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Tuberculosis (TB) is one of the leading causes of adult death in the Asia-Pacific Region, 
including Indonesia. As an infectious disease caused by Mycobacterium tuberculosis
(MTB), TB remains a major public health issue especially in developing nations due 
to the lack of adequate diagnostic testing facilities. Diagnosis of TB has entered an era 
of molecular detection that provides faster and more cost-effective methods to diagnose 
and confirm drug resistance in TB cases, meanwhile, diagnosis by conventional culture 
systems requires several weeks. New advances in the molecular detection of TB, includ-
ing the faster and simpler nucleic acid amplification test (NAAT) and whole-genome 
sequencing (WGS), have resulted in a shorter time for diagnosis and, therefore, faster 
TB treatments. In this review, we explored the current findings on molecular diagnosis 
of TB and drug-resistant TB to see how this advancement could be integrated into public 
health systems in order to control TB.
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INTRODUCTION

In the Global Tuberculosis Report 2014 published by the 
World Health Organization (WHO), among the 249,866,000 
Indonesian people, it was estimated that the epidemio-
logical burden of tuberculosis (TB) per 100,000 populations 
was: 272 of prevalence (range 138-450); 183 of incidence 
(range 164-207); and 64 of mortality (range 14-37).1 
Recently, a genotyping study of Mycobacterium tuber-
culosis (MTB) was performed in Indonesia to reveal the TB 
molecular epidemiology and showed a high genetic diver-
sity that varied by geographical aspects and found that the 
Beijing strain was the predominant strain in Indonesia.2

Fast and accurate detection of the pathogen and its drug 
susceptibility patterns is crucial for treatment initiation 
and disease control.3 New techniques are available to opti-
mize the culture medium including optimization of the cul-
ture system; early growth detection; strict control of oxygen 
tension; and the utilization of matrix-assisted laser de-
sorption/ionization time-of-flight mass spectrometry 

(MALDI-TOF-MS) for identification.4 Advancements in 
molecular methods for MTB detection has shortened the 
time to diagnosis to a few days, whereas diagnosis by con-
ventional culture systems needs several weeks.5,6 The ma-
jority of molecular tests have been aimed at the detection 
of MTB specific nucleic acids, both in DNA and RNA, by us-
ing amplification techniques such as polymerase chain re-
action (PCR), and detection of genes mutation that are re-
lated with the resistance to anti-TB drugs by sequencing 
or nucleic acid hybridization.7 Moreover, the WHO has an-
nounced the need for diagnostic options that are a spu-
tum-based replacement test for smear microscopy, a 
non-sputum-based biomarker test that is resource-ad-
justed at facilities below microscopy laboratories, a simple 
initial test for first-contact care providers as a rule-out test, 
and a fast drug sensitivity test at the microscopy laboratory 
level.8 In middle- and high-income countries, development 
continued with innovations in microscopy (for example, 
light emitting diode [LED] microscopes), MTB culture sys-
tems (for example, rapid automated liquid culture sys-
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FIG. 1. The role of nucleic acid amplifi-
cation test (NAAT) in the diagnosis al-
gorithm of TB. TB: tuberculosis, NAAT:
nucleic acid amplification test, NTM: 
nontuberculous mycobacterium.

tems, like the Becton Dickinson MGIT 960), nucleic acid 
amplification systems line probe assays and automated 
systems, such as the Cepheid XpertⓇ MTB/RIF system 
(Cepheid, Inc., Sunnyvale, CA, USA).9 In the next section, 
we will discuss the role of the nucleic acid amplification test 
(NAAT) and whole-genome sequencing (WGS) in the diag-
nosis of TB, specimens transport medium technology, my-
cobacterial load detection assays, serological diagnosis of 
active TB, and molecular diagnostic of multi-drug re-
sistant TB (MDR-TB).

NUCLEIC ACID AMPLIFICATION TEST (NAAT)

