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INTRODUCTION

Idiopathic sudden sensorineural hearing loss (ISSNHL) refers to 
rapid-onset hearing loss of more than 30 dB at least three con-
secutive frequencies within 72 hours [1-3]. This disease is a com-
mon otologic emergency, with an estimated incidence and prev-
alence of 10–20 per 100,000 person years and 5–160 per 100,000 
person years, respectively [1,2]. Although the exact etiology and 
pathogenesis of ISSNHL remain ambiguous, viral disease and 
vascular compromise have been strongly suggested as causes. In 
addition, retrocochlear lesions such as vestibular schwannoma 
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Objectives. Prognosticating idiopathic sudden sensorineural hearing loss (ISSNHL) is an important challenge. In our study, 
a dataset was split into training and test sets and cross-validation was implemented on the training set, thereby deter-
mining the hyperparameters for machine learning models with high test accuracy and low bias. The effectiveness of 
the following five machine learning models for predicting the hearing prognosis in patients with ISSNHL after 1 
month of treatment was assessed: adaptive boosting, K-nearest neighbor, multilayer perceptron, random forest (RF), 
and support vector machine (SVM).

Methods. The medical records of 523 patients with ISSNHL admitted to Korea University Ansan Hospital between January 
2010 and October 2017 were retrospectively reviewed. In this study, we analyzed data from 227 patients (recovery, 
106; no recovery, 121) after excluding those with missing data. To determine risk factors, statistical hypothesis tests 
(e.g., the two-sample t-test for continuous variables and the chi-square test for categorical variables) were conducted 
to compare patients who did or did not recover. Variables were selected using an RF model depending on two criteria 
(mean decreases in the Gini index and accuracy).

Results. The SVM model using selected predictors achieved both the highest accuracy (75.36%) and the highest F-score 
(0.74) on the test set. The RF model with selected variables demonstrated the second-highest accuracy (73.91%) and 
F-score (0.74). The RF model with the original variables showed the same accuracy (73.91%) as that of the RF model 
with selected variables, but a lower F-score (0.73). All the tested models, except RF, demonstrated better perfor-
mance after variable selection based on RF. 

Conclusion. The SVM model with selected predictors was the best-performing of the tested prediction models. The RF 
model with selected predictors was the second-best model. Therefore, machine learning models can be used to pre-
dict hearing recovery in patients with ISSNHL.
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and strokes should be considered [3,4]. Because ISSNHL is di-
agnosed only by describing the symptoms of hearing loss, re-
gardless of the cause, treatment methods are inevitably diverse. 
Despite the lack of standardized treatment guidelines for 
ISSNHL, steroid therapy—including systemic, intratympanic, or 
both in combination—is widely accepted as the most effective 
option [3-5]. Numerous prognostic factors have also been iden-
tified in recent years, including age, duration from onset to treat-
ment, initial hearing level, vertigo/dizziness, smoking, alcohol 
use, and blood test parameters [4,6]. Based on these diverse 
prognostic factors, the ability of various models to prognosticate 
ISSNHL has been studied. In addition to traditional statistical 
techniques such as multiple-regression and logistic-regression 
(LR) models, researchers have attempted to predict the progno-
sis of ISSNHL using Bayesian cure-rate models [7-10]. Recently, 
some researchers have applied various machine learning tech-
niques [1,11]. 

In a previous report, several machine learning models, includ-
ing LR, support vector machines (SVMs), multilayer perceptrons 
(MLPs), and deep-belief networks (DBN), were applied to pre-
dict the hearing outcomes of sudden sensorineural hearing loss 
[1]. The sample size of that study was 1,220, and 149 variables 
were analyzed. For variable selection, the study utilized the re-
sults of univariate statistics (P<0.05) and expert knowledge [1]. 
In the present study, the effectiveness of five potential machine 
learning models (K-nearest neighbor [KNN], random forest [RF], 
SVM, adaptive boosting [AdaBoost], and MLP) for predicting 
hearing recovery in ISSNHL patients was investigated. The sam-
ple size of our study was 227, and 32 variables were. Furthermore, 
we conducted variable selection based on an RF algorithm and 
medical domain knowledge. This study aimed to assess the effec-
tiveness of predicting hearing recovery in patients with ISSNHL 
after 1 month of treatment using the five aforementioned ma-
chine learning models.

