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In cirrhotic patients undergoing liver transplantation, reperfusion of 

a liver graft typically increases portal venous blood flow (PVF) 

because of a decrease in resistance in the liver graft to the PVF 

and underlying hyperdynamic splanchnic circulation, which develops 

due to liver cirrhosis complicated by portal hypertension and persists 

even after successful liver transplantation.  If the liver graft has 

enough capacity to accommodate the increased PVF, the shear 

stress inflicted on the sinusoidal endothelial cells of the graft 

promotes hepatic regeneration; otherwise, small-for-size syndrome 

(SFSS) develops, leading to poor graft function and graft failure.  

In particular, a partial graft transplanted to patients undergoing living 

donor liver transplantation has less capacity to accommodate the 

enhanced PVF than a whole liver graft.  Thus, the clinical conditions 

that the partial graft encounters determine either hepatic 

regeneration or development of SFSS.  Consistent with this, this 

review will discuss the two conflicting effects of portal hyperperfusion 

(hepatic regeneration vs. portal hyperperfusion injury) on the partial 

grafts in cirrhotic patients suffering from hyperdynamic splanchnic 

circulation, in addition to normal physiology and pathophysiology of 

hepatic hemodynamics. (Anesth Pain Med 2016; 11: 117-129) 
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INTRODUCTION

Hyperdynamic splanchnic circulation is commonly known as 

a complication of liver cirrhosis. However, strictly, it is a 

complication of portal hypertension, which develops due to 

liver cirrhosis. The hyperdynamic splanchnic circulation persists 

for more than 28 days even after the replacement of a 

cirrhotic native liver with a new liver graft [1], due to a 

decrease in the resistance of the vascular bed in the liver 

graft, pre-existing portal hypertension, and splanchnic vaso-

dilatation [2]. The persistent hyperdynamic splanchnic circulation 

leads to an increase in portal venous blood flow (PVF) to the 

liver graft, which is termed “portal hyperperfusion,” and the 

resulting intrahepatic shear stress stimulates and regulates 

hepatic regeneration [3,4]. However, in living donor liver 

transplantation (LDLT) using a partial liver graft, the vascular 

bed does not always have enough capacity to accommodate the 

increased PVF. Although the increased PVF plays a crucial 

role in regeneration of the partial liver graft [1], an excessive 

increase in the PVF could cause failure of the liver graft to 

control directly the PVF, eventually threatening the viability of 

the graft [5] with the development of small-for-size syndrome 

(SFSS). This review will deal with the two conflicting results 

caused by the shear stress secondary to portal hyperperfusion, 

which is inflicted on the sinusoidal bed of a partial graft 

(hepatic regeneration vs. portal hyperperfusion injury) as well 

as the underlying physiology and pathophysiology of hepatic 

hemodynamics, knowledge of which contributes to a better 

understanding of the effects of portal hyperperfusion in a 

partial graft.

PHYSIOLOGY OF HEPATIC HEMODYNAMICS

Serving as a major blood volume reservoir in the human 

body, the liver receives blood at 800–1,200 ml/min, which is 

equivalent to 100–130 ml/min per 100 g of liver weight [6] 

and constitutes approximately 25% of cardiac output (1–2 
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L/min) [7]. The liver contains blood at 25–30 ml/100 g of 

liver weight – accounting for 10–15% of the total blood 

volume [8] – although it constitutes only 2.5% or 33 g/kg of 

total body weight [9,10]. Large capacitance vessels, such as 

the portal and hepatic veins and hepatic artery, hold 40% of 

the blood that the liver receives; the sinusoids hold the 

remaining 60% [6]. The hepatic blood volume can compensate 

for up to 25% of blood loss [11].

