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Plazomicin belongs to a new class of semisynthetic aminoglycosides that suppress 

bacterial protein synthesis. The US Food and Drug Administration has approved 

this antibacterial drug for use in adult patients with complicated urinary tract 

infections (cUTIs), such as pyelonephritis. The worldwide emergence of multidrug-

resistant (MDR) organisms has become a significant health issue. It is a promising 

alternative to carbapenems or β-lactam/β-lactamase inhibitors for treating cUTIs 

caused by MDR Enterobacterales. Plazomicin is primarily designed to overcome 

the common resistance mechanisms of pathogens. It has also demonstrated good 

in vitro efficacy against various resistant gram-negative pathogens. Plazomicin 

inhibits bacterial protein synthesis and exhibits rapid bactericidal efficacy against 

numerous extended-spectrum beta-lactamase (ESBL) producing, aminoglycoside- 

resistant, and carbapenem-resistant bacterial isolates. Similar to other amin-

oglycosides, plazomicin inhibits bacterial protein synthesis by attaching to the 30S 

ribosomal subunit of bacteria. Plazomicin also demonstrated a favorable minimum 

inhibitory concentration value compared to other aminoglycosides such as gentamicin, 

amikacin, and tobramycin. The commonly observed adverse effects of plazomicin 

include headache, hypertension, nausea, diarrhea, vomiting, and hypotension. In 

this review, we discuss the likelihood of using plazomicin to treat bacterial infections, 

focusing on its chemistry, mode of action pharmacokinetics, indications for treatment, 

adverse reactions, and safety profile.
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INTRODUCTION

Antibiotic resistance is a serious global crisis that affects public health (1). 

According to the recent statement of World Health Organization (WHO), the 

mortality rate from antimicrobial-resistant infections may reach 10 million by 2050 

(2). Plazomicin (formerly ACHN-490), an aminoglycoside (AG), has demonstrated 

efficacy against gram-negative pathogens that exhibit a broad array of resistance 

mechanisms (3). Plazomicin is effective against gram-positive pathogens, such as 

methicillin-resistant Staphylococcus aureus (including aminoglycoside-resistant strains), 
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and gram-negative pathogens, such as extended-spectrum beta-lactamase (ESBL), multidrug-resistant (MDR) Acinetobacter, 

MDR Pseudomonas, among other AG resistant pathogens (4). The increase in multidrug resistant pathogens has increased 

the demand for new drugs (5, 6). Novel antibiotics are required to treat infections because antibiotic resistance has a 

dangerous effect on community health (7). The limited availability of antibiotics for treating complicated MDR infections 

has created a need for a new antibacterial agents, such as plazomicin (3). Uncomplicated urinary tract infections (UTIs) are 

infections in the bladder and urethra which comprise the lower urinary tract. In contrast, complicated urinary tract 

infections (cUTIs) are UTIs occurring in the presence of a structural or functional abnormality of the urinary tract (8, 9). In 

the US, approximately 22% of UTIs are considered as cUTIs (8). Escherichia coli is the most common bacteria that causes 

cUTIs. However, Citrobacter, Enterobacter, Pseudomonas, Staphylococcus aureus, and others are isolated more often (6–

20%) in cUTIs than in uncomplicated UTIs (10). AGs are broad spectrum bactericidal antibiotics used to treat nosocomial 

respiratory tract infections and cUTIs (3). Plazomicin was approved by the United States Food and Drug Administration (US 

FDA) in June 2018 for treating cUTIs, including pyelonephritis (11). The Center for Disease Control and Prevention (CDC) 

estimated that approximately 2.8 million antimicrobial-resistsant cases are reported in the US annually, resulting in over 

35,000 deaths (12). In the CDCs’s 2019 antibiotic resistance threats report, 18 microorganisms were listed as serious and 

urgent threats to human health, majority of which were gram-negative microorganisms, including MDR Enterobacterales 

(12). Plazomicin was developed to overcome this resistance mechanism and has proven to be effective against MDR 

Enterobacteriaceae in vitro (13, 14). AGs are an alternative treatment option for cUTIs caused by MDR organisms. The 

surveillance data from US from 2014–2015 showed that approximately 80% of the carbapenem-resistant Enterobacteriaceae 

isolates tested positive for one or more aminoglycoside-modifying enzymes (AMEs). AGs such as gentamicin, amikacin, and 

tobramycin exhibited reduced activity against these isolates, with only 49.4%, 59.7%, and 0% susceptibility to gentamicin, 

amikacin, and tobramycin, respectively (15). Plazomicin suppresses protein synthesis in bacteria and exhibits efficient 

bactericidal efficacy against numerous ESBL producing and aminoglycoside- and carbapenem-resistant bacterial isolates 

(16). Unfortunately, there are few reviews of the literature on this topic. This review focuses on the clinical use of plazomicin in 

treating diseases caused by pathogens that are resistant to traditional antibiotics.

