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Objectives. Because climatic and air-pollution factors are known to influence the occurrence of respiratory diseases, we 
used these factors to develop machine learning models for predicting the occurrence of respiratory diseases. 

Methods. We obtained the daily number of respiratory disease patients in Seoul. We used climatic and air-pollution factors 
to predict the daily number of patients treated for respiratory diseases per 10,000 inhabitants. We applied the relief-
based feature selection algorithm to evaluate the importance of feature selection. We used the gradient boosting and 
Gaussian process regression (GPR) methods, respectively, to develop two different prediction models. We also em-
ployed the holdout cross-validation method, in which 75% of the data was used to train the model, and the remain-
ing 25% was used to test the trained model. We determined the estimated number of respiratory disease patients by 
applying the developed prediction models to the test set. To evaluate the performance of each model, we calculated 
the coefficient of determination (R2) and the root mean square error (RMSE) between the original and estimated 
numbers of respiratory disease patients. We used the Shapley Additive exPlanations (SHAP) approach to interpret 
the estimated output of each machine learning model.

Results. Features with negative weights in the relief-based algorithm were excluded. When applying gradient boosting to 
unseen test data, R2 and RMSE were 0.68 and 13.8, respectively. For GPR, the R2 and RMSE were 0.67 and 13.9, re-
spectively. SHAP analysis showed that reductions in average temperature, daylight duration, average humidity, sulfur 
dioxide (SO2), total solar insolation amount, and temperature difference increased the number of respiratory disease 
patients, whereas increases in atmospheric pressure, carbon monoxide (CO), and particulate matter ≤2.5 µm in aero-
dynamic diameter (PM2.5) increased the number of respiratory disease patients.

Conclusion. We successfully developed models for predicting the occurrence of respiratory diseases using climatic and air-
pollution factors. These models could evolve into public warning systems.  
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INTRODUCTION

The unprecedented pandemic of coronavirus disease 2019 (CO-
VID-19), a respiratory disease, continues to challenge the human 
race. Owing to the significant impact of COVID-19 on human 
health and social economies across the globe, research on respi-
ratory diseases is becoming more important. Numerous studies 
have explored the influence of climatic and air-pollution factors 
on the occurrence of respiratory diseases. However, studies on 
methods of predicting the occurrence of respiratory diseases that 
integrate climatic and air-pollution factors are rare. Identifying 
the factors related to the occurrence of respiratory diseases and 
predicting the occurrence of respiratory diseases makes it possi-
ble to control respiratory disease risk factors or formulate respi-
ratory disease preventive measures. For instance, reducing out-
door activities or wearing masks may be suggested to the public 
as approaches for reducing the occurrence of respiratory diseases 
during high-risk periods, thereby significantly contributing to the 
improvement of human health and global socio-economic con-
ditions. The respiratory tract contains organs that are in direct 
contact with the atmosphere and are affected by climatic and 
air-pollution factors, which are known to be closely related to 
the occurrence of respiratory diseases because they affect the 
respiratory system or the survival and transmission of pathogens 
that cause respiratory infections [1,2]. Therefore, in this study, we 
hypothesized that climatic and air-pollution factors can be used 
to develop machine learning models for predicting the occurrence 
of respiratory diseases. 

Machine learning models have shown the potential to predict 
the occurrence or the prognosis of clinical diseases, such as in-
fluenza-like illnesses or stroke [3,4]. For the occurrence of respi-
ratory diseases, there exist a few previous studies that applied 
machine learning to produce forecasting models using air-pollu-
tion factors. Long short-term memory, which is a type of artifi-
cial recurrent neural network, was applied to analyze the lag ef-
fect of fine particles (particulate matter ≤2.5 µm in aerodynam-
ic diameter [PM2.5]) on the frequency of hospital emergency vis-
its for respiratory diseases [5]. A multilayer perceptron using lev-

els of particulate matter (PM2.5 and PM10) was also proposed for 
predicting outpatient visits for upper respiratory tract infections 
[6]. However, those models only considered particulate pollution 
without climatic and other air-pollution factors, such as nitrogen 
dioxide (NO2), carbon monoxide (CO), or sulfur dioxide (SO2). 
In this study, climatic factors, such as temperature or humidity, 
and more air-pollution data were applied as the input features of 
the models. Gradient boosting and Gaussian process regression 
(GPR) models, which have been successfully applied to forecast-
ing in time series analyses using multivariate data, were adopted 
to predict the occurrence of respiratory diseases [7,8]. Moreover, 
the positive or negative contribution of each input to the model’s 
predicted outcome was analyzed using the Shapley Additive ex-
Planations (SHAP) approach, which is commonly used as a meth-
od for interpreting machine learning models [9].