The liver has a unique dual blood supply system consisting 

of the hepatic artery, which carries approximately 25% of the 

total hepatic blood flow (30 ml/min per 100 g of liver weight; 

with well-oxygenated blood [oxygen saturation of 95%] 

providing 30–50% of the liver oxygen requirement); and the 

portal vein, which receives all the blood from the spleen, 

stomach, small and large intestines, gall bladder, and pancreas 

[12], and provides partially deoxygenated blood (oxygen 

saturation of up to 85% during the fasting state) responsible 

for 75–80% of the total blood flow to the liver (90 ml/min 

per 100 g of liver weight) and 50–70% of the liver oxygen 

requirement. The two vessels form the portal triad together 

with the bile duct. In the resting state, the liver consumes 

approximately 20% of the total oxygen used in the body [13]. 

With increased oxygen demand, such as isovolemic hemo-

dilution or upregulation of hepatic enzymes, more oxygen is 

simply extracted from the blood, but the hepatic artery does 

not dilate [14]. The saturation of hepatic venous blood, which 

is normally two-thirds saturated with oxygen, would be 

reduced upon low delivery of oxygen to the liver, leading to 

an increase in oxygen extraction from the hepatocytes. The 

portal venous system is protected from hepatic arterial pressure 

by a reduction in the hepatic arterial pressure towards portal 

venous pressure (PVP), due to hepatic arteriolar resistance in 

combination with the intermittent closure of the presinusoidal 

arterioles in the peribiliary plexus [15].

Mesenteric and splanchnic arteriolar vascular tone, as well as 

intrahepatic vascular resistance, regulate the valveless portal 

vein system, maintaining low pressure and resistance. The 

normal range of PVP is between 5 and 10 mmHg [16]. Due 

to the large capacity of the sinusoidal structure and 

intrahepatic vasculature, which easily accommodates additional 

PVF by releasing nitric oxide (NO) that dilates intrahepatic 

vessels [17], an increase in PVF does not influence the PVP 

[18]. The mean hepatic arterial pressure is similar to that of 

the aorta [19]. The high pressure and resistance hepatic artery 

system [6] is regulated by classical arterial autoregulation and 

interacts with the portal vein system via the hepatic arterial 

buffer response (HABR), which maintains overall hepatic blood 

flow and an adequate oxygen supply to the liver by 

compensating for diminished or increased PVF with a 

reciprocal increase or decrease in hepatic arterial blood flow 

(HAF) [20]. The compensatory interaction between the hepatic 

artery and portal vein systems will be discussed in the 

following section. The both afferent vessels enter the hepatic 

lobule and merge at the sinusoidal bed, which is drained by 

the hepatic venous system into the inferior vena cava. Sinusoid 

pressure or hepatic venous wedge pressure, which may be an 

indicator of PVP, ranging from 3 to 10 mmHg is between 

PVP (5–10 mmHg) and inferior vena cava pressure (1–2 

mmHg) [19].

REGULATION OF HEPATIC BLOOD FLOW BY 

THE HEPATIC ARTERIAL BUFFER RESPONSE

In addition to classical arterial autoregulation, in which the 

HAF is intrinsically regulated via the myogenic response of 

the hepatic artery to arterial pressure, there is another 

mechanism for the intrinsic regulation of the HAF, namely 

HABR. Although an increase in HAF in response to reduced 

PVF was first reported in 1911, the relationship between the 

two vascular systems was termed HABR for the first time in 

1981 [19]. The hepatic artery dilates or constricts secondarily 

to a decrease or increase in the PVF, respectively [20]. 

Temporary occlusion of the portal vein induced a sharp and 

significant increase in the HAF, by approximately 30% in 

anesthetized patients with carcinoma of the splanchnic area 

[20]. The increase in the HAF compensates for 25–60% of the 

decreased PVF [21]. The hepatic arterial response alleviates the 

effects of changes in the PVF on hepatic clearance and 

maintains oxygen supply to the liver [22]. However, HABR is 

not reciprocal; that is, PVF or portal venous resistance does 

not change in response to changes in hepatic arterial perfusion 

[20] because the PVF passively depends on the outflow of the 

extrahepatic splanchnic organs. Under physiological conditions, 

HABR operates at all ages [19], even prenatally [23].

The adenosine washout hypothesis well explains the HABR. 

