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Introduction 

Nephrotic syndrome (NS) in children is a clinical syndrome 

characterized by massive proteinuria, hypoalbuminemia, and 

generalized edema. Although NS has various etiologies, includ-

ing genetic mutations, infectious diseases, drugs, and systemic 

diseases, most cases are idiopathic with an unknown etiology. 

Idiopathic NS (INS) is the most frequent glomerular disease in 

the pediatric population, and its prevalence ranges between 1.15 

and 16.9 per 100,000 children per year [1]. The two major histo-

logical variations of INS in children are minimal change disease 

(MCD) and focal segmental glomerulosclerosis (FSGS); INS can 
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also be classified based on the response to corticosteroid ther-

apy into steroid-sensitive NS (SSNS) and steroid-resistant NS 

(SRNS). 

Massive albuminuria, the hallmark of INS, is caused by dam-

age to podocytes and is histologically characterized by podocyte 

foot process effacement, loss of podocyte architecture, and 

loss of slit diaphragm integrity in the absence of inflammato-

ry changes. Therefore, INS is also considered as a major form 

of podocytopathy [2]. Although the exact pathogenesis of INS 

has not been fully clarified, traditional therapeutic approaches 

based on immunosuppressive agents largely support the key 

role of the immune system, especially in SSNS. Most previous 
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studies have suggested that the main pathogenesis of INS is T 

cell dysfunction and/or abnormal secretion of certain glomeru-

lar permeability factors. However, recent studies have suggest-

ed that the pathogenesis may also be related to B cell dysfunc-

tion.  

In this review, an overview of the immunopathogenesis and a 

detailed review of the emerging autoimmune-mediated etiolo-

gy of INS are described. 

T cells 

MCD/INS has been considered a T cell-mediated disorder since 

1974, when Shalhoub [3] proposed the hypothesis that MCD is a 

systemic disorder of T cell dysfunction that results in increased 

plasma levels of lymphocyte-derived permeability factors. 

Shalhoub’s hypothesis was based on several clinical observa-

tions: (1) the lack of evidence of a humoral antibody response 

(the absence of immune complexes in glomeruli); (2) remission 

induced by measles, which suppresses cell-mediated immu-

nity; (3) the therapeutic response to steroids and cyclophos-

phamide, which also suppresses cell-mediated responses, and 

(4) the occurrence of this syndrome in T cell-derived Hodgkin 

disease. Additionally, the susceptibility of untreated patients 

to pneumococcal infections may be of primary or secondary 

pathogenic importance. Lagrue et al. [4] in 1975 reported the 

first experimental evidence for the pathophysiological role of 

lymphocytes in INS by showing that intradermal injection of 

concanavalin A-stimulated lymphocyte culture supernatants 

from patients with MCD resulted in the liberation of a soluble 

lymphokine that increased the permeability of guinea pig skin 

capillaries. 

Thereafter, many observations have indicated that INS 

is caused by soluble permeability factors in the plasma. In 

1984, Zimmerman [5] showed that serum from patients with 

post-transplant relapse of INS can induce proteinuria in rats. In 

1991, Koyama et al. [6] provided strong experimental evidence 

that supernatants from T-cell hybridomas from patients with 

MCD can induce proteinuria in rats. 

It is well known that idiopathic FSGS rapidly recurs in 40% 

to 60% of transplant recipients [7], and there have been several 

lines of evidence indicating a direct or indirect role of circu-

lating glomerular permeability factor in the development of 

recurrent FSGS: (1) very rapid recurrence within hours after 

renal transplantation [8]; (2) the efficacy of plasma exchange 

and selective apheresis methods in treating this condition [9,10]; 

and (3) resolution of recurrent FSGS after rapid graft re-trans-

plantation from a patient with FSGS recurrence to a diabetic 

recipient [11]. In addition, transplacental passage of the glomer-

ular permeability factor can induce transient NS in the fetus [12]. 

These observations have prompted studies to identify circu-

lating permeability factors, focusing on T cell products. Several 

candidate molecules have been identified, including T-helper 

1 (Th1) cytokines (tumor necrosis factor-α [TNF-α], interleukin 

[IL]-2, and IL-18), T-helper 2 (Th2) cytokines (IL-4 and IL-13), and 

T-helper 17 (Th17)-related cytokines (IL-17, IL-1β, IL-6, and IL-23) 

[13,14]. 