CHEMISTRY AND MODE OF ACTION

A new AG, plazomicin, is derived from sisomicin, a natural AG (Fig. 1) (17, 18). The molecular formula of plazomicin is 

C25H48N6O10 (19). The structure of plazomicin and other AGs are shown in in Fig. 2.

The aminoacyl-tRNA recognition site (A-site) of the 16S rRNA (a part of the 30S ribosomal subunit) is the binding site for 

AGs. Aminoglycosides are hydrophilic and cationic molecules that inhibit ribosomal protein synthesis in a concentration- 

dependent manner by interrupting nascent protein sequence elongation during translation (2, 7). Reportedly, AGs enter 

the cells of gram-negative bacteria through porin channels; moreover, it is considered that they may enter the cells by 

disrupting the outer lipopolysaccharide membrane (2). Like other AGs, plazomicin demonstrates antibacterial efficacy by 

attaching to the 30S ribosomal subunit of bacteria, resulting in the inhibition of bacterial protein synthesis (20). Although 

plazomicin has structural conformity with sisomicin, it exhibits some unique structural features (17). Plazomicin is distinguished 

from traditional AGs by three main structural modifications that confer protection against enzymatic deactivation by various 

AMEs (Fig. 3) (21, 22). Lack of hydroxyl group in position 3′ as well as 4′ shields plazomicin from two AMEs, one of them is 

O-nucleotidyltransferase ANT (4′) that affects tobramycin and amikacin. The other is O-phosphotransferase APH (3′), which 

only affects amikacin (21, 23). The incorporation of an unsaturated hydroxyethyl moiety at position 6 gives a protection 

against N-acetyltransferase AAC (6′) which is liable for resistance to gentamicin, amikacin, and tobramycin (21-23). Its 

structure contains a substitution at the N-1 position along with 4-amino-2-hydroxybutanoic acid. This substitution blocks 

ANT (2′′) and AAC (3) rendering them resistant to both tobramycin and gentamicin (23). The AAC (2′)-I (expressed 

chromosomally in some Providencia stuartii organisms) is the only identified AME among gram-negative organisms that 

exhibits activity against plazomicin (11). The structural differences in plazomicin can protect it from all types of clinically 
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relevant AMEs but not from 16S rRNA methyltransferases (11). Sometimes, these AMEs are observed in carbapenem- 

resistant and ESBL-producing Enterobacteriaceae, and the stability of plazomicin against these enzymes results in more 

enhanced susceptibility rates compared to other AGs (21).

The primary step in the penetration of AGs into the periplasm involves electrostatic attachment between the negatively 

charged cell membranes and positively charged AGs (19, 21, 24). Aerobic bacteria contain an oxygen-nitrogen-dependent 

electron transport chain that facilitates the transport of these molecules into the cell (19). The membrane-bound electron 

transport system is absent in obligate anaerobes, resulting in bacterial resistance (19). By targeting the aminoacyl-tRNA 

acceptance site of the 16S rRNA (ribosomal RNA), AGs suppress protein synthesis by interacting with three unpaired 

adenine residues in the decoding loop, eradicating the non-complementary adenine residues and locking them into a 

‘flipped-out’ orientation similar to that seen during mRNA (messenger RNA) decoding (25, 26). The proofreading 

capabilities of ribosomes are reduced by these interactions, resulting in an increase in mistranslation and the induction of 

immature termination of peptide synthesis, which causes cell death (27, 28). As an AG derivative, plazomicin suppresses 

bacterial protein synthesis and shows dose dependent bactericidal action (27). In addition, the in vitro synergistic action of 

plazomicin has been reported when administered in combination with doripenem, cefepime, piperacillin-tazobactam, or 

imipenem against P. aeruginosa, and when combined with ceftobiprole or daptomycin against hetero-resistant 

vancomycin-intermediate S. aureus (hVISA), vancomycin-resistant S. aureus (VRSA), and methicillin-resistant S. aureus 

(MRSA) (27, 29).

Fig. 1. Chemical structure of sisomicin and plazomicin.