MATERIALS AND METHODS

Study population 
We performed a retrospective study of in-patients admitted to 
Korea University Ansan Hospital for treatment of ISSNHL. We 
inspected 523 unilateral ISSNHL patients enrolled from January 

2010 to October 2017. In this study, we analyzed the hearing 
improvement after 1 month of treatment for 227 patients with 
all variables analyzed. The diagnostic criteria for ISSNHL includ-
ed sudden hearing loss (30 dB or more) for at least three contig-
uous frequencies over 3 days. We evaluated their entire medical 
history, laboratory examinations, and audiologic results. Exclu-
sion criteria were: (1) bilateral ISSNHL, (2) conductive hearing 
loss >10 dB, (3) vestibular schwannoma, and (4) data with miss-
ing values. 

All included patients were hospitalized and treated using sys-
temic steroids (e.g., methylprednisolone 64 mg, tapering for 14 
days or dexamethasone 5 mg intravenously three times/day for 
5 days and then tapered over 7 days) with/without intratympan-
ic dexamethasone injection (ITDI; 1–4 times). During the initial 
hospital day, each patient underwent a pure-tone audiogram, which 
was then repeated posttreatment 1 month later. We measured 
hearing thresholds at 0.125, 0.25, 0.5, 1, 2, 3, 4, and 8 kHz. Sie-
gel’s criteria were classified as follows: (1) complete recovery in-
cluded final hearing levels better than 25 dB, (2) partial recovery 
was >15-dB gain and final hearing levels between 25 and 45 dB, 
(3) slight recovery was >15-dB gain and final hearing poorer than 
45 dB, and (4) no improvement was <15-dB gain, or final hear-
ing poorer than 75 dB [12]. 

In this study, patients with hearing gains of at least “partial re-
covery” based on Siegel’s criteria, i.e., complete recovery and 
partial recovery were considered to be the recovery group. Pa-
tients under the “slight recovery” classification according to Sie-
gel’s criteria were regarded as the no-recovery group. This study 
obtained the approval of the Institutional Review Board at Korea 
University Ansan Hospital (IRB. No. 2018AS0044). The overall 
procedure of this study is shown in Fig. 1.

Original variables and variable selection 
The original number of variables was 32 (31 predictors and 1 
response), as extracted from demographic data, medical records, 
inner-ear symptoms, pure-tone audiometry, and laboratory data. 
Hearing improvements after 1 month of treatment were based 
on Siegel’s criteria, which considered patients under complete 
recovery and partial recovery as the recovery group (positive in 
classification). The others were the no-recovery group (negative 
in classification). In detail, there were 11 independent categorical 
variables: sex, smoking status, hypertension, diabetes mellitus, 
hyperlipidemia, stroke, chronic kidney disease, myocardial in-
farction/angina, dizziness, tinnitus, and timing of ITDI. The cate-
gorical variables were mostly binary variables with “yes/no” val-
ues. The timing of ITDI was classified into three conditions: nev-
er (0), 0–12 days from onset (1), and more than 13 days from 
onset (2). The smoking status was divided into three conditions: 
never (0), current (1), and ex-smoker (2). Then, the timing of ITDI 
and smoking statuses were changed to binary variables having 
the same number of classes for KNN and MLP. Additionally, 
there were 20 independent continuous variables, including age 

	� The prognosis of idiopathic sudden sensorineural hearing loss 
can be predicted using machine learning.

	� A support vector machine model with selected predictors was 
the best-performing model.

	� All tested models, except a random forest, exhibited better 
performance with selected predictors. 
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at time of diagnosis, pack-year for smoking, systolic blood pres-
sure, diastolic blood pressure, duration from onset to treatment 
(day), hemoglobulin, erythrocyte sedimentation rate, activated 
partial thromboplastin time (aPTT), blood urea nitrogen (BUN), 
creatinine (Cr), initial hearing by frequency (0.125, 0.25, 0.5, 1, 
2, 3, 4, and 8 KHz), prothrombin time (PT) result (second), and 
PT result (%). All continuous variables were scaled into a range 
between 0 and 1 via min–max scaling to fairly compare the five 
machine learning algorithms. Because KNN and MLP are very 

sensitive to scaling, it was necessary to scale the data. In this study, 
we used variable selection to improve the predictive performance 
for hearing recovery. 

