range of applications. This article aims to review and 

discuss the major research, achievements, and future pros-

pects of AI in the context of 12-lead ECG. 

THE HISTORY AND DEVELOPMENT OF AI 

In 1950, British mathematician and computer scientist Alan 

Turing [2] introduced the Turing Test as a benchmark for 

evaluating machine intelligence, based on the ability of ma-

chines to engage in conversation with humans. The concept 

of AI has a surprisingly long history, with the term itself first 

coined by Professor John McCarthy of Dartmouth College 

in the United States during the 1956 Dartmouth Confer-

ence [3]. Despite early optimism, the field faced setbacks. 

Research into neural networks, which required complex 

calculations, was hindered by the limited capabilities of 

multilayer neural networks and the slow processing speeds 

of computers at the time, leading to two significant periods 

of stagnation. 

In the late 2000s, AI research underwent a revival with the 

introduction of deep learning algorithms. These algorithms 

utilize multilayer neural networks to emulate the human 

brain's functionality and tackle intricate problems. Notable 

deep learning algorithms include recurrent neural networks 

(RNNs), which are sequence models that process inputs 

and outputs in temporal sequences, and convolutional 

neural networks (CNNs), known for their exceptional per-

formance in image processing. The advancement of deep 

learning algorithms, such as Google's deep neural network 

(DNN) for image recognition, Facebook's DeepFace, and 

Google DeepMind's AlphaGo, in conjunction with the en-

hanced computing power provided by graphics processing 

units (GPUs) capable of parallel data processing, has fueled 

the current surge in AI. In recent years, the AI field has seen 

a shift towards generative models, exemplified by the gen-

erative pre-trained transformer (GPT) model. 

In the realm of medicine, AI research in ECG analysis has 

been propelled by the availability of large ECG datasets and 

advanced computing hardware. Researchers have devised 

deep learning algorithms capable of analyzing ECG data 

with remarkable accuracy, which facilitates quicker diagno-

ses and heightens precision in detecting heart conditions. 

AI systems are also employed in predicting heart disease 

risk and in the screening, monitoring, and observation of 

patients. AI can be applied to ECG analysis in two primary 

ways: by automating tasks that are currently performed 

manually, such as identifying arrhythmias or acute myo-

cardial infarction, and by extracting insights that surpass 

human perception, thus recognizing more complex clinical 

conditions. 

The efficacy of AI software is typically evaluated using 

several performance metrics. These include accuracy, the 

confusion matrix, precision and recall, the receiver operat-

ing characteristic (ROC) curve, and the area under the ROC 

curve (AUC). Additionally, the F1 score, which is the har-

monic mean of precision and recall, is frequently utilized in 

performance assessments.  
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fibrillation may begin before the condition is clinically 

diagnosed. Baek et al. [10] presented a study that trained 

a 12-lead ECG with normal sinus rhythm using an RNN-

based method at the Korean Society of Holter and Non-

invasive Electrocardiology in 2019. This innovative deep 

learning approach, which employs AI to identify specific 

features of atrial fibrillation and enhances data accuracy 

through classification by arrhythmia specialists instead 

of mechanical data labeling, more than doubled the 

F1 score compared to the results from the Mayo Clinic. 

Recent prospective studies have demonstrated that the 

use of AI-ECG for detecting atrial fibrillation results in 

an approximately threefold increase in sensitivity over 

traditional methods among high-risk patient groups [11]. 

While the diagnosis of arrhythmias has been the subject 

of extensive research, its direct impact on patient man-

agement has not been as thoroughly explored. There-

fore, domestic researchers are currently undertaking 

large-scale, multi-institutional studies to investigate the 

relationship between AI-ECG and clinical outcomes be-

yond the mere diagnosis of atrial fibrillation [12]. 

