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The nose and throat are sites commonly used to obtain swab specimens to 

diagnose upper respiratory tract infections, and some studies have shown 

differences between the diagnostic accuracies of nose and throat swabs for 

upper respiratory infections. However, current sampling methods for the 

diagnosis of upper respiratory tract infections do not differentiate between 

nose and throat samples. The present study was undertaken to devise a means 

of determining whether samples were obtained from the nose or throat. 

Microbiome abundance data of 576 upper respiratory swab samples were 

obtained from the human microbiome project website. Predictive models were 

generated to determine sampling sites based on microbiomes using the 

random forest and regression tree with recursive partitioning methods. The 

final prediction model showed a near-perfect prediction for sampling sites 

using only the abundances of Staphylococcaceae and Streptococcaceae. The 

devised model can be used to predict sampling sites for upper respiratory 

specimens.
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INTRODUCTION

Anterior nares (AN), nasopharyngeal (NP), and oropharyngeal (OP) swabs are 

commonly used to diagnose upper respiratory tract infections. According to the 

US CDC, Korea Disease Control and Prevention Agency, and WHO recom-

mendations for upper respiratory specimen collection and transport, it is 

recommended that NP and OP swabs be placed in the same transport tube (1–3). 

In other words, samples taken from the nose and throat to diagnose an upper 

respiratory infection are considered to be identical. However, it has been 

reported that there are differences between the diagnostic effectiveness of NP 

and OP swabs for some respiratory infections (4, 5). Thus, if diagnostic accuracy 

is sample location dependent, more detailed sampling site information is 

required to determine the specimen types that produce the most reliable results. 

Therefore, this study was conducted to develop a prediction model to identify 

sampling sites for previously obtained upper respiratory swab samples based on 

microbial community structures.
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MATERIALS AND METHODS

Data acquisition and preprocessing

Operational taxonomic unit (OTU) count data were downloaded from the NIH Human Microbiome Project (HMP) website 

(6). The data used were de-identified and publicly available, and thus, Institutional Review Board approval was not 

required. Data was generated by 16S rRNA shotgun metagenome sequencing of bacterial V3–5 regions. Among 

downloaded data, 576 cases were selected sampled at ‘anterior_nares’ or ‘throat’. Since they were sampled from healthy 

volunteers, whose characteristics were shown in Fig. 1. To account for uneven numbers of sequence for each sample, OTU 

counts were converted to abundances associated with each taxon.

Comparison of taxon abundances in nose and throat sample

To compare taxon abundances, taxonomy tree-based visualizations of the microbiomes of nose and throat samples were 

performed using the metacoder package in R (7). The Wilcoxon’s rank-sum test was applied to differences in median 

bacterial abundances in nose and throat samples to identify the most statistically significant taxa. To address the multiple 

comparison problem, adjusted p-values were calculated using the Benjamini & Hochberg method. Only taxa with an 

adjusted p-value of < 0.05 were mapped onto the phylogenetic tree. Principal component analysis (PCA) was performed to 

assess sample clustering.

Supervised machine learning

For supervised learning and predicting sampling sites, nose and throat samples were divided into training and test sets by 

sex-stratified random sampling at a ratio of 4:1 (Fig. 1). The random forest (RF) method is most commonly used for 

applying a decision tree. The RF classifier was implemented using the randomForest package in R (8), and hyperparameters 

were tuned using the caret package in R (9). A 10-fold cross-validation was repeated 5 times to optimize model 

robustness. The variable importance of the final model, the effect of each taxa abundance on the decision model, was 

visualized in the taxonomic tree. To establish a simple prediction model, recursive partitioning and regression trees (RPART) 

were applied using the rpart package in R (10). A leave-group-out cross-validation was repeated 5 times for RPART. 

Fig. 1. Characteristics of study subjects. Nose and throat specimens from 576 healthy volunteers were included. For supervised 

learning and sampling site predictions, volunteers were divided into training set and test set by sex-stratified random sampling 

at a ratio of 4:1.
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Sampling site prediction and performance evaluation

Test sets were predicted using the RF-based and RPART-based models, respectively. The prediction performances of each 

model for the sampling site were evaluated based on accuracies, sensitivities, specificities, positive predictive values (PPVs), 

negative predictive values (NPVs), and balanced accuracies (an accuracy metric addresses class imbalance). Receiver 

Operating Characteristic (ROC) analysis and areas under curves (AUCs) were used to visualize model performances.

Statistical analysis

The analysis and determinations of the significances of differences were performed in R (11).

RESULTS

The relative abundances of bacterial taxa in samples were shown in Fig. 2A and B. Nose and throat bacterial communities 

were dominated by Actinobacteria and Bacteroidetes, respectively. Firmicutes were abundant in both sites. Differentially 

abundant taxa at the two sampling sites were shown in Fig. 2C. Actinobacteria and Cyanobacteria were more abundant in 

nose samples, while Bacteroidetes, Fusobacteria, Tenericutes, and Spirochaetes were more abundant in throat samples. 

The PCA plot revealed distinctly different microbial compositions in nose and throat samples (Fig. 2D).

For binary classification problem of identifying sampling site, RF model provided perfect prediction on the test set (Fig. 3A). 

