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Diagnosis and evaluation of early gastric cancer (EGC) using endoscopic images is significantly important; however, it has some 
limitations. In several studies, the application of convolutional neural network (CNN) greatly enhanced the effectiveness of endoscopy. 
To maximize clinical usefulness, it is important to determine the optimal method of applying CNN for each organ and disease. Lesion-
based CNN is a type of deep learning model designed to learn the entire lesion from endoscopic images. This review describes the 
application of lesion-based CNN technology in diagnosis of EGC. Clin Endosc  2020;53:127-131
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INTRODUCTION

Endoscopy has played an important role in gastrointestinal 
(GI) tract examination because it enables clinicians to directly 
observe the GI tract. However, the accuracy of its diagnostic 
results is limited by the experience of the practitioner and 
complex environmental factors of the GI tract.1 Therefore, 
there is an increasing interest in the field of endoscopic imag-
ing regarding a method for improving the accuracy of diag-
nosis. 

Artificial intelligence (AI) based on deep learning is making 
remarkable progress in various medical fields. Endoscopic im-
aging is one of the most effective applications of AI-based an-
alytics in the medical field.2,3 A convolutional neural network 
(CNN) comprises a deep learning architecture that is best 

known for its application in imaging data analysis.4 Recently, 
several authors have reported successful application of CNN 
to GI-endoscopic image analysis.5-8 Among various diseases 
of the GI tract, early gastric cancer (EGC) has certain special 
characteristics. This review focuses on the application of le-
sion-based CNN in EGC.

CONVOLUTIONAL NEURAL NETWORK 
IN ENDOSCOPIC IMAGING

CNN technology is based on the principle that the visual 
cortex of the human brain is responsible for the recognition of 
images. A CNN can be divided into components that extract 
the features of images and those that classify data. The feature 
extraction part comprises iterations of the convolutional and 
pooling layers. The convolutional layer is typically composed 
of a filter and an activation function. The filter performs a 
convolution operation to extract features from input data. 
When the input image is processed into consecutive convolu-
tional layers, the filters are accumulated. This process creates 
increasingly descriptive and sophisticated feature detectors. 
When the feature map is extracted, the activation function 
converts it to quantitative non-linear values. Overfitting oc-
curs owing to the increased number of features; therefore, a 
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new layer is obtained by resizing via the pooling layer. The 
key features are extracted from the image through iterations 
of the convolutional and pooling layers. Subsequently, classifi-
cation is performed through the fully connected layers, which 
are the last layers of the CNN.9 Fig. 1 shows an example of the 
classification of GI-endoscopic images by a CNN. 

CNN was first developed by Fukushima in 1980.10 In 1995, 
Lo et al. reported the detection of lung nodules using a CNN.11 
However, at the time, it was forgotten because of limitations of 
computational power. About 17 years later, a CNN overcomes 
these limitations by improving computation performance with 
the development of graphical processing units and applying 
a deep learning method.  Deep learning allows more efficient 
learning through multiple intermediate layers between the 
input and output layers. In 2012, Krizhevsky et al. designed a 
CNN with deep learning method (AlexNet, designed by the 
SuperVision group) and won the ImageNet Large Scale Visual 
Recognition Challenge with an overwhelming performance.9 
Since then, numerous authors have studied medical image 
analysis using CNN with deep learning method.12-14 

Most examinations and diagnoses of GI tract diseases are 
performed using endoscopy.1,15 Therefore, accurate analysis of 
endoscopic images is important, and the application of CNN 
can be considerably useful. CNN has been applied for the 
detection and pathological classification of colon polyps.16-19 
Karnes et al. added narrow-band imaging (NBI) to improve 
the accuracy of polyp detection.20 Byrne et al. developed a 
system for real-time assessment of colon polyps in a video 
format.19 Additionally, CNN was applied in upper endoscopy 
to detect gastritis caused by Helicobacter pylori infection21 and 
classify the subtypes of Barrett’s esophagus.22 Moreover, it is 
currently being applied for the detection and classification of 
GI tract cancer, including cancer of the esophagus, stomach, 
and colon.5,6,23

CHARACTERISTICS OF EARLY 
GASTRIC CANCER IN ENDOSCOPIC 
EXAMINATION

The role of endoscopic examination in the diagnosis of 
EGC includes the characterization and detection of lesions. 
Awareness of the signs of suspicious lesions is important. 
However, some EGC lesions can be difficult to detect because 
of extremely subtle changes in the endoscopic examination.24 
Furthermore, EGC detection becomes complex owing to 
chronic inflammation or intestinal metaplasia of the sur-
rounding mucosa. Recently, some authors reported that image 
enhancement technology, such as magnifying NBI, improves 
the ability to identify mucosal abnormalities.25-27 However, the 
enhancement technology is not widely used currently because 
of the lack of additional experience, special equipment, and 
time. 

Accurate detection of EGC requires both knowledge and 
technical expertise.28 It is required that endoscopic techniques 
do not create blind spots during examination. Additionally, 
the air inflation should be adjusted to adequately reveal the 
lesions. These technical aspects are reflected in the endoscopic 
image. However, owing to the nature of endoscopic exam-
ination, it is impossible to standardize all these conditions 
because of variations in both the practitioner and the patient’s 
condition. The lack of standardization in imaging can be an 
important limitation for research using images. Furthermore, 
it is impossible to fully standardize the image acquired via 
endoscopy. Therefore, it is important to select high-quality 
images that adequately reveal the features of the lesion.