Because the conventional bacteriological diagnosis of 
TB has several limitations, the NAAT has emerged as a po-
tential alternative.10 The NAAT systems, with rapid 
turn-around times, facilitate testing and treatment ini-
tiation in the same visit and, therefore, loss to follow-up cas-
es can be reduced.11 Most NAAT assays detect the myco-
bacterial insertion element IS6110 for the identification of 
the MTB complex organisms.12 NAAT detects MTB riboso-
mal RNA or DNA directly from sputum specimens, both the 
acid-fast bacilli (AFB) smear-positive and AFB 
smear-negative.13 The NAAT showed very high sensitivity 
in sputum smear-positive patients and around 61 to 76% 
sensitivity in patients with smear-negative sputum.11 
Currently, the NAAT that is endorsed by the WHO is the 
Xpert/RIF MTB assay.14 The other two NAATs, the 
Amplified Mycobacterium Tuberculosis Direct (MTD) Test 
(Gen-Probe, Inc),15-17 and Amplicor Mycobacterium tuber-
culosis Test (Roche Molecular Systems, Inc),18-20 have also 
been approved by the Food and Drug Administration (FDA) 
for testing respiratory AFB smear-positive specimens.21 
Other commercial NAATs are also available, including the 
loop-mediated isothermal amplification-based MTB de-
tection system,22-24 the cross-priming amplification-based 
TB diagnostic system,25,26 and the GenedriveⓇ Mycobacte-
rium tuberculosis iDⓇ.27 

In multi-bacillary diseases with a high mycobacterial 
load, a positive AFB smear with a positive NAAT would in-
dicate active tuberculosis whereas a positive AFB smear 
with a negative NAAT in the absence of inhibitors would 
indicate nontuberculous mycobacterial (NTM) disease.28 If 
the culture was positive in the above case, the physician 
could consider the patient as a bacteriologically confirmed 
case of TB.1 A NAAT could determine whether AFB smear- 
positive patients had TB or not.29 Moreover, if the NAAT 
result is positive but the AFB smear result is negative, the 
decision to begin anti-TB treatment would rely on the clin-
ical judgment while awaiting culture results.30 According 
to Centers for Disease Control (CDC), if the sputum is 
smear-negative and the NAAT also negative, an additional 
specimen should be tested with NAAT.31 However, if the 
culture results detected MTB bacteria growth, then the pa-
tient could also be classified as bacteriologically confirmed 
for having pulmonary TB. Finally, if the AFB smear, the 
NAAT, and the MTB culture showed negative results, the 
physician could classify the patients as a clinically diag-
nosed case of TB or consider another diagnosis. Fig. 1 de-
scribed the algorithm of the NAAT in the diagnosis of TB 
that is in line with the recommendation of both the WHO 
and the CDC. 

In locations where the rate of cultures positive for TB is 
low, it might be more efficient to limit the NAAT to cases 
with positive smear results; on the other hand, in locations 
where TB cases are high, a NAAT should be used in cases 
with negative smear results.32 A meta-analysis that in-
cluded 125 studies showed that a commercial NAAT alone 
should not replace conventional tests for diagnosing pul-
monary TB.33

XPERT MTB/RIF ASSAY

The Xpert MTB/RIF assay is an nuclear acid amplifica-
tion-based test using a cartridge based on the GeneXpert 
Instrument System.34 The basis of the Xpert MTB/RIF as-
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FIG. 2. Workflow of whole-genome se-
quencing from specimen processing un-
til diagnostic report [Reprinted by per-
mission from Macmillan Publishers 
Ltd: Nature Review Genetics 15: 49-55 
copyright (2014)].

say is a real-time PCR that can be used to detect DNA se-
quences specific to the MTB in sputum samples.35 a ingle 
Xpert MTB/RIF test directly from sputum can detect 99% 
of smear-positive patients and more than 80% of 
smear-negative cases.36 According to the WHO in 2013, a 
Xpert MTB/RIF assay could be used for: an add-on test fol-
lowing microscopic TB examination; a replacement exami-
nation for AFB smear microscopy; detection of MTB in both 
AFB smear-positive and smear-negative culture-positive 
cases; detection of MTB in pleural in pleural fluid; de-
tection of MTB in lymph node in samples from biopsy or 
fine-needle aspiration; detection of MTB in gastric fluid; 
detection of MTB in samples of cerebrospinal fluid; and de-
tection of MTB in tissue samples.14 In 2014, the WHO stat-
ed that the Xpert MTB/RIF assay could be used as the ini-
tial diagnostic test in all subjects suspected on having pul-
monary TB.37