On the other hand, several studies have reported altered 

numbers or phenotypes of T cell subsets in patients with INS: 

(1) imbalance between T-helper (CD4+) and T-cytotoxic (CD8+) 

lymphocytes, with a predominance of CD8+ cells [15,16]; (2) Th1 

and Th2 imbalance, with Th2 response predominance [17]; and 

(3) predominance of Th17 cells, with downregulated T-regula-

tory cells (Tregs) [18,19]. Immune dysregulation, polyendocr-

inopathy, enteropathy, and X-linked (IPEX) syndrome is a rare 

disease caused by genetic mutations in FOXP3, which encodes 

a transcription factor responsible for the generation and matu-

ration of Tregs. The development of MCD in patients with IPEX 

syndrome supports the role of Treg dysfunction in INS patho-

genesis [20,21]. 

However, despite these extensive studies, some of the find-

ings have not been consistent across all studies, and there is 

still no evidence that a specific pathogenic T cell population or 

product is a key mediator of INS. 

Circulating permeability factors 

In addition to cytokines, several other circulating permeability 

factors, including hemopexin, cardiotrophin-like cytokine 1 

(CLC-1), soluble urokinase-type plasminogen activator receptor 

(suPAR), cathepsin L (CatL), angiopoietin-like-4 (Angptl4), apo-

lipoprotein A-I (APOL1), sphingomyelin phosphodiesterase ac-

id-like 3b (SMPDL-3b), and calcium/calmodulin-serine protein 

kinase (CASK), have been shown to increase the permeability of 

the glomerular filtration barrier. These factors may be involved 

in INS pathogenesis [22]. 

Hemopexin 

Hemopexin, a protease secreted by the liver, is the first mole-

cule proposed to be a potential permeability factor [23]. Active 
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hemopexin reduces the expression of glomerular sialoglyco-

proteins and alters the integrity of the actin cytoskeleton in 

cultured human podocytes [24]; plasma hemopexin activity is 

increased during recurrence of MCD in pediatric patients [25]. 

Soluble urokinase-type plasminogen activa-
tor receptor (suPAR) 

Some studies have shown that the induction of urokinase-type 

plasminogen activator receptor (uPAR) in podocytes can lead to 

foot process effacement and proteinuria, and elevated plasma 

suPAR levels can be a specific diagnostic biomarker for dis-

tinguishing SRNS from SSNS and predicting the recurrence 

of FSGS in the grafted kidney [26-28]. However, several other 

studies could not confirm the predictive value of suPAR in dis-

tinguishing FSGS from other glomerular pathologies such as 

MCD, membranous nephropathy, IgA nephropathy, lupus ne-

phritis, or non-glomerular chronic kidney disease [29,30], and 

suPAR injection alone does not induce proteinuria in wild-type 

mice [31]. Furthermore, plasma suPAR levels are influenced by 

renal function and are elevated in other kidney and liver dis-

eases [32]. 

Cardiotrophin-like cytokine 1 (CLC-1) 

Savin et al. [33,34] proposed that CLC-1, a member of the IL-6 

cytokine family, is a pathogenic circulating factor in FSGS. 

CLC-1 was first identified in plasma samples of patients with 

post-transplant recurrence of FSGS [34]. Recombinant mono-

meric human CLC-1 induces albuminuria in mice and increases 

albumin permeability in isolated rat glomeruli [34]. Clinically, 

CLC-1 was increased in patients with recurrent FSGS, and pro-

teinuria decreased significantly after the administration of 

CLC-1 antibodies [34]. 

Angiopoietin-like-4 (Angptl4) 

Angptl4 is a glycoprotein that is strongly expressed in adipose 

tissue and the liver. Angptl4 has been suggested to play a role in 

the development of proteinuria in MCD [35,36]. Overexpression 

of Angptl4 in podocytes has been reported in relapsed MCD in 

experimental animal models, including a puromycin aminonu-

cleoside nephrosis model [35]. However, a large-sample study 

reported that Angptl4 was not expressed in the glomeruli of 

patients with MCD in relapse [36]. 

Podocytes 

In 2004, Reiser et al. [37] reported an interesting observation 

that lipopolysaccharide injection led to NS in both wild-type 

and severe combined immunodeficient mice, suggesting that 

this mouse model of MCD may develop without the involve-

ment of T or B cells. On the other hand, podocytes have attract-

ed attention as a novel key player in the immunopathogenesis 

of INS [22,38,39]. 