Fig. 2. Chemical structure of other aminoglycosides.
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MICROBIOLOGY

Commonly prescribed AGs (tobramycin, gentamicin, and amikacin) against gram-positive and -negative pathogens, 

including various types of AME and β-lactamase producing organisms, are shown in Tables 1 and 2. The comparative 

minimum inhibitory concentration (MIC) values of plazomicin and other AGs against gram-negative bacteria (Francisella 

tularensis and Yersinia pestis, among others), common gram-negative aerobes and some anaerobes (Prevotella spp. and 

Bacteroides only) are presented in Table 1 (30-36). Table 2 (37) shows the effects of selected AMEs on the MIC of 

plazomicin and other traditional AGs. The susceptibility break point is ≤ 2 mg/L (FDA breakpoint) for plazomicin (38). The 

equivalent activity of plazomicin was demonstrated against Klebsiella pneumonia, non-ESBL producing E. coli, and broad 

spectrum ESBL producing E. coli with 90% of isolates suppressed by an MIC value of ≤ 1 mg/L (38). Other AGs, such as 

tobramycin, gentamicin, and amikacin were more effective against Pseudomonas aeruginosa and Acinetobacter baumannii 

compared to plazomicin. Plazomicin is also less effective against these bacteria when its efficacy is compared against 

Enterobacteriaceae (38). Plazomicin against carbapenem-resistant Enterobacteriaceae (CRE) exhibited MIC90 and MIC50 

values of 1 and 0.5 mg/L in the U.S, respectively (39). In contrast, it showed MIC90 and MIC50 values of 128 and 0.25 mg/L, 

in European and surrounding countries, respectively (39). Plazomicin against carbapenem susceptible A. baumannii (n = 8) 

and carbapenem resistant A. baumannii (n = 69) showed MIC values ranging from 0.5–16 μg/mL and 0.5–64 μg/mL, 

respectively (40). The AG inactivation by beta-lactam antibiotics has been observed in vivo and in vitro (41). Similar to other 

AGs, plazomicin showed lower in vitro efficacy against Stenotrophomonas maltophilia. It was evaluated in European 

countries against 99 isolates of Acinetobacter spp. The evaluation showed an MIC90 value of >128 mg/L with a susceptibility of 

40.0%. Plazomicin demonstrated higher efficacy against Enterobacteriaceae than tobramycin or gentamicin. Although 

plazomicin is effective against these AMEs, which are the most described resistance mechanisms against AGs, it is not 

effective against less common 16S rRNA methyltransferases. However, plazomicin shows activity against Enterobacteriaceae 

Fig. 3. Structure of plazomicin and targeting of aminoglycoside modifying enzymes (AMEs) to the functional group of 

plazomicin. AMEs responsible for resistance to aminoglycoside are shown. They primarily target the NH2 and OH groups. The 

unique structural features of plazomicin that protect these amino and hydroxyl group at different positions are shown with 

arrows. AAC, N-acetyltransferase; ANT, O-nucleotidyltransferase; APH, O-phosphotransferase. The numbers in parentheses 

after AME abbreviations indicate their position; for example, AAC (6′), Aminoglycoside 6′-N-acetyltransferase. 
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which exhibits resistance mechanisms to other classes of antibiotics including metallo-beta-lactamases (42). In an evaluation of 

plazomicin against ESBL-producing K. pneumonia and E. coli bacteria, colistin resistant Enterobacteriaceae, and CRE, it was 

more effective than other AGs and was comparable to ceftazidime/avibactam and vaborbactam/meropenem (28, 31, 

43-45). Plazomicin exhibits activity against gram-positive bacteria similar to that against gram-negative bacteria and works 

in a manner similar to that of other AGs (31). The MIC90 and MIC50 range of plazomicin were 0.5–1 µg/mL and 0.25–0.5 

µg/mL, respectively, against Klebsiella, Escherichia, Enterobacter, Citrobacter, and Serratia species (11). Plazomicin was 

Table 1. Comparative MIC90 and MIC50 values of plazomicin and other aminoglycosides against gram-negative pathogens

Bacteria

Number of 

co-resistance 

enzymes

Plazomicin Gentamicin Tobramycin Amikacin References

MIC50

(mg/L)

MIC90

(mg/L)

Range

(mg/L)

MIC50

(mg/L)

MIC90

(mg/L)

MIC50

(mg/L)

MIC90

(mg/L)

MIC50

(mg/L)

MIC90

(mg/L)