Recent guidelines from the European Society of Car-

diology [7] and the Korean Heart Rhythm Society [5] 

incorporate research on the use of normal sinus rhythm 

electrocardiograms, assisted by AI, to identify patients 

with paroxysmal atrial fibrillation. This is considered a 

significant advancement in the diagnosis of atrial fibril-

lation. Such research introduces a novel approach that 

could prove to be an invaluable tool for detecting atrial 

fibrillation, especially given the growing shortage of es-

sential medical personnel and the critical importance of 

early detection. Hannun et al. [13] utilized a substantial 

dataset of electrocardiogram recordings to distinguish 

between 12 arrhythmia rhythm classes. Their findings 

demonstrated that the deep learning neural network 

outperformed cardiac internal medicine specialists in 

discernment, achieving an F1 score of 0.837. In another 

extensive deep learning study that analyzed Brazilian 

electrocardiogram big data, the researchers achieved an 

F1 score above 0.8 and specificity over 99% in classifying 

six types of arrhythmias, including atrial fibrillation. Fur-

thermore, the detection of atrial fibrillation was strongly 

linked to clinical outcomes, serving as a powerful pre-

dictor of cardiovascular and all-cause mortality, with an 

increased risk noted in women [14]. 

ARRHYTHMIAS 

The diagnosis and prediction of arrhythmias are among 

the most significant areas where the utility and value of AI-

ECG are evident. Atrial fibrillation is the most common ar-

rhythmia encountered in clinical practice [4]. In Korea, the 

prevalence of atrial fibrillation increased to 1.53% in 2015, 

with projections suggesting that 5.6% of the population 

may be affected by 2060 [5]. Atrial fibrillation is associated 

with an increased risk of death, heart failure, and is linked 

to approximately 20% to 30% of ischemic strokes [6]. It is 

a socially and economically burdensome cardiac disease, 

leading to cognitive impairment, decreased quality of life, 

and depression. Annually, 10% to 40% of patients with atri-

al fibrillation are hospitalized [7]. According to the recent 

EAST-AFNET 4 (Early Treatment of Atrial Fibrillation for 

Stroke Prevention Trial 4) and its subanalysis, published in 

the New England Journal of Medicine, early rhythm control 

in patients diagnosed with atrial fibrillation within 1 year, 

regardless of symptoms, significantly reduced mortality, 

hospitalization rates, and fatal complications by 21% [8]. 

Therefore, considerable efforts have been directed toward 

the diagnosis of atrial fibrillation, the most common ar-

rhythmia, in the field of AI-ECG. Research on the diagnosis 

of other arrhythmias, such as ventricular tachycardia, has 

been relatively limited to date. 

Automated electrocardiogram interpretation software 

that employs CNNs and RNNs within the realm of deep 

learning has been reported to accurately detect arrhyth-

mias, including ongoing atrial fibrillation. Identifying the R 

peak is essential in AI analysis. Since atrial fibrillation, char-

acterized by indistinct P waves, jitteriness, or irregular R-R 

intervals, can be relatively easily identified by the human 

eye, it is anticipated that AI can also accurately detect cur-

rent instances of atrial fibrillation to some extent. 

Attia et al. [9] presented a study in 2019 that trained 

a CNN AI method using 12-lead ECGs of normal sinus 

rhythm collected at the Mayo Clinic for 10-second dura-

tions. The AI-ECG algorithm's performance was assessed 

on a self-test dataset, and it successfully identified patients 

with atrial fibrillation using normal sinus rhythm ECGs with 

an accuracy of 79%. Notably, the accuracy increased to 83% 

when using normal sinus rhythm ECGs from 1 month prior 

to the diagnosis of atrial fibrillation. This indicates that the 

electrical and structural remodeling associated with atrial 

AI-enhanced electrocardiography
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Meanwhile, in research aimed at detecting ventricular 

tachyarrhythmias, which include ventricular tachycardia 

and ventricular fibrillation, the application of a DNN in au-

tomated external defibrillators has yielded favorable results. 

The DNN achieved an accuracy of 99.2%, a sensitivity of 

98.8%, and a specificity of 99.3%, outperforming standard 

classification methods [15]. Recent studies using DNNs to 

analyze ECG signals have produced intriguing findings. 

