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Introduction

Mycobacterium avium subsp. paratuberculosis (MAP) is a causative agent of Johne’s 

disease or paratuberculosis, which is a chronic debilitating disease in ruminants that 

is characterized by incurable enteritis and persistent diarrhea [1]. The disease is dis-

tributed worldwide and causes significant economic losses to the livestock industry 

because of premature culling and production losses [2,3]. In the United States, MAP-

positive herds experience economic losses of almost US $100 per cow and a disease 

cost of US $200 to 250 million annually [4]. At the herd level, it has been estimated that 

more than 50% of dairy cattle farms were infected with MAP in most major dairy-pro-

ducing countries [4,5]. Moreover, the most recent herd level prevalence estimates are 

as high as 90% in the U.S. dairy cattle industry [6]. These findings indicate that an in-

fection rate of MAP is increasing and there is a need to establish an efficient program 

for control of this pathogen. 

  Clinical signs of the disease, such as diarrhea, loss of milk production and weight 

loss, are usually absent until two or more years after initial infection [7]. Stages of the 
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Johne’s disease or paratuberculosis is a chronic debilitating disease in ruminants caused by 
Mycobacterium avium subsp. paratuberculosis (MAP). The disease causes significant eco-
nomic losses in livestock industries worldwide. There are no effective control measures to 
eradicate the disease because there are no appropriate diagnostic methods to detect subclin-
ically infected animals. Therefore, it is very difficult to control the disease using only test and 
cull strategies. Vaccination against paratuberculosis has been considered as an alternative 
strategy to control the disease when combined with management interventions. Understand-
ing host-pathogen interactions is extremely important to development of vaccines. It has long 
been known that Th1-mediated cellular immune responses are play a crucial role in protection 
against MAP infection. However, recent studies suggested that innate immune responses are 
more closely related to protective effects than adaptive immunity. Based on this understand-
ing, several attempts have been made to develop vaccines against paratuberculosis. A variety 
of ideas for designing novel vaccines have emerged, and the tests of the efficacy of these vac-
cines are conducted constantly. However, no effective vaccines are commercially available. 
In this study, studies of the development of vaccines for MAP were reviewed and summarized.
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MAP infection can be divided into four categories according 

to severity of clinical signs, the potential for shedding organ-

isms, and the possibility of detection using current diagnostic 

methods [3]. The first stage, silent infection, is generally ob-

served in young animals less than two years of age. These an-

imals have no signs of infection clinically or microbiological-

ly. Furthermore, there are no cost-effective diagnostic meth-

ods to detect animals in this stage [8]. The second stage is sub-

clinical infection. Although animals in this stage still have no 

clinical signs of infection, they may be detected through cost-

effective diagnostic tests such as serum enzyme-linked im-

munosorbent assay (ELISA) and fecal culture [9]. However, 

many of the animals in this stage are not detected by such tests 

because the animals shed organisms in an intermittent man-

ner [10], and antibodies against MAP are usually produced 

when they are close to the next stage of disease (clinical stage) 

[11]. These undetected subclinical fecal shedders become a 

source of infection that consistently contaminate the envi-

ronment. Therefore, many attempts have been made to de-

tect these animals based on immunological knowledge. One 

of the major attempts is to identify MAP specific antigens that 

can be used in the interferon γ (IFN-γ) assay to measure Th1-

mediated immune response elicited by animals in the early 

stage of infection [12,13]. Another attempt is to identify bio-

markers of the MAP infected animals by analysis of transcrip-

tional changes that show early responses to infection. Accord-

ingly, host transcriptional profiles during the early stage of 

infection in mouse RAW264.7 cells, MAP infected mouse mo

dels, and naturally infected cattle have been analyzed [14-16]. 

  There are three major approaches to reduce or eradicate 

the Johne’s disease, efficient management to decrease trans-

mission, testing and culling, and vaccination [17]. Manage-

ment using testing and culling practices are used in most coun

tries [18]. Although the incidence of Johne’s disease can be 

reduced by efficient management, eradication can only be 

accomplished when all the infected animals are detected and 

culled [19]. Although diagnostic tests for Johne’s disease are 

improving, it is still not possible to detect all infected animals. 