CD80, also known as B7-1, is expressed in activated B cells and 

antigen-presenting cells and plays an important role in B-cell 

and T-cell interactions. Activation of CD80 on antigen-pre-

senting cells and binding to the CD28 receptor on T-cells play 

key roles in T-cell activation, while binding of CD80 to cytotoxic 

T-lymphocyte-associated-4 (CTLA-4) terminates the T-cell 

response [40]. Podocytes express CD80 and can, therefore, act 

as antigen-presenting immune cells [37,41,42]. In 2004, Reiser 

et al. [37] found podocyte CD80 expression in various clinical 

and experimental kidney diseases with NS, and its expression 

was correlated with the severity of human lupus nephritis. Shi-

mada et al. [39], in 2011, proposed that MCD is a "two-hit" podo-

cyte immune disorder based on experimental studies [40,42]. 

The "first hit" is induction of podocyte expression of CD80 in 

response to a circulating factor (such as a cytokine, allergen, 

or microbial product). Increased podocyte CD80 expression 

results in transient proteinuria due to autoregulatory mecha-

nisms mediated by T cells and/or podocytes. The "second hit" 

is dysfunction of this autoregulatory mechanism, resulting in 

persistent CD80 expression and proteinuria. CD80 expression 

is inhibited by both CTLA-4 and IL-10, resulting in the resolution 

of proteinuria [43,44]. If dysfunctional Tregs in patients with 

MCD cannot turn off podocyte CD80 expression by secretion 

of soluble CTLA-4, IL-10, and transforming growth factor-beta, 

proteinuria may persist. 

Several subsequent studies revealed that the concentration 

of soluble CD80 and the ratio of CD80/CTLA-4 in urine were sig-

nificantly higher in patients with relapsing MCD than in those 

in remission, which is a characteristic of MCD versus FSGS [45-

47]. Therefore, CD80 has been proposed as a potential differ-

entiating biomarker of MCD histology and responsiveness to 

steroids and immunosuppressive treatments [48,49]. 

Abatacept (CTLA4–Ig) is a fusion protein composed of the 

Fc region of the immunoglobulin G1 (IgG1) fused to the extra-

cellular domain of CTLA-4. Abatacept blocks the CD80–CD28 

pathway by competing with CD28 in binding to CD80, thereby 
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inducing apoptosis and T cell incompetence. The alleviation of 

proteinuria in some patients with rituximab- and steroid-re-

sistant FSGS after abatacept supplementation also indicates 

the role of CD80 in the pathogenesis of FSGS [50,51]. At the mo-

ment, the exact role of CD80/CTLA-4 in the pathogenesis of INS 

and the effect of abatacept in refractory NS has not been con-

firmed and has been criticized in several papers that reported 

different results [50,52-55]. 

Podocytes also express human leukocyte antigen (HLA) class 

II like immune cells [41]. Aberrant HLA class II expression caus-

es autoimmune diseases affecting antigen-presenting cells 

and various organs [56]. These findings also suggest that podo-

cytes act as immune cells in the pathogenesis of NS. 

B cells 

In 2004, sustained remission of NS in a boy treated with ritux-

imab, a B cell-depleting anti-CD20 monoclonal antibody, for re-

current idiopathic thrombocytopenic purpura was observed by 

chance [57]. Several subsequent studies have demonstrated the 

therapeutic efficacy of B cell-depleting therapy in inducing and/

or maintaining prolonged remission in both pediatric and adult 

patients with INS [58,59]. These findings support a key role for 

B cells in INS pathogenesis. In addition, previous findings that 

INS may occur in association with non-Hodgkin lymphoprolif-

erative disorders (such as B cell-derived Hodgkin lymphoma) 

and Epstein-Barr virus infection provided additional evidence 

for the role of B cells [60,61]. Interestingly, mycophenolate 

mofetil and calcineurin inhibitors, known to target T cells, are 

also effective in inhibiting B cell proliferation and immunoglob-

ulin production and can contribute to maintaining remission 

following anti-CD20 treatment [62,63]. Recently, ofatumumab, 

a humanized anti-CD20 monoclonal antibody, has been shown 

to be beneficial in some patients with rituximab-resistant INS 

[64]. In addition, global anti-B cell targeting with a combination 

of obinutuzumab (a humanized anti-CD20 monoclonal anti-

body) and daratumumab (a recombinant anti-CD38 monoclo-

nal antibody targeting plasma cells) demonstrated promising 

results in rituximab-resistant pediatric patients with NS [65]. 