For variable selection using a RF, mean decrease accuracy and 
Gini were used [13]. The greater the decrease in the accuracy of 
RF after a permutation of a specific variable, the more important 
that variable [13]. Therefore, variables with a large mean decrease 
in accuracy were more important when predicting hearing out-
come. However, RF is based on Gini, which is a splitting criterion. 

Fig. 1. Flowchart detailing patient inclusion and exclusion. ISSNHL, idiopathic sudden sensorineural hearing loss; RF, random forest; SVM, sup-
port vector machine; MLP, multilayer perceptron; KNN, K-nearest neighbor; AdaBoost, adaptive boosting.
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Fig. 2. Variable selection by a random forest (RF) using mean decreases in accuracy and the Gini index, according to which the importance 
score of each variable was calculated. The top five variables for each criterion, excluding initial hearing by frequency (0.125, 0.25, 0.5, 1, 2, 3, 
4, and 8 KHz), were included and applied in the five machine learning models. BUN, blood urea nitrogen; ITDI, intratympanic dexamethasone 
injection; MI, myocardial infarction; Hb, hemoglobulin; CKD, chronic kidney disease; ESR, erythrocyte sedimentation rate; PT, prothrombin time; 
Cr, creatinine; aPTT, activated partial thromboplastin time.
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When a decrease in Gini is significant, the parent node is split 
into two child nodes. Therefore, to evaluate the importance of a 
specific variable, the mean decrease of Gini can be calculated for 
all decision trees in an RF. The greater the mean decrease of Gini, 
the more important the variable when predicting a hearing out-
come [13]. When training an RF with 1,000 trees and six vari-
ables at random, the variable importance score is calculated ac-
cording to the mean decrease accuracy and mean decrease Gini, 
as shown in Fig. 2. 

The top five variables, excluding initial hearing by frequency 
(0.125, 0.25, 0.5, 1, 2, 3, 4, and 8 KHz) in each criterion, are in-
cluded, and all values for initial hearing by frequency are includ-
ed. As a result, the 15 variables, including initial hearing by fre-
quency, BUN result, timing of ITDI, duration from onset to treat-
ment (days), dizziness, age of onset, Cr result, and aPTT result 
are shown in Fig. 2. Additionally, original variables and selected 
variables were applied to the five machine learning models to 
compare the effect on the performance of the two sets of vari-
ables in predicting hearing outcome after 1 month of treatment.

Statistical analysis methods and model development 
A total of 523 enrolled ISSNHL patients were admitted between 
January 2010 to October 2017. The number of missing data points 
for each variable varied, especially for recovery status, which had 
the most missing data because of follow-up losses. Therefore, we 
implemented a complete deletion method using a rule in which 
patients having at least one missing value in variables were ex-
cluded. As a result, we obtained 227 patients in total, 106 for the 
recovery group and 121 for the no-recovery group. All statistical 
hypothesis tests were two-sided. Statistical tests were implement-
ed using R v.3.5.0 (The R Foundation, Vienna, Austria). In this 
study, to inspect the differences among groups with recovery and 
those with no recovery, two-sample t-tests were used for the con-
tinuous random variables and chi-square or Fisher’s exact tests 
for the categorical random variables. The difference was consid-
ered statistically significant at a two-tailed P-value of less than 
0.05. According to our results, initial hearing by frequency (0.125, 
0.25, 0.5, 1, 2, 3, 4, and 8 KHz), age on onset, BUN result, hy-
pertension, dizziness, and the timing of ITDI, turned out to be 
statistically significantly different between the recovery and no-
recovery groups under a significance level of 0.05. The statistical 
test results are listed in Table 1. 