E. aerogenes 37 0.5 1 ND ≤ 0.25 0.5 0.5–1 ND 1 2 30

E. coli 981 0.5 1 ND 0.5 1 1 8 2 4 28

E. coli 1146 0.5 1 ≤0.12–4 ≤ 0.5 16 ≤0.5–4 ND 2 4 31

All MDR 

K. pneumoniae

102 0.5 1 ≤0.125–4 8 ≥64 32 ≥64 2 32 32

K. pneumoniae 241 1 2 ≤0.5–4 > 8 32 32–> 32 ND 32 > 32 33

K. pneumoniae

(gentamicin 

susceptible)

20 0.5 1 0.125–1 ND ND >64 >64 16 16 34

Carbapenemase-

producing

K. pneumoniae

300 1 8 ≤0.125–> 256 4 >256 ND ND 32 128 33

P. aeruginosa 21 4 8 ND 2 16 0.5 >8 2 4 28

P. aeruginosa 33 8 16 2– >16 4 64 ND ND 4 16 31

P. aeruginosa 593 4 16 ≤0.12–>64 1 8 ≤0.5 2 4 8 35

P. aeruginosa 24 8 32 4–>32 2 >16 ND ND 4 32 36

MIC, minimum inhibitory concentration; ND, not done.

Table 2. Effect of selective aminoglycoside-modifying enzymes (AMEs) on MICs of plazomicin and other aminoglycosides

Organisms
AME(s)

MIC (mg/L)

Plazomicin

MIC (mg/L)

Gentamicin

MIC (mg/L)

Tobramycin

MIC (mg/L)

Amikacin
References

E. coli ANT (2′′)-I 0.5 32 ND 4 37

E. coli AAC (6′)-I 1 >64 ND 32 37 

E. coli AAC (3)-II 0.25 4 ND 4 37

E. coli APH (3′)-Ib 2 >64 ND 0.5 37 

E. coli AAC (3)-IVa 0.25 0.25 ND 4 37

K. pneumoniae AAC (6′)-Ib 0.25 0.5 16 16 34

K. pneumoniae AAC (3)-IV,

AAC (6′)-Ib

0.70 22.6 128 11.3 34

K. pneumoniae ANT (2′′)-Ia,

APH (3′)-Ia,

AAC (6′)-Ib

0.5 32 64 16 34

AAC, Aminoglycoside acetyltransferases; ANT, Aminoglycoside nucleotidyltransferase; APH, Aminoglycoside phosphotransferases; 

ND, not done. 
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more effective against ESBL-producing Enterobacterales than were other AGs (11). The MIC90 of plazomicin was 1 mg/L 

against both methicillin susceptible S. aureus and MRSA. It was also effective against S. epidermidis with a MIC90 value of 

0.5 mg/L (38). For plazomicin, the median MIC values of triplicate tests for different strains of E. coli were 0.5, 1, 2, 2, and 

4 mg/L for the AECO 1174, AECO 1175, AECO 1177, SMH 64979, and SMH 64982 strains, respectively (46). The median 

MIC values of plazomicin for the different K. pneumoniae strains were 0.5, 0.5, 1, 1, and 2 mg/L for the SMH 41965, SMH 41966, 

AKPN 1169, AKPN 1170, and AKPN 1171 strains, respectively (46). The activity of this drug is confined to Stenotrophomonas 

maltophilia, A. baumannii, and P. aeruginosa with majority of in vitro data exhibiting MIC50 of ≥ 4 mg/L with upper MIC 

allocations of plazomicin when compared to other AGs (19).

PHARMACOKINETICS AND PHARMACODYNAMICS

Similar to other AGs, plazomicin is weakly absorbed and requires parenteral administration. Aminoglycosides are unable to 

penetrate majority of cells and their volume of distribution (Vd) is approximately 25% of the total body weight, which is 

similar to the extracellular fluid volume (38). The mean Vd of this drug in healthy adults and patients with cUTIs was 

18 and 31 L, respectively (47). In patients with cUTIs, the area under the curve (AUC) and a mean maximum serum 

concentration (Cmax) were 226 mg/L and 51 mg/L, respectively, gradually following a single intravenous (IV) dose (15 

mg/kg) of this drug (48). The plasma protein binding of this drug is approximately 20% (38) and its primary excretion 

pathway is the kidney. The extent of plazomicin metabolism was not appreciable and cytochrome P450 (CYP-450) 

drug-metabolizing enzymes were not inhibited or induced. The mean serum elimination half-life (T1/2) of this drug is 

approximately 3.5 h in patients with normal renal function (49). The renal clearance of plazomicin is similar to its total body 

clearance. Approximately 90% of the drug was recovered in the urine in unchanged forms within a week following a 15 

mg/kg single IV dose. In patients with moderate renal impairment and with creatinine clearance (CrCl) < 60 mL/min, the 

dose was reduced to 10 mg/kg every 24 h. In patients with acute renal impairment and CrCl < 30 mL/min, the dose was 

reduced to 10 mg/kg every 48 h to reduce toxicity (50). Physicians should use the equation: adjusted body weight = IBW + 

0.4 × [TBW – IBW] for patients with 25% of total body weight (TBW) or more than 25% of ideal body weight (IBW) (51). 