B cells can play a role in the pathogenesis of INS by producing 

pathogenic antibodies against podocyte proteins (see “autoan-

tibodies” section below) and by antibody-independent mecha-

nisms. B cells can also secrete various cytokines including IL-13, 

TNF-α, IL-4, interferon-γ, IL-6, and IL-17 [66]. IL-13 and IL-4 are 

related to atopy, a condition that can trigger the first or recur-

rent episodes of NS [67]. 

An increased amount of serum CD23, a marker of B-cell acti-

vation, has been reported in pediatric SSNS [68], and concomi-

tantly increased levels of soluble CD25 (a T-cell activation mark-

er) and soluble CD23 were also observed in pediatric patients 

with SSNS in relapse [69]. These findings suggest a potential 

role for B cells in sustaining T-cell stimulation. Increased levels 

of serum B-cell activating factor and IL-21, which contribute 

to B-cell activation, have been observed in adult patients with 

MCD [70]. In an experimental mouse model, IL-4 secreting B 

cells activated locally in glomeruli could induce proteinuria and 

foot process effacement [71]. Recently, several large transethnic 

genome-wide association studies in large pediatric cohorts, 

including Korean patients, revealed specific risk alleles in the 

HLA region that play a crucial role in antigen presentation to T 

cells [72-74]. Alterations in B cell phenotypes, such as increased 

circulating levels of total B cells and memory B cells, have also 

been observed during the active phase of the disease in chil-

dren with SSNS [63,75,76]. 

These findings suggest that memory B cells play a key role in 

the pathogenesis of pediatric SSNS, and that the reappearance 

of memory B cells can predict relapse following B cell depletion 

therapy in childhood SSNS [63,77]. 

Autoimmunity 

INS has traditionally not been considered an antibody-medi-

ated or autoimmune disease because of the lack of immune 

complex deposits in kidney biopsy specimen. However, Dantal 

et al. [78], in 1998, suggested a pathogenic role for circulating 

antibodies in INS by showing that a permeability factor induc-

ing proteinuria could be an immunoglobulin or be bound to an 

immunoglobulin. Thereafter, several studies have been con-

ducted to detect pathogenic circulating autoantibodies in pa-

tients with INS; findings of these studies include IgM antibodies 

targeting the actin cytoskeleton type in a subset of patients with 

INS with FSGS/mesangial IgM glomerulonephritis [79] and 

autoantibodies against angiotensin 2 receptor in a transplant 

patient with FSGS [80]. In a study among patients with FSGS 

who underwent kidney transplantation, Delville et al. [31] found 

that increased levels of circulating anti-CD40 IgG predicted 

disease recurrence in grafted kidneys, and they detected CD40 

expression in podocytes of the affected kidneys. These antibod-

ies disrupted the actin cytoskeleton of cultured podocytes and 

induced proteinuria (in the presence of recombinant soluble 
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urokinase plasminogen activator receptor) in injected mice. A 

CD40 blocking antibody reversed these effects. 

Recently, more systematic studies have detected circulating 

IgG autoantibodies that target several podocyte proteins in a 

subset of patients with INS (Table 1). In 2018, a French group 

suggested the causative role of autoantibodies against podo-

cyte ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) in the 

development of INS [81]. Plasma samples were obtained from 

85 children with steroid-sensitive INS during relapse or remis-

sion. After plasma fractionation by size exclusion chromatog-

raphy, detachment of cultured podocytes was observed, with 

one IgG-containing fraction from 47% (16 of 34) of patients in 

relapse, 9% of patients in remission, and 0% of controls. Total 

podocyte protein lysates were immunoprecipitated by IgG from 

the plasma fractions, thereby identifying an array of podocyte 

proteins. Subsequent proteomic analyses identified UCHL1 as 

the target podocyte protein, and anti-UCHL1 IgG led to podo-

cyte detachment. The degree of proteinuria correlated with 

the circulating anti-UCHL1 IgG levels at various stages of the 

disease; the plasma levels were significantly higher in patients 

with relapsing INS than in patients in remission and controls. 