The National Health Insurance Service (NHIS) of South Korea 
is available to all citizens. When citizens enrolled in the NHIS re-
ceive medical treatment, diagnosis-related information is stored 
in a central database. Therefore, this information can be used to 
estimate the occurrence of diseases. The NHIS provides data on 
the daily number of patients treated for respiratory diseases, 
which are common in South Korea. We used this information to 
determine the climatic and air-pollution factors that influence 
the occurrence of respiratory diseases, after which we developed 
models for predicting the occurrence of respiratory diseases. To 
analyze an area affected by similar climatic and air-pollution fac-
tors, the study area was limited to Seoul, the capital city of South 
Korea, with a population of 10 million. We obtained the daily 
number of patients treated for respiratory diseases in Seoul and 
the levels of climatic and air-pollution factors from 2014 to 2019. 
Considering that very few countries have such insurance systems, 
our research is significantly valuable.

MATERIALS AND METHODS

Study population and preprocessing
This study was approved by the Institutional Review Board of 
Chung-Ang University Hospital (IRB No. 2140-001-457). The 
written informed consent requirement was waived for this study 
because anonymized data were used. All research was per-
formed in accordance with the tenets of the Declaration of Hel-
sinki. The study period was from January 1, 2014, to December 
31, 2019. Daily numbers of patients treated for respiratory dis-
eases per 10,000 inhabitants in Seoul during the study period 
were collected from the NHIS data, as shown in Fig. 1. Seoul’s 
daily climatic and air-pollution factors during the study period 
were collected. 

Because the daily number of patients treated for respiratory 
diseases was analyzed in this study, it was expected that the num-
ber of patients would decrease on holidays, including Sundays 
and public holidays, when most medical institutions are not in 

	� We developed machine-learning models to predict the occur-
rence of respiratory diseases.

	� Climatic and air-pollution factors were used as the input fea-
tures of the models.

	� The models were developed using gradient boosting and 
Gaussian process regression (GPR) methods.

	� For gradient boosting, the R2 and root mean square error val-
ues were 0.68 and 13.8, respectively. 

	� For GPR, the R2 and root mean square error values were 0.67 
and 13.9, respectively.
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operation. On the other hand, it was expected that the number 
of patients would increase on the days immediately after holidays. 
If this hypothesis is correct, the numbers of patients on holidays 
and on the day immediately after holidays should be excluded 
to assess the actual impact of climatic and air-pollution factors 
on respiratory disease occurrence. To confirm this hypothesis, the 
number of patients treated for respiratory diseases per 10,000 
inhabitants was divided into three groups: holidays, days after 
holidays, and regular days. The three groups were then compared 
to each other using one-way analysis of variance (ANOVA) fol-
lowed by the Bonferroni post-hoc test. After this step, the 7-day 
moving averaging of input features was applied to reflect the cu-
mulative effect of climatic and air-pollution factors on respiratory 
diseases [10]. Statistical analyses were performed using the IBM 
SPSS ver. 21.0 (IBM Corp., Armonk, NY, USA). 

Respiratory diseases
In South Korea, after a patient is treated in a hospital, Korean 
Classification of Diseases (KCD) codes are assigned to each pa-
tient according to the diagnosis. KCD codes are based on the 
tenth edition of the International Classification of Diseases. By 
analyzing the KCD codes, the number of patients treated for a 
specific disease in South Korea can be identified. NHIS provides 
data on the daily number of patients treated for the following 
respiratory diseases, with the primary diagnosis under the fol-
lowing KCD codes, which are diagnosis codes for common re-
spiratory diseases in South Korea: acute nasopharyngitis (J00), 
acute sinusitis (J01), acute pharyngitis (J02), acute tonsillitis (J03), 
acute laryngitis or tracheitis (J04), acute upper respiratory infec-
tions (J06), bronchopneumonia (J18), acute bronchitis (J20), acute 
bronchiolitis (J21), acute lower respiratory infections (J22), va-

somotor or allergic rhinitis (J30), chronic rhinitis, nasopharyngi-
tis, or pharyngitis (J31), chronic sinusitis (J32), disorders of nose 
and nasal sinuses (J34), peritonsillar abscess (J36), and bronchi-
tis (J40). These data are posted on the Public Data Portal website 
operated by the Korea Information Society Agency (https://www. 
data.go.kr/). The total populations in Seoul by year were obtained 
from the Seoul Metropolitan Government website (http://data.
seoul.go.kr/dataList/419/S/2/datasetView.do). The daily numbers 
of patients treated for the respiratory diseases mentioned above 
per 10,000 inhabitants were calculated from January 1, 2014, to 
December 31, 2019.

