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 As a novel therapeutic module, the dendritic cell (DC) based cancer vaccine has been recognized with 

great hope in eliminating cancers, including minimal residual cells, without harming normal tissue. A key 

factor in initiating and operating the immune system against foreign bodies including tumor cells, the DC 

has been regarded as the next possible breakthrough in new cancer therapy. However, the results of more 

than 15 years of clinical studies with DC vaccine revealed the difficulties fulfilling this expectation. Evidence 

has disclosed that the DC activation required for proper tumor-specific effector CD4
+
 and CD8

+
 T cell stimulation 

is inhibited in the micro-environment of cancer. Studies have further reported that DC phenotypes in cancer 

tissue and draining lymph nodes are mostly immature, which results in regulatory immune responses. Also, 

the existence of myeloid derived suppressor cells (MDSCs) and tumor associated macrophages (TAMs) adversely 

affect both DC function and immune suppression in the cancer-environment. In this review, the impact of 

an inflammatory micro-environment induced by cancer on the effect of DC-based cancer immunotherapy 

and the possibility of a clinical efficacy improvement are discussed.
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Introduction

　The role of DC is at the center of the immune system 

by initiating, progressing and regulating the responses 

against pathogens including tumors. After the first successful 

clinical achievement in DC-based immunotherapy trials 

in follicular lymphoma and melanoma in the mid-1990s,1,2 

the DC vaccine has been successfully used to treat patients 

with melanoma, lymphoma and renal cell carcinoma.3-7 

However clinical expectations have not been fulfilled due 

to an overall clinical response rates of under 10∼15%, 

the usual response rates observed in various types of 

immunotherapies.
6-11

 Although the clinical expectation has 

not been satisfied, the outcomes of many clinical trials 

with tumor antigen-loaded conventional DCs have provided 

proof that therapeutic immunity can be elicited.
12-14

 The 

clinical data has helped to establish a standard for properly 

activated DCs with appropriate form and doses of loading 

antigens. These activated DCs can migrate to the lymph 

nodes which then initiate and expand tumor-specific CD4+ 

and CD8+ T cell responses and later induce meaningful 

therapeutic responses in patients. 

　Several mechanisms are involved in unsatisfactory anti- 

tumor responses of DC vaccine in the clinic. Mechanisms 

include; the presence of keep leukocytes like MDSCs, 

TAMs with or without the presence of constitutive 
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p-STAT3 signaling, immunoediting, abnormal tumor 

vasculature inhibiting effector T cell entry or tumor cell 

interaction with the stromal environment.15-19 On the other 

hand, in order to improve the DC vaccine clinical efficacy, 

it is critical to control the therapeutic DC quality and 

standardize the vaccine design and protocol. Looking at 

this very view, several investigators have analyzed DC 

vaccine problems in their publications.4,6,12,14,20-22 Thus, 

without further discussing about the DC vaccine quality, 

cancer or host side hindering factors and the possibility 

of improving antitumor immune-therapeutic efficacy will 

be discussed in this review. 

DCs in cancer patients

　DCs are lymphocytes in the immune system which 

control overall immunity by interacting with other immune 

cells, including T cell, B cell and NK cells.
6,23-24

 DCs 

themselves are a complicated system consisting of various 

anatomic localizations, subsets and functions that are 

correlated with one another. DCs control the immune 

system, not only in stimulatory but also in regulatory 

immunity as professional APC.22,24 In cancer tissues or 

cancer-draining lymph nodes, DCs are found as resting, 

non-activated and immature cells.25-29 Cancer-induced 

immunosuppressive milieu generally causes a decrease in 

the numbers of conventional myeloid DCs in patients.
25

 

In rodent models, immature myeloid DCs promote the 

expansion of regulatory T cells (Treg) in tumor-draining 

lymph nodes, which are associated with tumor progression 

in a TGF-β dependent fashion. Immunosuppressive factors, 

mostly pro-inflammatory molecules from the cancer micro- 

environment, target endogenous DCs in patients resulting 

in dysfunction and impaired development of tumor-specific 

effector lymphocytes.30-31 Typical inflammatory mediators 

of tumor-induced DC dysfunctions include; IL-10, TGF-β, 

VEGF, IL-6 and prostanoids such as PGE2-6.
32-35 These 

mediators are produced from either the cancer itself or 

the infiltrated host factors including MDSCs and TAMs. 