Adenosine, which is a potent hepatic arterial vasodilator [21], 

is released at a constant rate into the fluid in the space of 

Mall, which is a space between the periportal hepatocytes and 

portal connective tissue surrounding the hepatic arterioles and 

the portal venules. The concentration of adenosine is dependent 

on the rate of washout into the portal vein. A reduction in 

washout of adenosine from the space of Mall secondary to the 
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decreased PVF results in dilation of the hepatic artery, thereby 

leading to an increase in the HAF [14]. The mediation of 

adenosine in HABR is supported by several lines of evidence, 

which show the potentiation of HABR by adenosine uptake 

inhibitors [21], competitive blockade of HABR by adenosine 

antagonists [24-27], and a lower effect of adenosine infused 

into the portal vein compared with that infused into the 

hepatic artery (thus indicating communication between the two 

vascular systems) [14]. However, adenosine dose not diffuse 

from the portal venous vasculature to the hepatic arterial 

vasculature [28]. The substance that diffuses from the portal 

venous to the hepatic arterial bed in response to hypoxia [29], 

caused by a reduction in the PVF [30], is adenosine-5’-tri-

phosphate (ATP), rather than adenosine itself [28]. Only the 

adenosine produced from ATP catabolism in the hepatic 

arterial vasculature contributes to hepatic arterial dilation [27], 

whereas the adenosine created in the portal venous vasculature 

is rapidly taken up by the endothelium and vascular smooth 

muscle immediately after its production [31].

PATHOPHYSIOLOGY OF PORTAL 

HYPERTENSION AND SUBSEQUENT 

HYPERDYNAMIC SPLANCHNIC 

CIRCULATION IN LIVER CIRRHOSIS

Portal hypertension is defined as a sustained increase, by 

more than 5 mmHg, in the hepatic venous pressure gradient 

(HVPG) [32]. The HVPG represents the difference between 

hepatic venous wedge pressure reflecting sinusoidal pressure, 

which provides an accurate estimate of PVP due to loss of 

normal intersinusoidal communications in cirrhotic patients, and 

free hepatic venous pressure [33]. However, an HVPG between 

5 and 10 mmHg presents with no clinical manifestations and 

is considered to be subclinical portal hypertension. A diagnosis 

of clinically significant portal hypertension is made when the 

HVPG reaches more than 10 mmHg, which predicts the 

development of complications of liver cirrhosis, including 

ascites, portosystemic collaterals, varices, circulatory dysfunction, 

and even death [34]. The threshold of the HVPG for variceal 

hemorrhage is 12 mmHg [35]. In addition, liver cirrhosis 

patients with HVPG greater than 20 mmHg following variceal 

bleeding have a five-fold increase in the risk of death [36].

In portal hypertension, intrahepatic vascular resistance 

increases not only upon mechanical obstruction caused by 

architectural changes in the liver (fibrosis and capillarization of 

the sinusoids, development of microthrombi in the intrahepatic 

vasculature, and regenerative nodule formation) [37], but also 

upon the dynamic obstruction that results from impaired 

sinusoidal relaxation due to overproduction of inflammatory 

mediators. The overproduction in turn results in oxidative 

stress, which causes sinusoidal endothelial cell dysfunction thus 

leading to overproduction of, and enhanced sensitivity to, 

vasoconstrictors such as endothelin-1, angiotensin II, leuko-

trienes, and norepinephrine, coupled with underproduction of 

vasodilators such as NO, carbon monoxide, and prostaglandin 

E2 [18]. Activated hepatic stellate cells differentiating into 

contractile fibrogenic myofibroblasts also increase intrahepatic 

vascular resistance by producing an excessive amount of 

extracellular matrix, inflammatory cytokines, and endothelin-1. 

Vasoconstrictive substances, such as endothelin-1, reduce the 

sinusoidal space and increase intrahepatic vascular resistance by 

inducing hepatic stellate cell contraction [37].

In contrast to vasoconstriction, which occurs in the intrahepatic 

vasculature, the splanchnic vasculature experiences progressive 

vasodilatation during the progression of liver cirrhosis. 