Climatic and air-pollution factors
Climatic factors, including average temperature (°C), temperature 
difference (°C), average humidity (%), daylight duration (hr), 
sunshine duration (hr), total solar insolation amount (MJ/m2), 
atmospheric pressure (hPa), precipitation (mm), and cloud amount 
(cloud covered area, expressed as 10 fractions of the entire sky), 
in Seoul were collected daily from the Korea Meteorological 
Administration Weather Data Service website, which is operated 
by the Korea Meteorological Administration (http://www.kma.
go.kr/eng/index.jsp). Seoul’s daily air-pollution indicators, includ-
ing the levels of PM2.5, particulate matter ≤10 μm in aerodynamic 
diameter (PM10), ozone (O3), NO2, CO, and SO2, were also ex-
tracted throughout the study period from the Seoul atmospheric 
environment information website operated by the Seoul Metro-
politan Government (https://cleanair.seoul.go.kr/2020/statistics/
dayAverage). As the levels of O3, NO2, CO, and SO2 were lower 
than 1 ppm, a unit of ppb was used to facilitate the determina-
tion of the effect of air-pollution factors on the number of respi-
ratory disease patients.

Machine learning model development
Fig. 2 shows the overall procedure for the development of the 
prediction models in this study. First, the relief-based algorithm 
for regression was applied to evaluate the importance of feature 
selection. The relief algorithm is based on an instance-based 
learning approach, and it provides statistical relevance of input 
features to the target response [11]. Features with negative weights 
were excluded in this step. 

Next, two different prediction models were developed using 
gradient boosting and GPR methods, respectively. Gradient boost-
ing is a supervised machine learning technique based on decision 
trees, and it combines weak prediction models into a single strong 
learner in an iterative framework. At every step, the algorithm 
fits the difference between the observed response and the aggre-
gated prediction of all previous learners by minimizing the mean- 
squared error. In this study, the minimum leaf size and the num-
ber of learners were optimized during model training. This boost-
ing method provides not only the accuracy comparable to other 
classical methods, such as support vector machine, but also the 
interpretability of a machine learning model [12]. 

Fig. 1. Daily numbers of patients treated for respiratory disease (RD) 
per 10,000 inhabitants in Seoul from January 1, 2014, to December 
31, 2019. The green dots indicate holidays, the blue dots, the days 
after holidays, and black dots, regular weekdays.
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GPR is a non-parametric Bayesian algorithm that is popularly 
applied to prediction in time series data [13]. The probabilistic 
GPR model is a predictive variance under Gaussian assumptions, 
which is that data points with similar input values tend to be close 
in the output space, i.e., similarity [14]. Thus, the GPR model is 
defined using the covariance function, i.e., kernel, and its hyper-
parameters, which specify the effect of input changes on the out-
put [15]. In other words, the kernel determines how the response 
at one point is affected by responses at other points. In this study, 
the exponential kernel containing the signal standard deviation 
(σf) and the characteristic length scale (σl) was optimized during 
model training. The characteristic length scale can be different 
for each predictor during the optimization process. For two dif-
ferent predictor values xi and xj (i≠j, i=1, 2, ..., n), the basic ex-
ponential kernel with parametrization vector θ is defined as fol-
lows:

(1)

where r represents the Euclidean distance between xi and xj.
The sparse GPR using a regressor approximation subset was 

also evaluated to investigate change in prediction performance. 
The temporal validation splitting data into temporal folds was 
performed, which has generally been applied to time series fore-
casting [14,16,17]. In the present study, the first 75% of the data 
from 2014 to the first half of 2018 was used as the training data 
for model development. In this model training session, holdout 
validation was performed using 30% of the training data. Then 
the trained model was prospectively evaluated with the more 

recent remaining 25% of data, which is the unseen data between 
the latter part of 2018 and 2019.