We split the data (n=227) into training and test sets. The ratio 
of the sizes of the training set and test set was 7 to 3, respective-
ly, which resulted in a training set with a sample size of 158 and 
a test set with a sample size of 69. We then evaluated five differ-
ent machine learning models and implemented three-fold cross 
validation on the training set to determine the hyperparameters 
for each model to optimize the validation accuracy by calculating 
the accuracy of the validation set. Therefore, we selected the op-
timal hyperparameters for each model that maximized the ac-
curacy of the validation set. Then, we evaluated our model using 

the selected hyperparameters on the test set. The accuracy of the 
test set for each model is listed in Table 2. The training set was 
randomly divided into three subsets that were similar in size, 
among which, two were used to train each model, and one was 
used as the validation subset to verify model efficiency. 

In this study, several model evaluation criteria such as accuracy, 

Table 1. Clinical characteristics of patients according to their recov-
ery status

Variable
No recovery 

(n=121)
Recovery 
(n=106)

P-value 

Pack-years of smoking 3.35±10.33 4.11±23.73 0.761
Age at the time of diagnosis (yr) 51.87±11.16 47.58±11.87 0.006
Systolic BP (mmHg) 121.56±13.01 120.33±12.87 0.475
Diastolic BP (mmHg) 76.27±7.85 75.73±8.57 0.619
Duration from onset to  

treatment (day)
5.13±6.54 4.90±9.61 0.813

Hb 13.57±1.50 13.48±1.25 0.644
ESR 27.09±21.06 24.24±18.20 0.274
PT (sec) 11.06±2.68 10.80±0.80 0.985
PT (%) 107.91±15.46 108.43±12.24 0.780
aPTT 28.23±4.13 28.20±2.68 0.059
BUN 16.96±8.45 13.95±5.33 0.001
Cr 1.14±1.65 0.90±0.19 0.114
Initial hearing (kHZ)
   0.125 74.73±38.47 59.92±36.62 0.003
   0.25 74.92±34.41 59.95±31.13 <0.001
   0.5 77.56±32.83 61.37±26.37 5.387e-05
   1 79.55±34.30 59.86±27.52 2.988e-06
   2 81.45±32.92 57.45±28.03 1.133e-08
   3 83.51±31.83 56.46±28.58 1.27e-10
   4 86.32±30.67 59.34±29.46 1.232e-10
   8 92.23±29.98 65.05±32.04 3.655e-10
Male:female 43:78 

(47.78:52.22)
27:79 

(25.47:74.53)
0.135

Smoking status 0.883
   0 (Never) 103 (85.12) 89 (83.96)
   1 (Current) 16 (13.23) 16 (15.09)
   2 (Ex-smoker) 2 (1.65) 1 (0.95)
Hypertension 34 (28.10) 15 (14.15) 0.017
Diabetes mellitus 27 (22.31) 15 (14.15) 0.159
Stroke 1 (0.83) 1 (0.94) 1
Chronic kidney disease 3 (2.48) 0 0.25
Myocardial infarction/angina 6 (4.96) 2 (1.89) 0.289
Dizziness 44 (36.36) 16 (15.09) <0.001
Tinnitus 77 (63.64) 79 (74.53) 0.105
The timing of ITDI <0.001
   0 (No treatment) 25 (20.66) 42 (39.62)
   1 (0–12 days from onset) 74 (61.16) 56 (52.83)
   2 (After 13 days from onset) 22 (18.18) 8 (7.55)
Hyperlipidemia 3 (2.48) 5 (4.72) 0.478

Values are presented as mean± standard deviation or number (%). 
BP, blood pressure; Hb, hemoglobin; ESR, erythrocyte sedimentation rate; 
PT, prothrombin time; APTT, activated partial thromboplastin time; BUN, 
blood urea nitrogen; Cr, creatinine; ITDI, intratympanic dexamethasone in-
jection.
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recall (sensitivity), and F-score were utilized for machine learn-
ing techniques and to compare the prediction performance of 
the five models. The machine learning models are summarized 
in detail below.