Purified patient anti-UCHL1 antibodies induced proteinuria 

and podocyte foot effacement in mice. These findings support 

the causative role of anti-UCHL1 autoantibodies in INS devel-

opment. They also found cell surface expression of UCHL1 on 

podocytes and the presence of urinary anti-UCHL1 antibodies 

in the patients. These findings support the hypothesis that in 

situ formation of surface UCHL1-anti-UCHL1 IgG autoantibody 

complexes results in podocyte detachment and, subsequently, 

the absence of IgG deposits on kidney biopsies in INS. UCHL1, a 

deubiquitinating enzyme, is expressed by podocytes and plays 

a major role in maintaining foot process formation [82]. UCHL1 

is overexpressed in the podocytes of patients with various types 

of glomerulopathies with massive proteinuria, including pri-

mary membranous nephropathy, genetic NS, lupus nephritis, 

and IgA nephropathy, but it is downregulated in MCD [83,84]. 

In 2021, a Chinese group reported that circulating annexin A2 

autoantibodies may be responsible for some cases of childhood 

INS with MCD/FSGS [85]. They first recruited 20 children with 

initial onset of INS before immunosuppressive treatment, and 

the presence of specific IgG-type autoantibodies against podo-

cytes in the sera was verified via mouse podocyte immunoflu-

orescence in 14 of the 20 children. Western blotting and mass 

spectrometry analysis confirmed that annexin A2 was the tar-

get antigen of the IgG-type autoantibody. They then screened 

596 children with INS without genetic mutations and found 

that 106 (17.8%) of them had circulating annexin A2 autoanti-

body in their sera. Autoantibodies were not detected in children 

with other glomerular diseases, such as Henoch–Schonlein 

nephritis, IgA nephropathy, isolated proteinuria, and lupus 

nephritis, or in healthy controls. Renal biopsy was performed 

for 61 of the 106 children (including 33 children with SRNS and 

28 with frequent relapsing NS/steroid dependent NS), which 

revealed MCD or FSGS in all cases. Remission of NS by immu-

nosuppressant therapy was accompanied by decreased levels 

of anti-annexin A2 antibodies in all 30 children observed. They 

also found that IgG4 subtype anti-annexin A2 antibodies, co-lo-

calized with nephrin, was present on the surface of glomerular 

podocytes in kidney biopsy tissue. Intravenous injection of a 

commercial anti-annexin A2 antibody induced podocyte injury 

and proteinuria in BALB/c mice, and addition of anti-annex-

in A2 antibody to podocyte culture media reduced adhesion, 

migration, and phagocytic abilities and destroyed the F-actin 

structure of podocytes. Annexin A2 antibody has been reported 

in patients with lupus nephritis [88], Behçet disease [89], and 

anti-phospholipid antibodies [90]. Annexin A2 is known to play 

an important role in cytoskeletal rearrangement and various 

membrane-related changes in podocytes [91], and this study 

suggests that autoantibodies against annexin A2 could affect 

the rearrangement of podocyte cytoskeleton proteins by re-

Table 1. Studies detecting circulating immunoglobulin G autoantibodies targeting podocyte proteins in patients with idiopathic nephrotic 
syndrome

Study Age and disease of subjects Target protein Detection rate, n/n (%)
Jamin et al. [81] Children with SS-INS UCHL1 16/34 (47)
Ye et al. [85] Children with INS of nongenetic origin Annexin A2 106a)/596 (18)
Ye et al. [86] Children with INS Vinculin and 6 more antigens 199/341 (66)
Watts et al. [87] Children and adults with biopsy-proven MCD Nephrin 18/62 (29)

SS-INS, steroid-sensitive idiopathic nephrotic syndrome; UCHL1, ubiquitin carboxy-terminal hydrolase L1; INS, idiopathic nephrotic syndrome; 
MCD, minimal change disease.
a)33 Children with steroid-resistant nephrotic syndrome.
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acting with annexin A2, thereby causing damage to podocyte 

functions and eventually inducing proteinuria. 

In the same year, the same Chinese group published a sub-

sequent comprehensive paper on the podocyte autoantibody 

spectrum in the sera of patients with INS using two-dimen-

sional electrophoresis and mass spectrometry [86]. They 

detected seven types of podocyte autoantibodies that were 

most related to the onset of NS in the sera of 66% of children 

with INS, of whom 24% were positive for a single autoantibody 

and 42% were positive for multiple autoantibodies in various 

combinations. The most common were autoantibodies against 

vinculin, followed by serine arginine-rich splitting factor 9, pro-

teasome subunit alpha type 1, aconitate hydratase 2, peptidyl 

prolyl cis-trans isomerase D, peroxiredoxin, and F-actin cap-

ping protein subunit beta. The level of podocyte autoantibodies 

above the threshold was positively correlated with the 24-hour 

urinary protein content in the patients, and the antibody level 

was reduced below the threshold with proteinuria remission. 