These studies suggest the networks' capability to detect pa-

tients at risk for ventricular tachyarrhythmias due to P-wave 

abnormalities, particularly for identifying life-threatening 

ventricular tachyarrhythmias in patients with hypertrophic 

cardiomyopathy [15]. Torsades de Pointes, a lethal ventric-

ular arrhythmia, is linked to congenital or drug-induced 

long QT syndrome (LQTS). Recent research reported that a 

CNN model that quantified changes in ECG over a 10-sec-

ond interval outperformed risk prediction based on the 

commonly used corrected QT interval (QTc), especially in 

distinguishing LQTS [16]. Furthermore, another study that 

developed a DNN using 12-lead ECG data found that the 

AI-ECG not only differentiated LQTS from QTc-based risk 

assessments but also accurately predicted the genetic sub-

types of LQTS—types 1, 2, and 3—with nearly 80% accuracy 

[17]. As these studies continue to emerge and their accuracy 

is validated, they are expected to become valuable tools for 

predicting sudden cardiac events in the general population. 

STRUCTURAL HEART DISEASE 

AI-ECG has demonstrated considerable progress in the 

diagnosis of structural heart diseases. Left ventricular hy-

pertrophy (LVH) serves as a marker for asymptomatic organ 

damage and is associated with an increased risk of cardio-

vascular diseases. Echocardiography remains the gold stan-

dard for diagnosing LVH. The assessment criteria for LVH 

based on ECG have traditionally been established by the 

voltage threshold of the RS peak. 

A study conducted by researchers in Taiwan employed 

a back propagation neural network method and demon-

strated high accuracy, precision, sensitivity, and specific-

ity (0.96–0.97) in distinguishing LVH using 12-lead ECG 

[18]. The ECG shows promise as a screening tool, given its 

cost-effectiveness and rapid applicability in clinical settings. 

The Mayo Clinic developed a method to identify patients 

with asymptomatic left ventricular dysfunction by training 

a convolutional neural network with datasets from 44,959 

patients using 12-lead ECG. The resulting AI-ECG exhib-

ited high accuracy, sensitivity, and specificity in detecting 

heart failure in an independent cohort of 52,870 patients. 

Moreover, when AI screening indicated a positive result in 

patients without systolic dysfunction, their risk of develop-

ing future systolic dysfunction increased fourfold. These 

findings underscore the cost-effective and potent potential 

of AI-ECG as a screening tool for heart failure [19]. In Korea, 

researchers created an interpretable AI algorithm to detect 

heart failure with reduced ejection fraction (HFrEF) and 

validated its performance. The AI algorithm effectively de-

tected HFrEF using both 12- and single-lead ECGs [20]. A 

recent meta-analysis of AI-ECG for heart failure detection 

corroborated the capability of ECG-based AI models to 

predict heart failure and left ventricular systolic dysfunction 

[21]. 

There has recently been an increase in the AI-ECG anal-

ysis for detecting structural heart diseases. Remarkable re-

sults have been reported for conditions such as pulmonary 

artery hypertension, severe aortic stenosis, severe mitral 

regurgitation, and cardiac amyloidosis [22–24]. One study 

demonstrated the potential of a DNN when applied to dig-

ital 12-lead ECGs from 2,448 patients with hypertrophic 

cardiomyopathy and a control group of 51,153 individuals 

matched for age and sex. The results were particularly 

promising for detecting hypertrophic cardiomyopathy in 

younger patients, with a sensitivity of 95% and a specificity 

of 92% [25]. Another study employed a technique known as 

long short-term memory, a form of RNN, to detect ST-seg-

ment elevation myocardial infarction. It achieved an accu-

racy of 0.987, an AUC of 0.997, and precision, recall, and F1 

scores of 0.952, 0.870, and 0.909, respectively. Additionally, 

studies using a CNN model for detecting coronary artery 

disease showed excellent performance with an AUC of 0.869 

[26,27]. The use of deep learning for cardiac diagnosis via  

electrocardiogram is highly promising. Future research may 

well concentrate on the early detection of rare cardiac con-

ditions that are currently less understood clinically. 

