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Capsule endoscopy (CE) is a preferred diagnostic method for analyzing small bowel diseases. However, capsule endoscopes capture 
a sparse number of images because of their mechanical limitations. Post-procedural management using computational methods 
can enhance image quality. Additional information, including depth, can be obtained by using recently developed computer vision 
techniques. It is possible to measure the size of lesions and track the trajectory of capsule endoscopes using the computer vision 
technology, without requiring additional equipment. Moreover, the computational analysis of CE images can help detect lesions more 
accurately within a shorter time. Newly introduced deep leaning-based methods have shown more remarkable results over traditional 
computerized approaches. A large-scale standard dataset should be prepared to develop an optimal algorithms for improving the 
diagnostic yield of CE. The close collaboration between information technology and medical professionals is needed. Clin Endosc  
2019;52:328-333
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Introduction

Since the introduction of capsule endoscopy (CE) in the 
year 2000, it has become the preferred diagnostic method for 
small bowel diseases because of its low invasiveness. However, 
the diagnostic yield of CE can be influenced by many factors. 
Several quality indicators have been suggested to standardize 
the methods of CE and reduce interpretation-related errors.1 
Generally, CE video sequences are reviewed after post-proce-

dural reconstruction. This process is time-consuming. In ad-
dition, there is the possibility of misinterpretation due to the 
limitation of human concentration.

The evolvement of computer vision technology can ame-
liorate the diagnostic abilities of CE. Computational methods 
regarding modifying and interpreting CE images may reduce 
the image review time and error rates significantly.2 Moreover, 
the introduction of deep learning to computer vision has re-
sulted in the outstanding improvement of lesion recognition.3,4

Since capsule endoscopes remain passive moving devices, 
only limited information can be obtained from their images. 
Many mechanical improvements to endoscopes have been 
studied. For safety reasons, the immediate clinical application 
is difficult. Advances in computer vision have allowed us to 
gain more details regarding the current generation of capsule 
endoscopes. It is possible to measure the size of lesions and 
predict their location more accurately than with other meth-
ods. Subsequent therapeutic procedures can be performed 
more systemically with this information. 

This review focuses on important advances in computer 
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vision technology that can be applied to CE in the deep-learn-
ing era. These advances are organized into four categories: 
image enhancement for improved visual quality, depth sens-
ing for three-dimensional image interpretation, Simultaneous 
Localization and Mapping (SLAM) for the exact localization 
of capsule endoscope, and automated lesion detection for re-
ducing review time. Technical information in this review will 
be explained with scenarios familiar to clinicians. This review 
is expected to promote active communications between med-
ical and information technology (IT) experts.

Image enhancement for better 
visual quality

Capsule endoscopes capture images with low lighting and 
limited power. Videos with low resolutions and low frame 
rates are transmitted wirelessly to a recorder installed outside 
of the human body. In addition, blur images are often cap-
tured due to capsule endoscopes’ short depths. These degrada-

tions in image quality can increase the difficulty of providing 
accurate diagnoses. The computational processing of these 
images can correct the fundamental problem of CE (Fig. 1).

Noise is an inevitable problem in imaging systems. The 
hardware limitations of commercially available capsule en-
doscopes can produce noisy images that need to be fixed by 
post-procedural corrections. Classical noise suppression meth-
ods, including the use of bilateral filters and Gaussian blur 
filters, may produce erroneous and unusual CE results.5 The 
ability to reduce noise while maintaining the details of images 
is required for CE. Non-local means filters, adaptive median 
(AM) filters, block-matching and 3D filtering, and K-nearest 
neighbor filters have been compared in terms of their endos-
copy-image correcting abilities. The AM filter, particularly, 
showed better results in reducing impulse noise while pre-
serving image details than other 3 methods. Gopi et al. have 
proposed double density dual-tree complex wavelet transform 
(DDDT-CWT) methods for reducing noise of images (Table 
1).6 These authors first converted images into YCbCr color 
spaces. They then applied a DDDT-CWT-based grayscale 

Fig. 1. Examples of deblurred capsule endoscopy images using computer vision technology. The two images on the left side with blur were obtained directly from 
one of the capsule endoscope’s cameras. The blur of images is corrected, as shown on the right side, using depth information measured with two cameras at different 
angles.