Bayesian optimization was applied to select the hyperparam-
eters of the machine learning models. The estimated numbers of 
respiratory disease patients were calculated by applying the de-
veloped prediction models to the test set. Machine learning mod-
el development was performed using MATLAB R2020a (Math-
works, Natick, MA, USA). The coefficient of determination (R2) 
and root mean square error (RMSE) between the original and 
estimated numbers of respiratory disease patients were calculated 
for each model to evaluate the performance. The R2 and RMSE 
are defined as follows:

(2)

(3)

where yi represents the predicted number of respiratory disease 
patients,  represents the actual number of respiratory disease 
patients, and  represents the mean value of the actual number 
of respiratory disease patients. 

Finally, SHAP was used to interpret the estimated output of 
each machine learning model [9]. SHAP is an approach for ex-
plaining the contribution of a specific input to the prediction. This 
method is based on the Shapley values from coalitional game 
theory, which is the average marginal contribution across all pos-
sible coalitions [18]. In this study, a SHAP Python package using 
the TreeSHAP algorithm for decision tree-based models, such as 
random forests and gradient boosted trees, was adopted along 
with XGBoost, which is an efficient implementation of a gradi-
ent boosting model for Python [19]. 

RESULTS

The daily numbers of patients treated for respiratory diseases as 
well as the climatic and air-pollution factors are listed in Supple-
mentary Table 1. In the preprocessing step, one-way ANOVA 
confirmed significant differences between the three different day 
groups (F(2, 2243)=1,287.4, P<0.001). Bonferroni post hoc test-
ing revealed that the number of respiratory disease patients on 
holidays (12.8±10.1) was significantly lower than that on regu-
lar days (78.3±22.9, P<0.001). Conversely, the number of re-
spiratory disease patients on days after holidays (112.5±32.0) 
was significantly higher than that on regular days (P<0.001). 
Thus, data from holidays and the days after holidays were ex-
cluded from further analysis. 

Fig. 3 shows the results of the relief-based feature selection al-
gorithm after applying the 7-day moving average to the input 
features. Three climatic factors (cloud amount, precipitation, and 
sunshine duration) and one air-pollution factor (O3) that showed 

Fig. 2. The overall procedure for the development of the machine 
learning (ML) prediction models. The training and test sessions with 
hyperparameter optimization were performed after data preprocess-
ing and feature selection, after which Shapley Additive exPlanations 
(SHAP)-based interpretation for the developed models was per-
formed.  

Preprocessing
(regular days selection and 7-day averaging of input features)

Relief-based feature selection

ML model training
(hyperparameter optimization w/first 75% of total data)

ML model test
(prediction using the remaining unseen 25% of data)

ML model explanation (SHAP)
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Fig. 3. The results of the relief-based feature selection algorithm for 15 climatic and air-pollution factors. Higher feature weights indicate higher 
importance for the target response. 
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negative weights were excluded from the input features during 
the model development process.

Fig. 4 shows the prediction results of the daily number of re-
spiratory disease patients using unseen test data. The gradient 
boosting and GPR methods demonstrated similar performance 
after hyperparameter optimization. When applying gradient boost-
ing with a minimum leaf size of 30 and the number of learning 
cycles at 100, the R2 and RMSE values were 0.68 and 13.8, re-
spectively. For GPR using an exponential kernel with a signal 
standard deviation of 13 and a customized length scale for each 
predictor, the R2 and RMSE values were 0.67 and 13.9, respec-

tively. For sparse GPR using a regressor approximation subset, 
the R2 and RMSE values were 0.64 and 14.3, respectively.

Fig. 5 shows the results of SHAP analysis. The value for each 
input feature represents the summation of absolute Shapley val-
ues across the data. Larger values indicate higher global impor-
tance in terms of feature contribution. As shown in Fig. 5A, the 
top four features with stronger influences on the occurrence of 
respiratory diseases among patients were all climatic factors: av-
erage temperature, daylight duration, average humidity, and at-
mospheric pressure. They were followed by SO2, total solar inso-
lation amount, CO, PM2.5, and others. Fig. 5B shows the SHAP 