The variable importance of the model was shown in the taxonomy tree (Fig. 3B). Staphylococcus, Oribacterium, and 

Veillonella were the most important taxa for the prediction in the RF model. Despite its excellent performance, the RF 

model needed many variables for prediction, and thus, the RPART model was created to simplify the process. The final 

decision tree obtained using the RPART model was shown in Fig. 4A. This model provided near-perfect prediction on the 

test set using just two variables, the relative abundances of Staphylococcaceae and Streptococcaceae (Fig. 4B).

DISCUSSION

It remains unclear whether nose or throat sampling sites provide a better diagnosis in many upper respiratory infections, 

especially in novel infectious diseases (4, 5). However, samples collected from the nose and throat are not separately 

classified to diagnose most respiratory infections (1–3). Therefore, this study aimed to produce a post-hoc model that could 

predict the sampling sites used to obtain upper respiratory swab specimens based on the microbiomes present.

Microbial abundance data in samples obtained at anterior nares or throats of 576 healthy volunteers that participated 

in the HMP was used for the prediction model development. Predominant bacterial compositions in nose and throat 

samples largely overlapped, as shown in Fig. 2A and B. Thus, both sample types contained similar types of bacteria and 

differed only in abundance. Staphylococcus, Haemophilus, and Neisseria were relatively abundant in nose swab samples 

and Streptococcus, Fusobacterium, and Prevotella predominated in throat samples, which was in agreement with previous 

studies (Fig. 2C) (6). No predominant bacteria were found to be useful for differentiating nose and throat samples. 

However, as shown by the PCA plot (Fig. 2D), the two sample types were clearly divided into different clusters, which 

showed sampling sites could be predicted based on bacterial abundances.

Microbiome data was high-dimensional, and thus, supervised machine learning was used to find the best combination of 

taxa abundances to predict sampling sites. Decision trees have the advantage of being able to generate predictive rules 

that are more comprehensible than other supervised machine learning methods, and have the advantage of enabling the 

simple identification of variables of importance in predictive models. The RF approach (a decision tree-based method), 
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which was believed to have best predictive accuracy (12), was used first. Prediction of sampling sites using the RF model 

was perfect on the test set of 115 specimens (Fig. 3A). However, as shown in the variable importance plot (Fig. 3B), the RF 

model required the abundances of many taxa as input to enable prediction, and thus, from the perspectives of cost and 

the effort required, this model did not serve the purpose of this study. Therefore, the RPART approach was used to create a 

clinically more intuitive predictive model. The final predictive model generated using the RPART approach was shown in 

Fig. 4A, and this model predicted was found to predict sampling locations using the abundances of only two taxa, which 

was a practical proposition. Somewhat surprisingly, the simple RPART predictive model devised achieved almost perfect 

predictive performance (Fig. 4B), and only incorrectly ascribed a single nose sample among 115 cases. Its AUC, accuracy, 

specificity, PPV, and balanced accuracy exceeded 0.98, and its sensitivity and NPV were both one. The bacteria selected as 

predictors in the RPART model were Staphylococcus and Streptococcus. It is known that the nose and throat are the 

important colonization site for Staphylococcus and Streptococcus, respectively, but they are not exclusively present in these 

locations (Fig. 2 A and B) (13, 14). Nevertheless, by comparing the abundances of these two bacteria, it was possible to 

distinguish where samples were obtained.

Fig. 2. Taxa abundances and differences between nose and throat samples. The relative abundances and abundance differences of 

taxa are shown in a tree diagram. Node and edge sizes represent numbers of OTUs and samples, respectively. Node and edge 

colors represent mean proportion of reads. (A) Abundant taxa in the nose. (B) Abundant taxa in the throat. (C) Differentially 

abundant taxa between nose and throat. Node and edge colors represent log-transformed differences between mean proportions 

of reads for nose and throat samples. (D) Principal component analysis plot. prop, proportion; OTU, operational taxonomic unit.
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Upper respiratory swab specimens are mainly obtained using AN, NP, and OP swabs, but it is a limitation of the present 

study that only samples obtained from AN and OP were included. Considering that the NP is anatomically located between 

the AN and OP in the upper respiratory tract, the AN vs NP or OP vs NP prediction issue is expected to be more difficult 

than the AN vs OP classification problem, this study suggests that research be conducted to develop a model that can 

differentiate these three locations.

In conclusion, this study showed that abundances of Staphylococcus and Streptococcus could be used to predict the 

anatomic sites used to obtain upper respiratory swab specimens, and that the results obtained could be used to determine 

the sampling sites of upper respiratory specimens.

Fig. 3. Random forest prediction results. (A) Receiver Operating Characteristics curve. (B) Variable importance for the random 

forest prediction model. Node and edge sizes represent numbers of OTUs and samples, respectively. Node and edge colors 

represent variable importances. AUC, area under the curve; Accu, accuracy; Sen, sensitivity; Spe, specificity; PPV, positive 

predictive value; NPV, negative predictive value; Baccu, balanced accuracy; OTU, operational taxonomic unit.

Fig. 4. Final prediction model. (A) Final decision tree (B) Receiver Operating Characteristics curve. AUC, area under the curve; Accu, 

accuracy; Sen, sensitivity; Spe, specificity; PPV, positive predictive value; NPV, negative predictive value; Baccu, balanced accuracy.
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