Based on the results of both studies, the authors suggested a 

novel subgroup of childhood INS with a high level of podocyte 

autoantibodies in their sera—autoimmune podocytopathies 

[86,92]. They also suggested that the absence of immune com-

plex deposits in the glomeruli of this subgroup of patients does 

not preclude the etiology and diagnosis of autoantibody-me-

diated renal disease, as in anti-neutrophil cytoplasmic anti-

body-associated glomerulonephritis. 

Nephrin is an essential structural and functional component 

of the slit diaphragm, and genetic mutations in the NPHS1 gene, 

which encodes nephrin, cause Finnish type congenital NS [93]. 

In animal models, injection of antibodies targeting nephrin 

induces massive proteinuria [94,95]. In addition, alloantibodies 

against nephrin and complete nephrin deficiency may develop 

following kidney transplantation in children with Finnish type 

congenital NS, causing recurrence of proteinuria in the grafted 

kidney [96,97]. In 2022, a Boston group presented further evi-

dence of the autoimmune etiology of INS by detecting circulat-

ing autoantibodies against nephrin in a subset of patients with 

MCD [87]. They evaluated sera obtained from the Nephrotic 

Syndrome Study Network longitudinal cohort study [98] con-

sisting of 41 (66%) children and 21 (34%) adults using an indirect 

enzyme-linked immunosorbent assay, and found that 18 (29%) 

of the 62 patients, with an equal number of adults and children, 

had circulating autoantibodies against nephrin in their sera 

obtained during the active disease state. During complete or 

partial remission of proteinuria, circulating nephrin autoan-

tibodies were completely absent or significantly reduced, re-

spectively. They also found that podocyte-associated punctate 

IgG staining, which specifically co-localized with nephrin, was 

present in a subset of MCD kidney biopsies, and circulating 

autoantibodies against nephrin were exclusively present in 

patients with renal biopsy IgG-positive MCD. They observed 

two predominant patterns of IgG distribution: glomerular 

basement membrane–associated fine punctate or curvilinear 

structures and more apically located punctate and vaguely 

vesicular clusters, with the latter being more common. These 

disparate staining patterns may reflect the different stages of 

antibody binding and/or redistribution. They also encountered 

a girl with steroid-dependent childhood MCD that progressed 

to end-stage kidney disease; she developed post-transplant 

recurrence of massive proteinuria in association with high pre-

transplant circulating autoantibodies against nephrin. 

In 2022, Hada et al. [99] developed a novel mouse model of 

massive proteinuria via active immunization with the recombi-

nant extracellular domain of murine crumb cell polarity com-

plex component 2 (Crb2), an essential slit diaphragm protein 

of the glomerular filtration barrier [100]. Active immunization 

of mice with either a single injection or three injections of re-

combinant Crb2 resulted in the development of circulating 

anti-Crb2 autoantibodies and significant albuminuria 4 weeks 

after the first immunization. The albuminuria persisted for 

up to 29 weeks. The initial kidney pathology findings were 

similar to that of MCD in humans, and interestingly, immuno-

fluorescence microscopic findings revealed delicate punctate 

IgG staining in the glomeruli, which co-localized with Crb2 in 

podocyte foot processes. A subset of mice that were adminis-

tered three injections also developed hematuria, a higher level 

of proteinuria, and histologic features of FSGS after 18 weeks. 

Therefore, NS induced in this mouse model mimics the clinical 

and pathological features of human MCD and FSGS when the 

injury is more severe. Although specific autoantibodies against 

Crb2 have not yet been identified in patients with INS, this is the 

first autoimmune-mediated mouse model of MCD and possi-

bly FSGS, and this model will be very useful in elucidating the 

autoimmune pathogenesis of INS. 

Conclusion 

Although the pathogenesis of INS is not completely under-

stood, it seems likely that INS is an immune-mediated disorder 

caused by a complex interplay between immunoregulatory 
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cells, soluble factors, and podocytes, which may vary between 

patients. Recently, a growing body of evidence has suggested a 

key role of B cells in the pathogenesis of INS, and accordingly, 

a new therapeutic modality using B cell-depleting drugs has 

been attempted with significant effects, at least in a subset of 

patients with INS. A more in-depth investigation of the patho-

genic pathways of INS is required to define precise targets for 

therapeutic intervention and to lead to a more effective per-

sonalized therapeutic approach. 
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