Fig. 5. Shapley Additive exPlanations (SHAP) feature importance (A) and summary plot (B). The SHAP feature importance (i.e., the mean ab-
solute Shapley values) for the gradient boosting model. In the SHAP summary plot, the features on the Y-axis are ordered based on their im-
portance. The color bars indicate the amplitudes of feature values from low to high. Overlapping points are stacked in the Y-axis directions of 
both images to show the distribution of the Shapley values for each feature. Reductions in average temperature, daylight duration, average 
humidity, sulfur dioxide (SO2), total solar insolation amount, and temperature difference increased the number of respiratory disease patients, 
whereas increases in atmospheric pressure, carbon monoxide (CO), and particulate matter ≤2.5 µm in aerodynamic diameter (PM2.5) in-
creased the number of respiratory disease patients. NO2, nitrogen dioxide; PM10, particulate matter ≤10 µm in aerodynamic diameter.
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summary plot, which explains the effect of each feature on the 
prediction results. Each point represents a Shapley value for a 
feature and an instance, and its color indicates the amplitude from 
low to high. According to the relationships demonstrated by the 
SHAP summary plot, reductions in average temperature, daylight 
duration, average humidity, SO2, total solar insolation amount, 
and temperature difference increased the number of respiratory 
disease patients, whereas increases in atmospheric pressure, CO, 
and PM2.5 increased the number of respiratory disease patients. 
No distinct trend was established for PM10 and NO2.

DISCUSSION

In this study, we proposed gradient boosting- and GPR-based 
machine learning models for predicting the occurrence of respi-
ratory diseases using climatic and air-pollution factors. Both mod-
els demonstrated competitive prediction performance, with R2 
values of over 0.67 and RMSE values below 13.9 per 10,000 in-
habitants. It is noteworthy that the prediction performance was 
evaluated using totally unseen data (the latter part of 2018 and 
2019) that were not used in the training stage.

Regarding the effect of each factor on the occurrence of respi-
ratory diseases, reductions in average temperature, average day-
light duration, total solar insolation amount, humidity, SO2, and 
temperature difference increased the number of respiratory dis-
ease patients. In contrast, increases in atmospheric pressure, CO, 
and PM2.5 increased the number of respiratory disease patients. 
Most of the respiratory diseases included in this study were in-
fectious diseases, although some allergic diseases were included 
as well. In the case of infectious diseases, climatic and air-pollu-
tion factors influence the occurrence of respiratory infections in 
two major ways. First, they can influence the incidence of respi-
ratory infections by affecting the survival, proliferation, and dis-
semination of pathogens that cause respiratory infections. Average 
temperature and humidity can influence the incidence of respi-
ratory infections in this way. For instance, respiratory syncytial 
virus, which is a virus that induces respiratory infections, is sig-
nificantly active at low temperatures because low temperatures 
make the lipid envelope of the virus highly resistant to degrada-
tion, thereby making the virus more stable in secretions through 
which it is transmitted [1,20]. In addition, as temperature de-
creases, the indoor life increases, thereby making virus transmis-
sion easier [20]. Therefore, reductions in average temperature 
would increase the incidence of respiratory infections. Humidity 
has also been reported to affect the transmission of pathogens. 
Ward et al. [21] reported that the lower the humidity, the small-
er the pathogenic droplets discharged during coughing or sneez-
ing, and the smaller the droplet size, the longer a pathogen re-
mains in the air, making it easier for the pathogen to spread to 
the surroundings. These patterns are consistent with our findings.

Second, climatic and air-pollution factors can influence the 

development of respiratory infections by affecting the respiratory 
defense system [22]. Climatic factors, such as humidity, average 
daylight duration, and total solar insolation amount, can influ-
ence the occurrence of respiratory infections in a similar manner. 
Dry air reduces the ability of respiratory epithelial cells to repel 
viral particles, thereby suppressing the body’s defense against 
pathogens [23]. Therefore, the lower the humidity, the more sus-
ceptible the body is to respiratory infections. This pattern is con-
sistent with our findings. There exist few studies on the associa-
tion between sunlight and respiratory infections. Ferrari et al. [24] 
reported that sunlight prevents the deterioration of chronic ob-
structive pulmonary disease. Schwarz and Schwarz [25] suggest-
ed that sunlight can protect the respiratory tract by reducing in-
flammatory responses in the respiratory tract. Through this mech-
anism, sunlight may have a protective effect on the occurrence 
of respiratory infections, which is consistent with our results. Air 
pollutants are also known to weaken the body’s defense against 
pathogens, which has been reported in South Korea [26,27]. Ex-
posure to air pollutants results in free radicals in the respiratory 
tract. Free radicals damage the respiratory tract and weaken the 
body’s defense against pathogens [22]. The effect of PM2.5 on the 
occurrence of respiratory infections has been reported in many 
studies [28,29]. Croft et al. [28] studied 500,000 adults diagnosed 
with influenza, bacterial pneumonia, or culture-negative pneu-
monia in New York and reported that the incidence of culture-
negative pneumonia and influenza was associated with an increase 
in PM2.5 concentrations over the previous weeks. These results 
are consistent with our findings. The effect of CO on the occur-
rence of respiratory infections has also been reported in several 
studies [30]. In these studies, the researchers reported that in-
creased concentrations of CO resulted in an increase in the oc-
currence of respiratory infections. These results are also consis-
tent with our findings. 