The pharmacodynamic (PD) model of plazomicin for target acquisition showed that the proportion of the 24 h AUC to MIC 

(AUC 24: MIC) ratio was the pharmacodynamic parameter best correlated with drug efficacy (51). Plazomicin when 

administered at a dose of 15 mg/kg in a healthy volunteer, exhibited AUC0-24, Cmax, Vd, and T1/2 values of 263 ± 65.9 mg/L, 

76.0 ± 19.6 mg/L, 18.5 ± 4.7 L, and 3.5 ± 0.5 h, respectively (46).

ADVERSE EFFECTS AND DRUG INTERACTIONS

Patients treated with plazomicin in the largest in-human trial exhibited adverse effects like diarrhea (2.3%), headache 

(1.3%), vomiting (1.3%), nausea (1.3%), decreased renal function (3.7%), hypotension (1.0%), and hypertension (2.3%) 

(2). The adverse effects of plazomicin were comparable to those of meropenem in the evaluation of plazomicin in a cUTI 

(EPIC) clinical trial. More than 1% of the patients reported adverse events including headache, hypertension, nausea, 

diarrhea, vomiting, and hypotension were similar in the meropenem trial (38). Adverse events related to vestibular and 

cochlear function were observed in only one patient in each treatment trial. Adverse renal effects, as evaluated by a 

blinded review, included a decrease in creatinine clearance and an increase in blood creatinine levels, renal failure, acute 

kidney injury, and chronic kidney disease. Renal impairment occurred in four (1.3%) patients in the meropenem trial versus 

11 (3.6%) in the plazomicin trial. A serum creatinine level > 0.5 mg/dL were observed in 12 (4.0%) patients in the 

meropenem trial versus 21 (7.0%) in the plazomicin trial. The full recovery rate for the increased serum creatinine levels at 

the end of the IV therapy was observed in four of nine (44.4%) patients in the meropenem trial versus six of 11 (54.5%) in 

the plazomicin trial. At the last follow-up visit, the full recovery of renal function was observed in nine of nine (100%) 

patients in the meropenem trial versus nine of 11 (81.8%) in the plazomicin trial. In addition, increased serum creatinine 
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levels were observed in a small number of patients (three of 297 patients in the meropenem trial versus 10 of 300 patients 

in the plazomicin trial) approximately one week after therapy completion (38). The incidence of nephrotoxicity was higher 

in patients with a plazomicin plasma concentrations > 3 μg/mL (36%, 10 of 28 patients) compared to those with 

plazomicin plasma concentrations < 3 μg /mL (5%, 11 of 215 patients) (35). The risk of neuromuscular blockade causing 

respiratory depression is related to AG antibiotics but has not been observed in plazomicin clinical trials. Proper precautions 

must be taken when plazomicin is administered into a patient with neuromuscular disorders, such as myasthenia gravis, or 

in those who use neuromuscular blockers, such as succinylcholine, as it may cause a delay in the recovery rate of 

neuromuscular function (38). The likelihood of plazomicin interacting with other drugs was evaluated following in vitro 

testing against a panel of drug transporters and drug-metabolizing enzymes. The main drug transporters, such as 

p-glycoproteins, do not interact with plazomicin (47, 50, 52-54).

CONCLUSION

Plazomicin is effective against a broad range of Enterobacteriaceae species. Plazomicin exhibited better efficacy than 

meropenem which is used to treat adult cUTIs including pyelonephritis. Plazomicin has a few dosing advantages over 

comparative drugs, including β-lactamase/β-lactam inhibitors, which are effective against gram-negative MDR organisms. 

Plazomicin is especially beneficial for patients who are allergic to other antibiotics, or at risk of resistant Enterobacteriaceae 

infections. Plazomicin was administered through an IV once daily for 30 min. This plazomicin administration schedule is 

useful for treating hospitalized patients and for patients receiving outpatient parenteral antibiotic therapy. Therefore, 

plazomicin is a promising new antibiotics effective against multiple antibiotic-resistant bacteria.
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