For these reasons, testing and culling strategies using the pres-

ent diagnostic methods are ineffective for eradication of the 

disease except when targeting only-high shedding animals 

[17,20]. Under these circumstances, vaccination can be the 

best control strategy unless animals can be detected during 

early infection. This is because vaccination can reduce the 

incidence of MAP shedding and manifestation of clinical signs, 

which is more cost-effective than testing and culling [21]. How-

ever, vaccination is probably the least accepted strategy be-

cause of several drawbacks, which are discussed in the next 

section of this review.

  MAP can infect a wide range of animals, therefore, it is im-

portant to determine if wildlife can act as a maintenance host 

or act as spillover host because the infection can persist via 

intraspecies transmission alone in maintenance hosts. In fact, 

one of the difficulties of eradication of bovine tuberculosis is 

blocking contacts with livestock from wildlife such as bad-

gers, brush-tailed possums, and white-tail deer [22]. Some 

species susceptible to paratuberculosis such as farmed deer 

could maintain the infection when they are in high-density 

populations [23]. In South Korea, there have been several re-

ports that MAP has infected wild boar, sika deer, and mouflon 

[24-26]. In this review, the general characteristics of Johne’s 

disease with respect to the pathogenesis and immune response 

to MAP, as well as recent advances in development of vaccines 

were briefly examined.

Pathogenesis and Immune Responses to 
MAP

MAP infection is initiated by ingestion of fecal material orally 

contaminated by MAP (fecal-oral route). Following ingestion, 

MAP can pass through the M cell, which is specialized for up-

take of particles that mainly bind to bacteria and transport 

them into the submucosal layer. After crossing the epithelial 

layer, MAP is phagocytosed by submucosal macrophages 

[27]. Like other mycobacterium, MAP is able to survive and 

replicate in non-activated macrophages by inhibiting phago-

some-lysosome maturation [28,29]. MAP eventually causes 

the cell death of infected cells, after which liberated MAP can 

be phagocytosed by freshly accumulated macrophages and 

dendritic cells that are activated by cytokines such as tumor 

necrosis factor α and IFN-γ. IFN-γ, which plays an important 

role in activation of macrophages and T cells, is produced by 

infected cells, local γδ T cells, and natural killer cells [30,31]. 

Activated macrophages and dendritic cells produce interleu-

kin (IL) 12 and present antigen to naïve CD4+ T cells through 

MHC class II molecules. IL-12 triggers the differentiation of 

naïve CD4+ T cells into T helper 1 (Th1) cells. Th1 cells pro-

duce cytokines such as IL-2 and IFN-γ, which play roles in 

promotion of expansion of antigen specific Th1 cells and mat-

uration of macrophages. These antigen specific responses 

change from innate immunity to cell mediated adaptive im-

munity. 
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  In the later stages of infection, increasing antibodies are 

frequently observed with increasing bacterial shedding [32]. 

Therefore, it has been accepted that switching from Th1 im-

mune responses to Th2 responses is the cause of disease pro-

gression [33-35]. Many researchers investigated the immune 

regulatory mechanisms of host animals to identify causes of 

Th1-Th2 switches. An increase of IL-10 production by regula-

tory T cells (Tregs) or macrophages, which induces the down 

regulation of Th1 responses and stimulation of antibody pro-

duction, is considered to cause this switch [36-38]. Along with 

Tregs, γδ T cells have been known to play a role in immune 

regulation. The progressive decrease of CD4+ T cell popula-

tion in local immune response has been shown to be accom-

panied by increasing γδ T cell population [32]. The cytokine 

mRNA profiles of γδ T cells demonstrated that subsets of bo-

vine γδ T cells encode IL-10 and transforming growth factor β, 

suggesting a potential regulatory role of γδ T cells [39,40]. Re-

cently, however, a typical pattern of disease progression that 

can be explained by the Th1-Th2 switch was observed in only 

40% of MAP-infected sheep with other cases showing simul-

taneous responses of both cellular and humoral immunity or 

cellular immunity only [41]. A recent study using mathemati-

cal modeling suggested that Th1-Th2 switch may be a result 

of disease progression (increasing of extracellular bacteria) 

rather than cause [42]. A similar study that used a mathemati-

cal model to analyze the correlation between Th1, Th2 ex-

pression and bacterial shedding revealed a positive correla-

tion between the amount of bacteria and humoral immune 

response was observed. However, there was no evidence of 

competition or synergy between Th1 and Th2 immunity [43]. 