Table 1. Computer Vision Technologies for the Enhancement of Capsule Endoscopy Images

Study Suggested algorithm Purpose Outcome

Gopi et al.6 DDDT-CWT Noise reduction Improved PSNR and SSIM than other three 
algorithms

Liu et al.7 TV minimization on MFISTA/FGP frame-
work

De-blurring Improved PSNR for the simulation results of 
CE images

Peng et al.8 Synthesis from DPM with aligned nearby 
sharp frames

De-blurring Improved SSD errors, showing experimental 
result on video sample

Duda et al.9 Average of upsampled and registered low-res-
olution images

De-blurring Improved PSNR

Singh et al.12 Interpolation function using DWT De-blurring Improved PSNR, MSE, and ME

Wang et al.13 Adaptive dictionary pair learning De-blurring Improved PSNR for the dataset of CE images

CE, capsule endoscopy; DDDT-CWT, double density dual-tree complex wavelet transform; DPM, direct patch matching; DWT, discrete 
wavelet transform; FGP, fast gradient projection; ME, maximum error; MFISTA, monotone fast iterative shrinkage/thresholding algorithm; 
MSE, mean square error; PSNR, peak signal-to-noise ratio; SSD, sum of squared differences; SSIM, structural similarity index.
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noise reduction method separately for each color spaces. They 
demonstrated the performance of DDDT-CWT by compar-
ing the DDDT-CWT method to three other methods. 

Capsule endoscopes are usually equipped with fisheye 
lenses that have small depths of field. Blurred images may be 
obtained due to fast camera motions with low frame rates 
and the use of the wrong lens focus. Liu et al. have introduced 
a deblurring method that uses total variation minimization 
framework and the monotone fast iterative shrinkage/thresh-
olding technique combined with a fast gradient projection 
algorithm (Table 1).7 They demonstrated the effectiveness 
of this algorithm by presenting the simulation results of im-
ages that had noise and blur experimentally added to them. 
Furthermore, blurry video frames can be corrected by using 
synthesized images with references to nearby sharp frames. 
Peng et al. have proposed a synthesis method that follows a 
non-parametric mesh-based motion model to align sharp 
frames with blurry frames.8 Various endoscopic video samples 
with blurred frames can be sufficiently corrected with their 
method.

Capsule endoscopes are restricted in terms of size and data 
transmission bandwidth. There is a limit to applying better 
optical or imaging sensors to capture high resolution images. 
The computational resolution enhancement of images after 

transmission is an efficient method for obtaining accurate 
diagnoses. The algorithm proposed by Duda et al. was simpler 
than other methods.9 It can be calculated in real-time.9 They 
averaged upsampling and registered low-resolution image 
sequences. Häfner et al. have introduced a method to prevent 
the over-sharpening problem that occurs in the super-reso-
lution process and evaluated their method in the context of 
colonic polyp classification.10,11 In addition, Singh et al. have 
introduced a method of interpolation function using discrete 
wavelet transform.12 Their algorithm showed superior results 
in enhancing endoscopic images over other traditional image 
super-resolution techniques.12 Wang et al. have also proposed 
an adaptive dictionary pair learning technique.13 They formed 
the dictionary pair by selecting relevant normalized patches 
of high-resolution images and low-resolution images. Their 
method can restore the textures and edges of CE images effec-
tively.

Depth sensing for three-
dimensional interpretation

The depth of images can provide additional information 
about a subject. However, commonly used endoscopic imag-

Table 2. Computer Vision Technologies for Depth Sensing and Capsule Endoscope Localization 

Study Suggested algorithm Purpose Outcome

Karargyris et al.14 Shape-from-shading Depth sensing Create three dimensional-surfaced CE videos

Fan et al.15 SIFT, epipolar geometry Depth sensing Three-dimensional reconstruction of the GI tract’s inner 
surfaces from CE images

Park et al.16 Stereo-type capsule endoscope, 
direct attenuation model

Depth sensing Create three-dimensional depth map, size estimation for 
lesions observed in stereo-type CE images

Turan et al.24 Vision-based SLAM, Shape-
from-shading

Capsule localiza-
tion

Improved RMSE for the three-dimensional reconstruc-
tion of stomach model and capsule trajectory length

CE, capsule endoscopy; GI, gastrointestinal; RMSE, root mean square error; SIFT, scale invariant feature transform; SLAM, simultaneous 
localization and mapping.

Fig. 2. Depth map and three-dimensional reconstruction sample of a capsule endoscope with a stereo-camera. Depth maps are calculated with capsule endoscope 
stereo-cameras. Bright pixels on the second image from left indicate that farther than dark ones. The depth information allows us to construct three-dimensional mod-
els of the structure, as shown the two images on the right side.
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ing systems produce flat images without depth information. 
Depth information can be obtained by the computerized 
analysis of endoscopic images. Various signals, including fo-
cus, shading, and motion, can be used for depth estimation. 
The Shape-from-X technique is named after how it can use 
various types of signals for the purpose. Karargyris et al. have 
developed a Shape-from-Shading technique for CE (Table 
2).14 They reconstructed the three dimensional-surfaced video 
frames of protruding features. Moreover, the Shape-from-Mo-
tion technique can take a video sequence as input and recover 
camera motion and geometric structures and Fan et al. have 
adopted this technique for constructing three-dimensional 
meshes through Delaunay triangulation.15

Recently developed capsule endoscopes with stereo-vision 

can accurately and robustly estimate depth maps from the 
gastrointestinal tract. Park et al. have used a novel capsule 
endoscope consisting of two cameras for depth-sensing and 
three-dimensionally rendering intestinal structures (Fig. 2).16 
They can also measure the size of lesions in a large bowel 
phantom model accurately.