The Xpert MTB/RIF assay detects rifampicin resistance 
by PCR amplification of the 81-bp fragment of the MTB 
rpoB gene and subsequent probing of this region for ri-
fampicin resistant-associated mutations and the results 
can be obtained within 2 hours.38,39 The WHO recommends 
subjects who are at high risk of MDR-TB should always 
have their sputum checked using the Xpert MTB/RIF 
test.40 The Xpert MTB/RIF can be used as an initial test and 
as an add-on test after a negative AFB smear microscopy 
result.41 The use of Xpert MTB/RIF test has shortened the 
median time to treatment for AFB smear-negative TB from 
56 days (range 39-81 days) to 5 days (range 2-8 days).42 
However, Xpert MTB is more expensive than conventional 
sputum microscopy.43 Nevertheless, in one analysis, if a 
rapid sputum-based test unit cost is of US$ 2-4, it would 

be lower to a similar cost of the conventional sputum smear 
microscopy.44 In order to facilitate access, the Foundation 
for Innovative New Diagnostics (FIND) has negotiated sig-
nificant price reductions.45 Nevertheless, implementation 
of Xpert MTB/RIF would not be able to improve the control 
of drug-sensitive TB without improvements to the health 
system, especially as to reducing the initial loss to follow-up 
and reducing the time to treatment initiation.46

WHOLE-GENOME SEQUENCING (WGS)

Microbial genomics has allow us to investigate the or-
ganisms genetic markers that may impact treatment and 
infection prognosis.47 Whole-genome sequencing (WGS) is 
becoming an affordable and accessible method that can 
identify microevolution within MTB lineages as they are 
transmitted between hosts.48 Fig. 2 describes the workflow 
of WGS from specimen input until clinical diagnostic 
report. There are two classes of sequencers that exist: the 
first generation sequencer and the second generation 
(widely known as the next-generation sequencer [NGS]). 
The first generation sequencer is relatively slow, but has 
a high throughput and low cost (approximately $65 per bac-
terial genome). The second generation has a lower through-
put, higher cost (approximately $150 per genome in the 
case of the IlluminaⓇ MiSeq) and is able to sequence multi-
ple genomes in less than a day.49 Table 1 describes the prin-
ciples of the first generation sequencer and the next-gen-
eration sequencer.50-53

The WGS can detect various types of mutations better 
than the Xpert MTB assay. Moreover, WGS could avoid 
false positives when a polymorphism in the rifampicin-re-
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TABLE 1. Principles of first generation and next generation se-
quencer

First generation 
sequencer

Next-generation 
sequencer 

Principles 
and features 

This first generation of 
DNA sequencers are 
essentially automated 
electrophoresis systems
that detect the migra-
tion of labelled DNA 
fragments.50

Rapid generation of da-
ta by sequencing mas-
sive amounts of DNA 
in parallel using dive-
rse methodologies.52

Capable of genotyping of 
genetic markers where
only the length of a DNA
fragment(s) needs to be
determined.51

Constitute various str-
ategies that rely on a 
combination of tem-
plate preparation, se-
quencing and imag-
ing, and genome alig-
nment and assembly 
methods.53

sistance determining region (RRDR) of rpoB is detected.54 
WGS has not been used as a routine diagnostic tool for TB, 
partly because of the need to culture MTB for several weeks 
until an adequate amount of DNA can be extracted.55 
Culturing slow-growing MTB before DNA extraction is a 
major time-consuming step in WGS , therefore, workflow 
to extract DNA from frozen isolates without re-culturing 
is important.56 There is a reliable and low-cost DNA ex-
traction method from 1 mL of early positive mycobacterial 
growth indicator tube (MGIT) cultures that is enough for 
the WGS to identify mycobacterial species and predict anti-
biotic resistance in clinical samples.57 Recently, an im-
portant method that allows WGS without prior specimen 
culture has been discovered. The method utilizes MTB 
DNA-specific biotinylated RNA baits to capture full MTB 
genomes directly from non-cultured sputum samples.58 
WGS data can be obtained several weeks before the drug 
susceptibility test (DST) data is available.59 DNA sequenc-
ing could also be used to confirm rifampin resistance from 
Xpert MTB/RIF.60 However, with the price in the hundreds 
of dollars for this method, routine WGS for clinical speci-
mens is limited to high-income countries.61

SPECIMENS TRANSPORT MEDIUM TECHNOLOGY

Sputum samples processing at a central diagnostic labo-
ratory requires an efficient and safe system that is not com-
promised by potential prolonged transport times. 
Generally, a prolongation of sample storage results in re-
duced positivity of the target.62 Therefore, transport me-
dium technology plays an important role in the chain of TB 
diagnosis. The transport medium system consists of an 
MTB inactivation step and a DNA stabilization step with 
the goal to preserve the DNA quality and, at the same time, 
obtain high DNA output. Some of the known transport 
technologies are the PrimeStoreⓇ-Molecular Transport 