In this milieu, DCs are having trouble maturing, expressing 

the co-stimulatory molecules needed for T cell activation, 

and producing the cytokines needed to support tumor 

specific effector T cell activation and survival.36-39 Cancer- 

related malfunctions of DCs are noted in patients with 

ovarian, breast, melanoma, renal cell, prostate carcinoma,40-43 

and in the blood of head & neck, lung and breast cancer 

patients.
36,44

 The major intracellular signaling pathway 

required for DC activation and final maturation in the 

immunosuppressive milieu of the cancer micro-environment 

is STAT3.
45

 Oncogene or cytokine-induced over-expression 

of the STAT3 protein in cancer cells up-regulates the 

expression of several immunosuppressive cytokines, including 

IL-10 and TGF-β, and suppresses Th1 cell immune 

responses.15,46-47 STAT3 expression from cancer cells leads 

to STAT3 production by a variety of leukocytes, including 

DCs. STAT3 expression in tumor-associated DCs causes 

reduced expression of co-stimulatory and MHC II molecules, 

and correlates with an accumulation of immature DCs, 

which may induce Treg,
48

 an inhibitor of effector T cell 

function. Anti-tumor effects of the STAT3 inhibitor, 

Cucurbitacin I was observed in mice, human cancer cell 

lines, and in vivo mouse tumor models.
49-50

 Although 

dysfunctional tumor-associated DCs may support immune 

suppression and promote oncogenesis, it may be possible 

to evoke therapeutic antitumor activity in these DCs by 

molecularly defined triggers of DC maturation, causing 

induction of tumor-specific effector T cells.

Inflammatory nature of tumor 

micro-environment

　The development of about 15∼20% of malignancies 

worldwide are known to be related to chronic inflammation, 

including esophageal, gastric, hepatic, pancreatic, and 

colorectal cancer.51 Inflammatory mediators produced by 

the cancer cell can create an inflammatory micro-environment 

and cause both leukocyte recruitment and angiogenesis.52-54 

Also, these inflammatory milieus can help tumor cell 

survival, motility and chemotaxis. For example, breast 

cancer cells are known to produce the inflammatory 
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chemokines CCL2 and CCL5, which are poorly expressed 