Pre-treatment prediction of the invasion depth (T-staging) 
has becoming increasingly important because it is an essential 
factor in determining the treatment method for EGC.29 Some 
authors have reported that conventional endoscopy is com-
parable to endoscopic ultrasound for predicting the invasion 
depth of EGC.30 Abe et al. reported a depth-predicting score 
for the differentiated-type EGC.31 Tumors with sizes greater 
than 30 mm, remarkable redness, uneven surface, and margin 
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Fig. 1. Simple example of deep learning convolutional neural network using early gastric cancer detection model.
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elevation were associated with deep submucosal cancers.31 
However, this approach can be challenging because these fea-
tures are extremely subtle in EGC. Therefore, there has been 
an increasing interest in the field of medical imaging regard-

ing the modalities for predicting the depth of EGC.
Gastric cancer shows greater histological heterogeneity than 

other cancers. Even tumors confined to the mucosa show 
histologic heterogeneity, which tends to increase with deeper 

Fig. 2. Examples of gradient-weighted class activation mapping output extracted from each convolutional layer of the trained lesion-based convolutional neural net-
work. The white lines on the first row indicate the actual early gastric cancer regions. The images on the second row represent the activated map extracted from the 
last convolutional layer of the network. 

Fig. 3. Example of lesion-based convolutional neural network algorithm with gradient-weighted class activation mapping method. Grad-CAM, gradient-weighted class 
activation mapping.
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invasion and increased tumor diameter.32 Such mixed histol-
ogy has been reported to be associated with more aggressive 
behavior than other histological types.33,34 Till date, the his-
tological heterogeneity of EGC mucosa cannot be accurately 
predicted without biopsy. While evaluating EGC, it is import-
ant to identify the entire lesion owing to the heterogeneity of 
EGC.

LESION-BASED CONVOLUTIONAL 
NEURAL NETWORK

Fundamentally, deep neural networks are black boxes, in-
dicating that it is not known how the network produces the 
output. Therefore, the results are analyzed using statistical 
methods. For example, various measures, such as sensitivity, 
specificity, and accuracy, are used to analyze the results and 
identify problems in the network. However, we can only 
estimate how the network performs judgements, while the 
forwarding process of the network remains unclear. This 
limitation can lead to critical errors in the learning process 
involving endoscopic images. For example, in the case of AI 
that is focused only on classification for EGC diagnosis or 
depth prediction, basic normal structures, such as the pyloric 
channel or esophagogastric junction, might be incorrectly rec-
ognized as lesions. Therefore, the validity of the process needs 
to be confirmed instead of merely accepting the classification 
result of the AI. To design a more reliable deep learning sys-
tem, there has been an increasing interest in the interpretabil-
ity of AI. Selvaraju et al. proposed the gradient-weighted class 
activation mapping (Grad-CAM) approach for producing 
“visual explanations” for the decisions reached by a CNN.35 
Grad-CAM produces a visual explanation via gradient-based 
localization of deep learning networks. All neural networks 
learn by back-propagating a gradient, using the common 
gradient as a weight applied to the feature of the layer that 
needs to be visualized. Application of the Grad-CAM method 
confirms that the network is properly trained and the entire 
lesion is evaluated within the endoscopic image. During the 
training process, the CNN learns about the localization errors 
and constructs heatmaps for those regions where it focuses. 
The blue and red colors on the Grad-CAM indicate lower and 
higher activation values, respectively (Fig. 2). Fig. 3 shows an 
example of the lesion-based CNN algorithm with the Grad-
CAM method. The Grad-CAM of the last convolutional layer 
was used to measure the Grad-CAM loss. Activated regions 
with high values were more often used as visual features in 
the following fully connected layers. By applying the Grad-
CAM method to EGC, the entire lesion can be evaluated to 
reduce localization errors and improve performance. Yoon et 

al. named this process, “lesion-based CNN”.36 They reported 
that it showed better performance than other CNNs in the 
detection of EGC and depth prediction. The Grad-CAM 
loss was applied to the existing cross-entropy loss to reduce 
localization errors. During training, the model was taught to 
properly detect EGCs while activating the EGC regions by 
simultaneously optimizing the cross-entropy and Grad-CAM 
losses. However, even with the same type of CNN, the result 
may vary depending on whether the Grad-CAM method is 
applied.36 There are some limitations in this system. Inaccura-
cy of the hand-drawn margin of EGC is possible—this is not 
a pixel-by-pixel operation; therefore, there is a potential for 
error. Additionally, in some complex cases, even experts find it 
difficult to accurately determine the margin of EGC through 
conventional endoscopy. In the future, a large amount of 
learning data and the application of image enhancement 
techniques, such as magnifying NBI, should be considered to 
improve the lesion-based CNN approach.

CONCLUSIONS

CNN is an effective method to improve endoscopic image 
evaluation. The application of CNN will significantly enhance 
the effectiveness of endoscopy. To maximize clinical use-
fulness, it is important to determine the optimal method of 
CNN application. Lesion-based CNN using Grad-CAM is one 
of the most effective AI-based methods for EGC diagnosis. 
However, the application of AI to endoscopic images should 
not remain restricted to a level where its image classification 
performance is superior to that of humans—achieving optical 
biopsy should be the final objective of this approach. This 
can be achieved by improving the performance, based on the 
characteristics of each organ and disease. 
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