K-nearest neighbor 
KNN is based on the assumption that the observations within a 
dataset generally exist closely to other observations having simi-
lar attributes. If the observations have a classification label, the 
label of an unclassified observation can be identified by consid-
ering the class of its nearest neighbors. KNN finds the k-nearest 
observations to the test observation and determines its class by 
majority voting (Fig. 3). While implementing three-fold cross 
validation, the hyperparameter, K, was tuned until the training 
subset produced the highest accuracy. The optimal parameter 
was then applied to the test set, which did not affect the training 
or cross-validation procedures [14].

Random forest 
RF uses bootstrap sampling to create new training samples. The 
new training samples are then used to train m different decision 
trees. As a result, this algorithm aggregates prediction results from 
m different decision trees, usually via majority voting [13]. The 
overall model is shown in Fig. 4. Additionally, we determined 
two parameters using three-fold cross validation, which are the 
number of decision trees to train and the number of predictors 
to sample from the original variables. 

Support vector machine 
SVM is used to establish a separating hyperplane having a maxi-
mum margin. This model leads to a good generalization ability 
and can classify nonlinear data more easily than a linear classifi-
er such as logistic regression. The concept of SVM is shown in 
Fig. 5. To classify nonlinear data, a kernel function such as a Gauss-
ian kernel is required [15]. In this study, a Gaussian kernel func-
tion was used to classify the nonlinear data. Furthermore, we 
determined two hyperparameters for SVM, which are the regu-

larization parameter (C) and spread-parameter sigma (σ) to op-
timize three-fold cross-validation accuracy. 

AdaBoost 
Boosting is a machine learning approach based on the concept 
of creating high-accuracy models by combining many low-accu-
racy ones, called weak learners. The AdaBoost algorithm by Freund 
is the most widely used boosting algorithm [16]. It is a very ac-
curate classifier that uses a decision tree as the base model, i.e., 
the weak learner. It is used to train a multiple decision trees based 
on weight-updated and aggregated results from classifier models. 
The overall AdaBoost algorithm is shown in Fig. 6. In this study, 
the AdaBoost model was trained using the “fast Adaboost” pack-
age in R ver. 3.5.0 (R Foundation for Statistical Computing, Vi-
enna, Austria). Additionally, we determined two parameters, the 
number of decision trees and maximum depth, using three-fold 
cross validation accuracy. 

Multilayer perceptron 
The MLP is a feed-forward neural network that uses the back-
propagation method for training. This model can classify nonlin-

Table 2. Performance of KNN, SVM, RF, AdaBoost, and MLP on the test set 

Model Variable set Accuracy (%) F-score ROC-AUC 95% CI for the ROC-AUC Precision (%) Recall (%)

KNN 31 Predictors 60.87 0.61 0.62 0.50–0.73 55.26 67.74
15 Predictors 65.22 0.64 0.65 0.54–0.77 60 67.74

SVM 31 Predictors 60.87 0.49 0.59 0.48–0.70 59.09 41.94
15 Predictors 75.36 0.74 0.76 0.65–0.86 70.59 77.42

RF 31 Predictors 73.91 0.73 0.74 0.64–0.85 68.57 77.42
15 Predictors 73.91 0.74 0.75 0.64–0.85 67.57 80.65

AdaBoost 31 Predictors 69.57 0.71 0.71 0.61–0.81 61.90 83.87
15 Predictors 72.46 0.73 0.74 0.63–0.84 65 83.87

MLP 31 Predictors 66.67 0.58 0.65 0.54–0.76 66.67 51.61
15 Predictors 72.46 0.71 0.73 0.62–0.83 67.65 74.19

KNN, K-nearest neighbor; SVM, support vector machine; RF, random forest; AdaBoost, adaptive boosting; MLP, multilayer perceptron; ROC-AUC, area un-
der the receiver operating characteristic curve; CI, confidence interval.

Fig. 3. K-nearest neighbor.

Classify new example to class A

K=4

X2

X1

Class A

Class B
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ear data. Generally, MLP comprises one input layer, one or more 
hidden layers, and one output layer. The overall architecture of 
this model is shown in Fig. 7. It can be used both for classification 
and for regression problems. In this study, we used it as a binary 
classifier to classify in-patients after 1 month of treatment. The 
original and selected variables were utilized as input variables. 
Thus, they determined the number of input nodes. All nodes of 
each hidden layer were fully connected to the nodes of the pre-
vious layer. Because this study regarded a binary classification 
problem, the number of nodes of the output layer was one. This 
node represents the probability of hearing recovery after 1 month 
of treatment. We determined two hyperparameters, which are 

the number of hidden layers and its activation function. In addi-
tion, the learning rate was 0.1, number of epochs was 10,000, 
and batch size was 20. In this study, MLP was developed by adopt-
ing the “deepnet” package in R ver. 3.5.0.