Medium (PS-MTM)63,64 and cetylpyridinium chloride 
(CPC).65 PS-MTM inactivates the MTB within the speci-
mens and stabilizes both the DNA/RNA at an ambient tem-
perature for further molecular processing and analysis.64 
As for the Xpert MTB assay, incubation of sputum with a 
sample reagent (SR) could maintain the sputum quality up 
to 72 h without a further decrease in MTB detection.66 

MYCOBACTERIAL LOAD DETECTION ASSAY

Quantification of the bacillary load has an important 
prognostic role in TB patients.67 There are several assays 
that can be used to quantify mycobacterial load, such as the 
BD ProbeTec system,68 and AdvanSure TB/NTM real-time 
PCR kit.69 Lee and colleagues evaluated the quantitative 
capability of the AdvanSure TB/NTM real-time PCR kit 
(LG Life Science, Korea) to determine the cycle threshold 
(Ct) for the mycobacterial burden.70 A cut-off Ct value of 
＜33.2 best-predicted stain positivity, with a sensitivity of 
95.0% and a specificity of 32.0%. These findings suggest the 
potential use of AdvanSure TB/NTM real-time PCR kits for 
quantitatively determining mycobacterial burden. Advan-
Sure TB/NTM real-time PCR could be used to detect 
Mycobacterium and distinguish whether it is MTB or the 
NTM because it used the IS6110 primer for the detection 
of MTB complex and rpoB gene specific primer and probe 
for the detection of NTM.71 However, this assay does not 
determine if there are viable Mycobacterium organisms 
that truly exist in the specimen. 

SEROLOGICAL DIAGNOSIS OF ACTIVE TB

Serological tests for TB are widely used in developing 
countries.72 In one study conducted in Indonesia, Senosa-
putra and colleagues found that plasma levels of an-
ti-α-crystallin (ACR), anti-lipoarabinomannan, anti-tre-
halose 6,6’-dimycolate, and anti-tubercular-glycolipid an-
tigen antibodies were higher in active TB patients com-
pared to those in the latent TB infection (LTBI) and control 
subjects.73 In another study, diverse IgG antibody re-
sponsiveness was demonstrated against five lipid anti-
gens: cord factor (trehalose 6,6’-dimycolate) (TDM-T), 
monoacyl phosphatidylinositol dimannoside (Ac-PIM2), 
trehalose monomycolate isolated from Mycobacterium bo-
vis Bacillus Calmette-Guérin (BCG) (TMM-T), trehalose 
monomycolate (TMM-M), and GPL-core from Mycobacte-
rium avium complex (MAC).74 However, a systematic re-
views of the diagnostic accuracy of serological tests suggest 
that these tests are inaccurate and imprecise for both pul-
monary and extra-pulmonary TB.75 The serological assay 
of TB is limited in determining whether a person has had 
a previous TB infection, therefore it cannot inform whether 
the person has an active TB infection. Moreover, the WHO 
strongly recommends that serological commercial tests 
should not be used for the diagnosis of clinical pulmonary 
and extra-pulmonary TB.76
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TABLE 2. Molecular diagnostic of mono-resistant and MDR-TB detection

Methods Purpose Reference

High-resolution melting curve analysis Rifampicin resistance 92
Sloppy molecular beacon melting temperature coding Rifampicin resistance 93
Nitrate reductase assay Rifampicin and isoniazid resistance 94-96
Colorimetric redox-indicator methods Rifampicin and isoniazid resistance 97, 98
PCR-single-strand conformational polymorphism 

(SSCP) method
Rifampicin resistance 77

Multi-PCR-SSCP method Rifampicin and isoniazid resistance 99
VerePLEX Biosystem Rifampicin and isoniazid resistance 100
Mycobacterial IDentification and Drug Resistance Screen 

(MID-DRS) assay
Rifampicin, isoniazid, and pyrazinamide resistance 101

Multiplex allele-specific PCR assay (MAS-PCR) Rifampicin resistance 102
Direct DNA sequencing analysis Rifampicin, isoniazid, pyrazinamide, and ethambutol 103