in normal breast cells. These chemokines recruit TAMS 

and inhibit potential antitumor effector T cells.55 In other 

words, the immunosuppressive tumor micro-environment 

is created by the inflammatory nature of tumors and an 

infiltration of assorted leukocytes, in particular MDSCs 

and TAMs. This infiltration leads to the suppression of 

the DC-induced effectors, CD4+ and CD8+ T cell responses 

and the induction of Treg.
25

MDSCs in the tumor micro-environment

　The mechanisms by which chronic inflammation promotes 

the onset and development of tumors are classified into 

non-immunological and immunological ways.
56

 The non- 

immune mechanisms include 1) the production of reactive 

oxygen species which cause DNA mutation, 2) the 

production of pro-angiogenic factors, like VEGF which 

promote tumor neo-vascularization, 3) the production of 

matrix metalloproteases which facilitate invasion and 

metastasis.
57-59

 The predominant immune mechanism is the 

disturbance of myelopoiesis and hemopoiesis, which causes 

a deficiency in APCs and in dysfunctional cell-mediated 

antitumor immunity. A key molecule in this deficiency is 

MDSC.25 In individuals with an established cancer, MDSCs 

are a major factor in preventing the efficacy of cancer 

vaccines that require an immune-competent host.
60

 In most 

cancer patients and experimental mice tumor settings, the 

accumulation of MDSCs in the blood, lymph nodes, bone 

marrow and tumor sites is observed. These cells are known 

to inhibit both adoptive and innate immunity. MDSC 

induction and recruitment into the tumor site is mediated 

by tumor-secreted and host-secreted factors, many of which 

are pro-inflammatory molecules. Thus it may be said that 

inflammation promotes the accumulation of MDSCs, which 

down-regulate immune surveillance and antitumor 

immunity, thereby facilitating tumor growth.56

　Identification of MDSCs in cancer patients and experi-

mental mice were analyzed by the activity in T cell supp-

ression. In mice, MDSCs are characterized as Gr1+CD11b+ 

expressing cells. Gr1 includes Ly6C, a macrophage marker 

and Ly6G, a neutrophil marker. CD11b is the characteristic 

marker of macrohphage.56 In some subsets of MDSCs, 

several markers are ascribed, including the IL-4 and IL-13 

receptor alpha chain (IL-4Ra),61,62 F4/80, a macrophage 

marker,61,63,64 c-fms (CD115),64 and CD80.65 Among the 

MDSCs, mononuclear cells are defined as "monocytic" 

CD11b+Ly6G+/-Ly6Chigh, whereas "granulocytic/neutrophil- 

like" multilobed nuclei possessing cells are characterized 

by CD11b
+
Ly6G

+
Ly6C

low
.
63,66,67

 Immunosuppresive substances 

produced from MDSCs include arginase, inducible NO 

synthase, and/or ROS.68-72 Unlike mice, MDSC characteri-

zation in cancer patients is complicated but typically 

characterized by the phenotype CD11b+CD33+CD34+ 

CD14−HLA-DR− with various expressions of CD15 and 

other markers. Recent findings have identified CD14
+ 

HLA-DR−/low as a new MDSC subtype in melanoma and 

hepatoma patients.73-76 It is known that different tumors 

induce different subtypes of MDSCs in cancer patients.
73,74

 

Along with heterogeneity characterized by the surface 

phenotype, internal markers, morphology and suppressive 

substances in both mice and humans, MDSCs suppressed 

multiple immune effectors include; inhibition of CD4+ and 

CD8+ T cell functions,77-80 induction of Treg by secreting 

TGF-β, IL-10 or arginase,
64

 interaction with NKT cells 

to enhance tumor growth by suppressing antitumor 

immunity.81

Improvement of clinical efficacy of the DC 

vaccine

　Considering the inflammatory tumor micro-environment 

and dysfunctional DCs with suppressed-immunity in cancer 

patients, it is not surprising to see recent reports indicating 

that the cancer vaccine induced tumor-specific T cells is 

not necessarily associated with the induction of functional 

cytotoxic T lymphocytes, but instead leading to the 

undesirable activation and expansion of regulatory T cells.14 

Tumor antigen-induced immune responses are weak or 

ineffective, because unlike infectious pathogens, tumors do 
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not induce the strong enough inflammatory responses for 

the optimal activation of DCs. Thus, the primary purpose 

of a cancer vaccine is to overcome this defect by educating 

DCs with a stronger antigenic signal and providing optimal 

conditions for the maturation into potent immune- 

stimulatory APCs.22 In the immunosuppressive milieu in 

cancer patients, sufficient numbers of properly activated 

tumor-specific Th1 cells and CTLs are not generated despite 

ample expression of tumor-associated antigens in cancers. 

The effects of therapeutic cancer vaccines, including DC 

based therapy, can be expected to enhance by combination 

with the methods that overcome the immune-suppression 

associated with cancer. Such therapies include; 1) 

administration of STAT3 inhibitors, 2) local or systemic 

treatment with molecularly defined triggers of DC 

activation, such as TLR ligands and CD40 agonistic 

antibodies 3) treatment with monoclonal antibodies that 

block inhibitory co-stimulation pathways, CTLA-4, and 

PD-1 4) antibodies that enhance the T cell effector 

function, including OX40.13 Another therapeutic vacci-

nation protocol can combine improved DC vaccine with 

chemotherapy to exploit immunogenic chemotherapy regi-

mens.82 Conclusively, correcting the immunological balance 

in the cancer micro-environment from suppression to a 

tumor-rejecting condition may be the key factor in succeeding 

with a DC vaccine clinical trial.
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