Climatic and air-pollution factors are known to influence re-
spiratory allergic diseases, including allergic rhinitis. In particular, 
it has been reported that cold weather worsens respiratory symp-
toms in allergic rhinitis [31-33]. Among air pollutants, PM2.5 has 
been reported to increase the prevalence of allergic rhinitis [34,35]. 
These results are also consistent with our findings.

In this study, we established that the occurrence of respiratory 
diseases decreased as the levels of SO2 increased. This is a differ-
ent trend from that reported in previous studies, in which an in-
crease in the concentration of SO2 levels resulted in an increased 
occurrence or exacerbation of respiratory diseases [30]. However, 
trends similar to our findings were observed in some previous 
studies. Nhung et al. [36] reported that an increase in SO2 con-
centration levels was associated with a shorter hospital stay 
among children with acute lower respiratory tract infections in 
single-pollutant models. Zhu et al. [37] investigated the relation-
ship between SO2 concentration levels and daily confirmed cases 
of COVID-19 and reported that SO2 levels were negatively cor-
related with the number of confirmed cases per day. This is pre-
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sumably a result of the interaction between SO2 and other air 
pollutants as well as the differences in SO2 concentration levels 
depending on the study areas. For the SO2 concentration levels 
in Seoul, which are covered in our study, the maximum concen-
tration level was 14 ppb. This is much lower than 50 ppb, which 
is the limit of SO2 concentration allowed by the South Korean 
government. Therefore, it is difficult to evaluate the effect of SO2 
concentration levels on the occurrence of respiratory diseases 
using our data. 

The effect of atmospheric pressure on the occurrence of respi-
ratory diseases has yet to be studied extensively. However, a few 
studies have reported a positive correlation between hospitaliza-
tions resulting from lower respiratory tract infections and atmo-
spheric pressure [38,39]. This pattern is consistent with our find-
ings. However, the mechanism behind this phenomenon remains 
to be elucidated, and further research is required. In this study, 
we established that the smaller the temperature difference, the 
higher the incidence of respiratory diseases. However, looking at 
the results of the SHAP analysis, it is difficult to consider this a 
meaningful result because the effect of the temperature differ-
ence was insignificant.

There are several limitations of our study. First, as this study 
used the daily number of respiratory disease patients provided 
by NHIS, personal information such as age, sex, body mass in-
dex, and past medical history were not considered. Second, this 
study only used data from the urban area of Seoul for analysis. 
Different regions have different climatic factors and degrees of 
air pollution. Therefore, we determined that there are differences 
in the main factors affecting the occurrence of respiratory diseas-
es. Because the respiratory disease prediction model developed 
in this study used data from Seoul, which is a large city, we be-
lieve that there is a limit to its application in rural areas or areas 
with different climatic characteristics. Further studies on more 
regions, including rural areas or areas with different climatic char-
acteristics, are required. Regarding the non-parametric GPR em-
ployed in this study, the expensive computation due to matrix 
inversions is a major limitation. The current number of data points 
(less than 2,000) in this study does not cause serious computa-
tional constraints. However, as data accumulates and a large da-
taset is established, computational bottlenecks can occur. To ad-
dress this problem, compressive methods using only a subset of 
the regression model or dimensional reduction of the data could 
be applied to larger datasets [40]. Moreover, the prediction per-
formance could be improved by addressing the unrealistic assump-
tions of GPR. The combinatorial method of covariance functions 
using both spatial and temporal data inputs has been proposed 
as a possible solution when real-world data is used [14]. Similar-
ly, non-stationary and periodic behaviors of the time series of 
respiratory diseases and the dependence on climate and air-pol-
lution factors can be combined to improve the prediction per-
formance.

We successfully developed machine learning models for pre-

dicting the occurrence of respiratory diseases using climatic and 
air-pollution factors. In the future, these models could evolve into 
systems for warning the public by predicting the occurrence of 
respiratory diseases. In addition, these models could also be used 
to prevent the occurrence of respiratory diseases by aiding in the 
control of risk factors.
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