This study also suggested that MAP-specific cellular immune 

responses were predicted to increase shedding, whereas in 

some animals it was predicted to suppress the shedding. As a 

result, it can be inferred that adaptive immune responses play 

a limited role in disease protection. However, these mathe-

matical modeling studies have some vulnerable points be-

cause they cannot consider all of the parameters. Therefore, 

these results or hypotheses should be confirmed by both in 

vitro and in vivo studies. Another modeling study suggested 

that long-term subclinical infection may related to innate im-

munity rather than adaptive immunity [44]. The results using 

structural models (villus model, granulomatous model) of lo-

cal infection showed that the long subclinical phase was due 

to structural organization of the granulomatous lesion. More-

over, the authors predicted that intermittent shedding was 

due to changes in the recruiting efficiency of macrophages 

influenced by external factors such as hormonal changes (ex., 

pregnancy, lactation). 

Paratuberculosis Vaccines

Live attenuated vaccines
Recently, many researchers have been interested in develop-

ment of live attenuated vaccines against MAP. These types of 

vaccines can elicit protective mucosal and systemic immune 

responses because the diverse antigens included in this vac-

cine can stimulate both innate and adaptive immunity [45,46]. 

Another advantage of this vaccine is that manufacture of live 

attenuated vaccine is cost effective and easies than that of 

other vaccines such as subunit vaccines [47]. Many vaccine 

candidates have been produced by mutagenesis to attenuate 

the virulence of MAP. Mutants of MAP have been made by 

phage-mediated techniques, transposon mutagenesis and 

allelic exchange mutagenesis [48-50]. Many transposon mu-

tant libraries have been created to identify virulence mecha-

nisms thereby finding vaccine candidates [49,51,52]. Direct 

mutagenesis using allelic exchange techniques has also been 

tried by deletion of genes already known to be pathogenic or 

essential for intracellular survival in M. tuberculosis or M. bo-

vis [46,47,50,51,53]. The ΔrelA, Δlsr2, and ΔpknG mutants 

were generated by Park et al. [50] and each gene was known 

to be related to virulence factors in M. tuberculosis and M. bo-

vis [54-56]. Two of these candidates, ΔrelA and ΔpknG were 

evaluated for virulence attenuation and efficacy as vaccine 

candidates using macrophages and ileal cannulation models 

of natural hosts (cattle) and goats [57]. The result showed that 

ΔrelA mutant was a better vaccine candidate than ΔpknG 

mutant based on virulence attenuation and inhibition of MAP 

challenge in baby goats. The WAg906 (ΔMAP1566), WAg913, 

and WAg915 (ΔppiA) mutants were evaluated by Scandurra 

et al. [51]. WAg906 and WAg913 were made by transposon 

mutagenesis using MAP 989 strain, and WAg915 was made 

by allelic exchange of the ppiA gene [51,58]. These live atten-

uated vaccine candidates were evaluated using monocyte 

derived macrophages (MDM) apoptosis, IL-10 production 

and animal models (mouse and goat) [51]. The results reveal

ed that WAg906 mutant was the most attenuated strain. Mouse 

vaccinated with WAg915 mutant reduced bacterial loads in 

the spleen and liver after challenge with MAP. The ΔleuD, 

Δmpt64, and ΔsecA2 mutants were constructed by allelic ex-

change of these three genes to develop effective live attenuat-

ed vaccine [53]. These mutant candidates were selected based 
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on previous studies. The auxotroph leuD mutant of M. bovis-

BCG strain showed lower survival rates [59,60], and M. bovis 

leuD mutant induced significant protective immune respons-

es against a virulent M. bovis strain in cattle [61]. The mpt64 

gene is related to apoptosis of multinucleated giant cells [62, 

63], while the secA2 mutant of M. tuberculosis enhanced apop-

tosis of infected macrophages [64]. Testing using the mouse 

model revealed that the most obviously attenuated mutant 

was ΔleuD mutant strain. In addition, ΔleuD mutant induced 

a significant reduction of inflammation and bacterial load 

compared with the non-vaccinated group. The ΔsigL and 

ΔsigH mutants that are knocked out of the sigma factor gene 

were selected as live attenuated vaccine candidates because 

the sigma factors involved in part of the global virulence reg-

ulation provide resistance to the host bactericidal activities 

[46,65]. The ΔsigL and ΔsigH mutants showed attenuated 

virulence in mice, and these mutants elicited significant pro-

tective immune responses against MAP infection in mouse 

models [46,47].