NONCARDIAC DISEASES 

AI-ECG analysis has the potential to detect or monitor a 

range of diseases beyond those of the cardiovascular sys-

tem. Its applications have been explored in the diagnosis of 
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metabolic disorders, the detection of electrolyte imbalanc-

es, and the screening for conditions such as hyperthyroid-

ism, anemia, and liver cirrhosis. Recent studies have yielded 

intriguing results, including the ability of AI-ECG analysis 

to quickly exclude SARS-CoV-2 infection with a negative 

predictive value of 99.2%. Furthermore, the use of AI-ECG 

to predict the severity of COVID-19 could help in the effi-

cient allocation of medical resources during a pandemic 

[28]. Lin et al. [29] achieved high accuracy in distinguishing 

between hypokalemia (sensitivity, 96.7%; specificity, 93.3%; 

AUC, 0.926) and hyperkalemia (sensitivity, 83.3%; specific-

ity, 97.8%; AUC, 0.958) using a deep learning model trained 

on a database of 66,321 ECGs. This model outperformed 

emergency room physicians and cardiologists in sensitivity, 

specificity, and accuracy on the test set. 

AI-ECG utilizing 12-lead ECG has demonstrated the abil-

ity to predict a patient's biological age. Intriguingly, it can 

also identify gender and predict 1-year mortality rates [30]. 

A recent study by Korean researchers, who analyzed 420,000 

instances of 12-lead ECG data, showed that if the biological 

age predicted by AI-ECG exceeded the actual age by more 

than 6 years, there was a marked increase in the risk of ma-

jor cardiovascular events, mortality, and hospitalizations 

related to cardiovascular issues [31]. 

LIMITATIONS 

Several limitations of AI in this field should be kept in mind. 

Firstly, AI algorithms are often referred to as "black boxes" 

because of the opacity in their decision-making process-

es. The challenge of understanding the reasoning behind 

an algorithm's conclusions is a significant obstacle to the 

broader adoption of AI systems, particularly in the medical 

field. Healthcare professionals must grasp the logic behind 

AI recommendations to build trust and promote patient 

engagement. Recently, efforts have been made to improve 

the interpretability of classification methods for ECG imag-

es. Techniques such as class activation map (CAM), Grad-

CAM, SHAP (Shapley Additive Explanations), and the use 

of global weights importance in DNNs, along with other 

explainable AI (xAI) strategies, have been explored [32]. For 

instance, sensitivity maps in object recognition within ECG 

images can highlight the areas most associated with key 

electrocardiographic features in the classification decision, 

aligning closely with cardiologists' diagnostic processes. 

However, interpreting deep learning models and justify-

ing AI decisions is still a complex task due to AI's inherent 

complexity. Secondly, most studies to date have been ret-

rospective and conducted on limited datasets. There is a 

pressing need for large-scale prospective research, as well as 

validation and certification across various medical settings. 

Addressing issues such as imbalanced datasets and small 

patient cohorts is critical. Thirdly, despite the impressive 

performance of deep learning algorithms, the challenge of 

identifying optimal treatments and predicting outcomes 

while minimizing false positives and negatives is substan-

tial. It is vital to be vigilant against overfitting, particularly 

considering the distinct characteristics of various diseases. 

Therefore, research that includes long-term follow-up may 

be required. Fourthly, the importance of accurate dataset 

labeling by experts during the design and development of 

AI algorithms cannot be overstated. Contaminated data can 

lead to performance degradation and introduce bias into AI 

systems. 

CONCLUSIONS 

AI-ECG has advanced to the point where it can detect 

subtle abnormalities in conditions that might otherwise 

be deemed "normal" by a cardiologist or a conventional 

ECG machine. Considering the critical importance of ear-

ly diagnosis and management in heart disease, these AI 

techniques are particularly well-suited for the large-scale 

screening of ECGs and are anticipated to become a staple in 

clinical practice. The benefits of AI-enhanced ECGs include 

improved risk prediction, the ability to integrate with exist-

ing clinical variables, personalized treatment planning, and 

enhanced cost-effectiveness through the real-time analysis 

of ECGs. These advantages position AI as a potential 'game 

changer' in the diagnosis and management of cardiovascu-

lar disease in the near future. 
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