RESULTS

Clinical characteristics of patients according to their recovery 
status
The study population consisted of 227 unilateral ISSNHL patients, 
including 121 who did not recover and 106 who recovered. There 

Bootstrap
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Bootstrap
sample 2Training sample

Bootstrap
sample m

Classification
result 1

Classification
result 2

Classification
result m

Final result

Decision tree 1

Decision tree 2

Decision tree m

Fig. 4. Random forest algorithm.

Fig. 5. Support vector machine. The optimal hyperplane consists of 
w and b which are the the optimal parameters estimated by data.
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=
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Fig. 6. Adaptive boosting algorithm. H means the predicted class.
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Input layer Hidden layer 1 Hidden layer 2 Output layer

Fig. 7. Multilayer perceptron. χ, input variable; h, hidden variable; y, 
predicted probability of hearing recovery after 1 month of treatment.

Fig. 8. Test-set accuracy, F-score, and area under the receiver operating characteristic curve (ROC-AUC) of five machine learning models. 
The support vector machine (SVM) model with selected predictors achieved both the highest accuracy (75.36%) and highest F-score (0.74) 
on the test set. The random forest (RF) model with selected variables demonstrated the second-highest accuracy (73.91%) and F-score (0.74). 
The RF model with the original variables showed the same accuracy (73.91%) as that of the RF model with selected variables, but with a lower 
F-score (0.73). All the tested models, except RF, demonstrated better performance after variable selection based on RF. KNN, K-nearest 
neighbor; AdaBoost, adaptive boosting; MLP, multilayer perceptron.
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Fig. 9. Training set accuracy, F-score, and area under the receiver operating characteristic curve (ROC-AUC) of five machine learning models. 
The support vector machine (SVM) model with the original predictors, the random forest (RF) model with the original predictors and selected 
predictors, and the adaptive boosting (AdaBoost) model with selected predictors achieved the highest accuracy (100%) and highest F-score 
(1.0) on the training set. The K-nearest neighbors (KNN) and AdaBoost models demonstrated better performance after variable selection 
based on RF. MLP, multilayer perceptron.
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were 70 men and 157 women, with a mean and standard devia-
tion (SD) age of 46.43±14.77 years and 51.3±99.65 years, re-
spectively. The clinical characteristics of patients according to 

their recovery status are listed in Table 1. 
Continuous and categorical random variables were presented 

as mean±SD and percentages, respectively. The clinical and de-
mographic characteristics of the patients who did or did not re-
cover were compared using the two-sample t-test for continuous 
random variables and the chi-square test or Fisher exact test for 
categorical random variables. 

All statistical hypothesis tests were two-sided. Statistical tests 
were implemented using R ver. 3.5.0. A mean difference was con-
sidered to be statistically significant when the P-value was less 
than 0.05. Statistically significant differences were found between 
the recovery and no-recovery groups according to initial hearing 
by frequency (0.125, 0.25, 0.5, 1, 2, 3, 4, and 8 KHz), age at on-
set, BUN, hypertension, dizziness, and the timing of ITDI. The 
statistical test results are presented in Table 1.

Model performance results 
The SVM model with selected variables was determined to be 
the best-performing prediction model (accuracy, 75.36%; F-score, 
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0.74), and the RF model with selected variables was the second-
best model (accuracy, 73.91%; F-score, 0.74). The accuracy of 
the RF model with the original variables was the same as that of 
the RF model with selected variables (accuracy, 73.91; F-score, 
0.73). However, the prediction time for the test set (n=69) of 
the SVM model with selected variables was nearly zero (R.3.5.0, 
RAM 8 GB), while that of RF with selected variables was 0.01 s 
(R.3.5.0, RAM 8 GB). Thus, the SVM model with selected vari-
ables performed better than the RF model with selected variables, 
considering both accuracy and the computation time required 
for the classification under real clinical circumstances. To sum-
marize, the SVM model with 31 predictors was the best model, 
whereas the second-best model was RF with 15 predictors (Table 
2, Fig. 8). Additionally, the results of the training set are provided 
in Table 3 and Fig. 9.