  Recently, a three phase vaccine candidate evaluation strat-

egy was established by Johne’s Disease Integrated Program 

(JDIP) research consortium to improve the efficiency of the 

efficacy test on the MAP live attenuated vaccines [66]. Phase I 

is a screening test using the MDM model, phase II is a chal-

lenge test using the mouse model, and phase III is an evalua-

tion of protective effects using a goat model. The phase I test 

was conducted by Lamont et al. [67] to evaluate many live at-

tenuated vaccine candidates constructed until 2014. 

Subunit vaccines
Subunit vaccines have been developed to overcome the draw-

backs of whole-cell based vaccines. Whole-cell based vac-

cines interfere with the diagnosis of both tuberculosis and 

paratuberculosis in vaccinated animals. However, subunit 

vaccines using well defined recombinant MAP proteins or 

DNA encoding immunogenic antigens can overcome the in-

terference issues [68]. Many attempts have been made to iden-

tify MAP antigens to develop subunit vaccines using genomic 

or proteomic analysis. Because the production of IFN-γ in-

duced by Th1-mediated immune responses is crucial to re-

ducing the number of bacteria in the early stages of MAP in-

fection, identifying antigens that induce strong Th1 responses 

is essential to the development of subunit vaccines [68]. Find-

ing an antigen is also related to development of immunodi-

agnostic method as well as development of subunit vaccines. 

Several proteins have been identified as vaccine candidates. 

Several antigens were tested for their potential for use as a 

vaccine candidates: heat shock protein 70 (Hsp70) [69], anti-

gen 85 complex proteins (Ag85A, Ag85B, and Ag85C) [70], li-

poproteins (LprG and MAP0261c) [71,72], PPE family pro-

teins (MAP1518 and MAP3184) [73], superoxide dismutase 

[70], and alkyl hydroperoxide reductases (AhpC, AhpD) [74]. 

Among many antigens, the protein Hsp70 has been widely 

studied as a subunit vaccine candidate. Cattle vaccinated with 

Hsp70 containing an adjuvant, dimethyl dodecyl ammonium 

bromide, showed reduced bacterial load compared with a 

non-vaccinated group in animals experimentally challenged 

with MAP [75]. Furthermore, the cross-reactivity with sero-

logic test of paratuberculosis was not observed when a pre-

absorption step with Hsp70 was included, and Hsp70 vacci-

nation did not interfere with the skin test of tuberculosis, de-

spite Hsp70 being a major component of mycobacterial tu-

berculin [76,77]. However, recent study suggested that the 

protective effects of Hsp70 protein are due to B-cell activation 

and therefore the production of Hsp70-specific IgG1, instead 

of Th1-mediated immune response producing IFN-γ [78]. To 

date, researchers have only focused on cell-mediated immune 

responses to identify candidate vaccines. However, further 

studies are needed to understand protective mechanisms to 

MAP of host animals in greater detail, including humoral im-

mune responses in the early stages of infection.

  DNA vaccination against mycobacteria showed very effec-

tive protective immune responses in small rodents [79,80]. 

Moreover, DNA vaccines have advantages of storage and de-

livery because they are very stable. Several candidates were 

evaluated for their ability to induce protective immune re-

sponses; however, they were only evaluated in mouse mod-

els. Recently, combination of MAP-specific antigens and viral 

vectors was attempted to increase the ability of antigenic ef-

fects of DNA vaccines [81,82]. The advantage of viral vectored 

vaccines is to provide high delivery of antigens to antigen pre-

senting cells, thereby increasing antigen specific CD4+ and 

CD8+ immune responses [83-85].

Commercially available vaccines 
The first MAP vaccine, which was developed in 1926 by Val-

lee and Rinjard, consisted of a live non-virulent MAP and oil 

based adjuvants. Since then, a number of whole-cell based 

vaccines, live attenuated vaccines and inactivated vaccines 

were developed to prevent bovine and ovine Johne’s disease. 