MOLECULAR DIAGNOSTIC OF MULTIDRUG 
RESISTANCE TUBERCULOSIS

The increasing incidence of drug-resistant, MDR 
(resistant to at least rifampicin and isoniazid), and ex-
tensively drug-resistant (XDR) (additionally resistant to a 
fluoroquinolone and kanamycin/amikacin/capreomycin) 
strains of MTB have been implicated as a major threat to 
TB control.77 Detection of drug resistance to both first- and 
second-line anti-TB drugs is a key component of TB control 
programs.78 Knowledge of the full drug susceptibility pro-
file would enable customized treatment to increase efficacy 
and avoid exposure to ineffective toxic drugs.79 Conventio-
nal phenotypic DST requires a minimum of 2 weeks: one 
week for the initial detection of microbial growth and an-
other week to assess critical concentrations of first-line an-
ti-TB drugs.80 Obviously, there is an urgent demand for 
new, rapid, and accurate DST methods.81 A large, multina-
tional field trial, to compare the performance of the Line 
Probe Assay (LPA), PyrosequencingⓇ (PSQ), and Micro-
scopic Observation of Drug Susceptibility (MODS) and 
compared to the BACTEC MGIT960 as reference standard 
to detect MDR/XDR-TB directly from patient sputum sam-
ples was performed, and the results indicated that mean 
time-to-result was 1.1 days for LPA and PSQ, 14.3 days for 
MODS, and 24.7 days for MGIT.82 

LPAs are available in several methods, such as the AID 
LPA (AID Diagnostika, Germany),83 the Hain LPA (Hain 
Lifescience, Germany),84 the INNO LPA (Innogenetics, 
Belgium),85 the GenoType MTBDRplus,86,87 and the Geno-
Type MTBDRsl.88 The INNO LPA and GenoType MTBDR-
plus have been assessed and validated by the WHO in their 
Expert Group Report.89 The AID LPA was designed to de-
tect the most prevalent mutations that confer resistance 
to rifampin, isoniazid, streptomycin, capreomycin, amika-
cin, ethambutol, and fluoroquinolones.90 Meanwhile, a 
comparison study suggested that MTBDRplus LPA was 
superior compared to Xpert MTB/RIF in the detection of ri-
fampin-monoresistant MTB in terms of sensitivity.91 
Table 2 summarizes the molecular diagnostic of mono-re-

sistant and MDR-TB detection.77,92-103 Based on the list, dif-
ferent methods could explore different resistance-asso-
ciated mutations, therefore variation of methods allows us 
to detect various resistances. 

The PSQ method consists of seven PSQ assays for the 
mutations detection of the genes or promoter regions, 
which are commonly responsible for resistance to the first 
line and second line drugs.104,105 In one study, the correla-
tions between the PSQ results and the phenotypic DST re-
sults were 98.7% for rifampin, 94.3% for isoniazid, 99.2% 
for capreomycin, 99.2% for amikacin, 96.4% for kanamy-
cin, and 97.6% for quinolones (levofloxacin, ofloxacin, or 
moxifloxacin).106 

GenoType MTBDRsl (MTBDRsl) is the only molecular 
test that is commercially-available for detecting resistance 
to the fluoroquinolones (levofloxacin, ofloxacin, and moxi-
floxacin) and the second-line injectable drugs (kanamycin, 
capreomycin, and amikacin).107 MTBDRsl detects rrs and 
gyrA genes mutations that confers resistance to injectable 
antibiotics and fluoroquinolones,, respectively.108 Moreover, 
MTBDRsl also capable of detecting embB mutations that 
confer resistance to ethambuthol.109 The sensitivity and 
specificity of the MTBDRsl test were as follows: 87% and 
96%, respectively, for fluoroquinolones; 77% and 100%, re-
spectively, for kanamycin; 80% and 98%, respectively, for 
capreomycin; 100% and 100%, respectively, for amikacin; 
and 57% and 92%, respectively, for ethambutol.110 In one 
meta-analysis, it was reported that MTBDRsl showed good 
accuracy for detecting drug resistance to fluoroquinolones, 
capreomycin, and amikacin, but it may not be an appro-
priate choice for ethambutol and kanamycin.111 However, 
despite the advances in the resistance detection tools, key 
challenges still exist including difficulties in documenting 
the impact on programmatic performance, long-term fi-
nancial support, and a limited number of scientific publi-
cations.112

CONCLUSIONS 

More rapid and appropriate TB detection and treatment 
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leads to reduced hospitalization and complications, as well 
as avoiding unnecessary treatment and isolation of 
false-positive cases.113 The molecular diagnostic testing for 
active pulmonary TB is promising for the future and should 
be encouraged in a way that could improve population 
health.114 Consideration is given to the requirements of fu-
ture diagnostic tests and how these should be evaluated for 
their diagnostic accuracy and operational feasibility, and 
ultimately their clinical impact.115
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