SLAM for the exact localization 
of capsule endoscopes

The exact location of lesions is important for determining 
the subsequent interventions of CE. The three-dimensional 
position of capsule endoscopes in the abdominal cavity can 

Fig. 3. Scheme of automated lesion detection for capsule endoscopy images using Deep-running. The input images are numerically weighted via the hidden layers 
of large datasets. The image with the most weight is selected on the output layer.

Output LayerInput Layer Hidden Layer 01 Hidden Layer 02

Table 3. Deep Learning-Based Computer Vision Technologies for Analyzing Capsule Endoscopy Images

Study No. of images for training No. of images for testing Outcome

Zou et al.37 60,000 15,000 Classify CE images according to the organ of origin, accuracy: 95%

Jia et al.38 8,200 (2,050 positives) 1,800 (800 positives) Bleeding detection for annotated CE images, F1 score: 0.9955a)

CE, capsule endoscopy.
a)The harmonic average of the precision and recall, F1=	2×Precision×Recall .
	 Precision+Recall
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be obtained with the external sensor arrays of a CE system.17 
However, the three-dimensional spatial position of capsule 
endoscopes does not represent its intraluminal location in the 
gastrointestinal tract. It is necessary to track the trajectory of 
capsule endoscopes and measure their distance from specific 
landmarks of the intestine in order to determine their intralu-
minal location. The analysis of the color and texture of images 
can help divide CE videos into specific regions and estimate 
the motion of capsule endoscopes, including their rotation 
and displacement.18-21

The intestine has a dynamic environment due to continuous 
peristalsis. Its internal surface also has many textureless re-
gions. To overcome such circumstantial disadvantages, SLAM 
technology that can simultaneously perform camera position 
estimations and three-dimensional reconstructions can be 
applied. Mahmoud et al. have tracked the specific points of 
organs using epipolar geometry.22,23 The information from 
specific points using two different perspectives may be suc-
cessfully used to reconstruct a semi-dense map of organs.22,23 
Moreover, a recent non-rigid map fusion-based direct SLAM 
method has achieved high accuracy for the extensive evalu-
ation of pose estimation and map reconstruction (Table 2).24 
By analyzing shapes and shades, vision-based SLAM methods 
can add depth information for CE images. Furthermore, the 
experimental results of image reconstruction have suggested 
the effectiveness of both looping the trajectory of capsule en-
doscopes and scanning the inner surface of organs.

Automated lesion detection for 
reducing review time

CE image analysis requires long and insipid review times. 
In addition, only a small fraction of CE images contains clin-
ically significant lesions.25 These long review times can lead to 
high-lesion miss rates, even if interpretations are performed 
by well-trained professionals.26 Choosing the appropriate im-
ages to review will shorten the review time and contribute to 
providing accurate diagnoses. However, the automatic detec-
tion of pathology using CE has long been a challenge. Recent 
studies regarding the analysis of the color and texture of im-
ages have shown adequate results in discovering hemorrhages 
and other representative lesions.27-32

Since the introduction of deep learning methods to comput-
er vision, image recognition performance on large scale data-
sets has been greatly improved (Fig. 3). Deep learning-based 
image recognition technology has been applied to endoscopic 
image analysis and has shown surprising results in pathology 
detection.33-36 Zou et al. have analyzed 75,000 images with a 
Convolutional Neural Networks-based method to categorize 

images into organs of origin (Table 3).37 For detecting polyps 
and classifying normal CE images, a deep learning-based 
Stacked Sparse AutoEncoder method has shown improved 
pathology detection results for 10,000 images.38 Recent works 
in deep-learning have shown better performance. However, 
deep-learning methods need large datasets to overcome the 
fundamental overfitting problem.39

Conclusions

The computational analysis of images can improve the 
clinical yield of CE without the assistance of mechanical aug-
mentation. Image enhancement techniques can correct errors 
and improve the quality of images, depth information can 
used to measure lesions and track the movement of capsule 
endoscopes, and automated lesion recognition can reduce 
CE image review times. Moreover, the recently introduced 
stereo-vision capsule endoscope and deep-learning methods 
in computer vision can lead to the outstanding improvement 
of CE image analysis. Lastly, the close collaboration between 
medical and IT professionals would enable CE to achieve 
higher diagnostic yields.
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