Currently, three commercial vaccines are all based on inacti-

vated whole bacteria, Mycopar, Gudair, and Silirum, of which 
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only Mycopar is approved for use in the United States [17]. 

Mycopar is manufactured by Boehringer Ingelheim Vetmedi-

ca Inc. using MAP strain 18 for use in cattle. Interestingly, strain 

18 is not a MAP, although it is a member of the family of My-

cobacterium avium species [86]. Gudair is manufactured by 

CZ Veterinaria in Spain for use in sheep and goats using heat 

inactivated MAP F316 strain adjuvanted with mineral oil. Gu-

dair vaccination is encouraged in Australia for controlling 

ovine Johne’s disease [87]. An Australian study revealed that 

vaccination could reduce the prevalence of MAP shedding 

with their longitudinal study [88]. However, another cross-

sectional study reported that shedding of MAP persisted in 

the majority of flocks, despite vaccination of lambs [89]. Sili-

rum consists of MAP F316, similar to Gudair. This vaccine is 

manufactured by Zoetis to prevent bovine Johne’s disease. 

An efficacy test with a randomized control of Johne’s disease 

in young farmed deer in New Zealand revealed that vaccina-

tion of Silirum reduced the prevalence of clinical disease [90]. 

Meta-analysis of the efficacy of MAP vaccination, especially 

its production, epidemiological effects, and pathogenic ef-

fects, was conducted by Bastida and Juste in 2011 [17] using 

previously published papers. From this meta-analysis, it was 

concluded that vaccination against MAP is a useful strategy 

for reducing contamination by this pathogen, production loss-

es and pathologic effects. Despite the many advantages of 

vaccination, it has not been encouraged in cattle in most of 

countries because of several drawbacks mentioned in the in-

troduction section. One major drawback of whole-cell based 

vaccination is interference with diagnostic tests currently used 

in bovine tuberculosis and paratuberculosis [91,92]. These 

vaccines have the potential to produce false positive animals 

in serological tests for paratuberculosis such as ELISA because 

the commercial ELISA kit consisted of crude MAP antigens, 

which hinder differentiation of infected animals from vacci-

nated animals [93]. The caudal fold skin test using M. bovis 

purified protein derivatives (PPD-B) is most widely used field 

screening tool for diagnosis of bovine tuberculosis [94]. How-

ever, in the IFN-γ assay, stimulation with PPD-B produced 

robust responses similar to PPD-J (MAP purified protein de-

rivatives) in MAP vaccinated animals [92,95]. Because of this 

cross-reaction with other mycobacteria such as M. avium sub-

species, comparative cervical test has been used as a comple-

mentary test to discriminate M. bovis infection from other 

mycobacterial infections by comparing the reactivity of each 

antigen using PPD-B and PPD-A (M. avium purified protein 

derivatives). However, this strategy may also cause problems 

with diagnostic sensitivity owing to the higher PPD-A reactiv-

ity because MAP vaccination can reduce the differences be-

tween PPD-B and PPD-A in M. bovis infected animals [93]. 

Therefore, many countries that are running M. bovis eradica-

tion programs do not use vaccination policies. However, these 

problems can be overcome by development of new diagnos-

tic methods or vaccines. Emerging serologic tests using M. 

bovis specific antigens such as ESAT-6, CFP-10, and MPB83 

did not produce positive results in MAP vaccinated animals 

[95]. Another drawback of whole cell based vaccines is the 

substantial tissue damage at the injection site and accidental 

self-inoculation, which may cause serious side-effects [96]. 

However, there is a vaccine adjuvanted with highly refined 

mineral oils such as Silirum to reduce the formation of gran-

uloma at the site of injection [68].

Conclusion

Vaccines against paratuberculosis have been developed by 

diverse approaches. The most important factors to consider 

in vaccine studies are the mechanisms related to the host-

pathogen interaction. Much more efforts are needed to un-

derstand exactly how bacteria can evade the host defense 

system, and these should focus on not only an adaptive im-

mune system, but also innate immunity. Vaccines that can 

induce both immune responses may have improved protec-

tive effects. Despite some limitations, vaccines might still be 

an effective strategy to reduce or eradicate Johne’s disease in 

livestock industries. 
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