DISCUSSION 

In our analysis, the RF model with the original variables predict-
ed the prognosis of ISSNHL. In a recent study, several machine 
learning models [1] were used to predict the hearing outcomes of 
ISSNHL patients. In that study [1], the accuracy of prediction of 
hearing outcomes was 67.45%–73.32% for LR, 68.14%–73.41% 
for SVM, 63.90%–74.03% for MLP, and 60.67%–77.58% for 
DBN. A total of 1,220 inpatients with ISSNHL were admitted 
between June 2008 and December 2015, and four-fold cross-val-
idation was applied to the dataset. In contrast, our study included 
a total of 227 inpatients with ISSNHL between January 2010 
and October 2017. Three-fold cross-validation was applied to the 
dataset. In our study, the accuracy of the prediction of hearing 
outcomes was 75.36% for SVM, 73.91% for RF, 72.46% for 
AdaBoost, 72.46% for MLP, and 65.22% for KNN. Thus, com-
pared with the previous study, we trained a model with a similar 
generalization performance, but using a much smaller sample size. 
Furthermore, in another study, the accuracy of prediction of hear-
ing outcomes was 76.6% for AdaBoost, 76.9% for RF, 81.9% for 

MLP, and 83.0% for SVM. In that study, 10-fold cross-validation 
was implemented, and the study population was 1,113 subjects 
from 17 factories [11]. To the best of our knowledge, our study 
is the first in Korea to compare the effectiveness of multiple ma-
chine learning models for predicting the prognosis of ISSNHL. 

A limitation of this study is its small sample size (227 patients), 
compared to previous studies that included 1,220 patients [1] 
and 1,113 patients [11]. Furthermore, the number of predictors 
may not have been sufficient compared with that of a former 
study that used 149 potential predictors [1]. Machine learning 
performance depends on the sample size and number of predic-
tors. As the sample size and number of predictors increase, the 
model performance is expected to improve. Therefore, further 
research with a larger sample size is needed. 

In conclusion, the accuracy of predicting hearing outcomes 
was 75.36% for SVM, 73.91% for RF, 72.46% for MLP, 72.46% 
for AdaBoost, and 65.22% for KNN, which are comparable to 
those of a previous study with a sample size of 1,220 [1]. There-
fore, given a higher sample size and more predictors, we can ex-
pect better prediction performance with our model. Moreover, 
the SVM model with selected variables (accuracy, 75.36%) was 
found to be the most helpful for clinicians to predict the hearing 
prognosis of patients diagnosed with ISSNHL.
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Table 3. Performance of KNN, SVM, RF, AdaBoost, and MLP on the training set 

Model Variable set Accuracy (%) F-score ROC-AUC 95% CI for the ROC-AUC Precision (%) Recall (%)

KNN 31 Predictors 73.42 0.75 0.74 0.67–0.81 68.13 82.67
15 Predictors 75.32 0.74 0.75 0.69–0.82 73.68 74.67

SVM 31 Predictors 100 1 1 1–1 100 100
15 Predictors 82.28 0.81 0.82 0.76–0.88 81.33 81.33

RF 31 Predictors 100 1 1 1–1 100 100
15 Predictors 100 1 1 1–1 100 100

AdaBoost 31 Predictors 93.67 0.94 0.94 0.90–0.98 89.16 98.67
15 Predictors 100 1 1 1–1 100 100

MLP 31 Predictors 98.1 0.98 0.98 0.96–1 98.65 97.33
15 Predictors 79.75 0.78 0.80 0.73–0.86 81.16 74.67

KNN, K-nearest neighbor; SVM, support vector machine; RF, random forest; AdaBoost, adaptive boosting; MLP, multilayer perceptron; ROC-AUC, area un-
der the receiver operating characteristic curve; CI, confidence interval.
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