However, in the early stage of cirrhosis, when portal hypertension 

develops due to an increase in intrahepatic vascular resistance 

in the absence of extensive collateral circulation, the splanchnic 

circulation is normodynamic or hypodynamic, rather than hy-

perdynamic [38]. Consequently, a reduction in the PVF with a 

reactive increase in the PVP ensues [39]. This physiological 

alteration constitutes the main postulation of the “backward 

flow” theory. As liver cirrhosis progresses to an advanced 

stage, the consequent physiological alteration would be 

explained by the “forward flow” theory, in which the 

splanchnic circulation becomes hyperdynamic due to portal 

hypertension-induced splanchnic vasodilatation with subsequent 

development of extensive collaterals [40]. Under this 

physiological milieu, the decreased PVF during the early stage 

of liver cirrhosis increases again [41].

NO, which causes vasodilatation by the activation of soluble 

guanylyl cyclase, in turn leading to the generation of cyclic 

guanosine monophosphate in the vascular smooth muscle [42], 

is the most important vasodilator associated with portal 

hypertension and subsequent hyperdynamic splanchnic circulation. 

There are three isoforms of NO synthase (NOS) that 

synthesize vascular NO: endothelial NOS (eNOS) [43], 

inducible NOS (iNOS) [44], and neuronal NOS (nNOS) [45]. 

Among these isoforms, eNOS, which produces NO in the 

endothelial cell in response to mechanical forces caused by 

sheer stress, endothelial growth factor, or inflammatory 

cytokines [46], plays a major role in the overproduction of 
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vascular NO in the splanchnic arterial circulation [47]. In 

addition, an increase in intestinal absorption of lipopolysaccharides, 

due to changes in intestinal permeability, activates iNOS by 

releasing inflammatory cytokines, such as tumor necrosis 

factor- , from macrophages [48], which contributes to hy-

perdynamic splanchnic circulation. nNOS, which is synthesized 

in neuronal and vascular smooth muscle cells, was also found 

to be upregulated in the mesenteric artery [49] and in the 

aorta [50], resulting in the development and maintenance of 

hyperdynamic splanchnic circulation in liver cirrhosis [50]. In 

contrast, intrahepatic NO decreases because of reduced activity 

of eNOS in portal hypertension [37].

In response to splanchnic and peripheral vasodilatation, 

retention of sodium and water occurs, resulting in the expansion 

of the plasma volume, a large part of which accounts for the 

portosystemic collateral circulation [51]. The resulting increase 

in venous return to the heart leads to an increase in cardiac 

output [51]. Despite the essential role of vasodilatation, the 

systemic hyperdynamic circulation cannot be maintained in the 

absence of the portosystemic shunt, which contributes to the 

expansion of plasma volume [52]. A cardiac index higher than 

normal (＞ 4 L/min/m2) often does not sufficiently compensate 

for the decreased arterial pressure caused by progressive 

vasodilatation. The splanchnic and systemic hemodynamic 

derangement in cirrhotic patients is reversible by liver 

transplantation [53].

HEPATIC REGENERATION INDUCED BY 

PORTAL HYPERPERFUSION

Upon replacement of the native cirrhotic liver with a new 

liver graft from a living donor, the partial liver graft should 

receive a large amount of PVF from the hyperdynamic 

splanchnic circulation such that liver cells, including Kupffer 

cells and sinusoidal endothelial cells, are exposed to excessive 

hemodynamic forces caused by PVF against the vessel walls. 

An increase in sinusoidal blood flow to the partial liver graft 

inflicts shear stress on the endothelial surface, which stimulates 

hepatic regeneration [54]. Shear stress is defined as a viscous 

drag at the surface of the sinusoidal endothelial cells, which is 

created by adjacent blood flow [55]; its amount is proportional 

to the volume of the blood flow and the inverse of the cube 

of the vessel radius [55]. However, excessive shear stress may 

induce liver failure [54].

Because the sinusoidal domain of the hepatocyte faces the 

perisinusoidal space of Disse, which is the space between the 

hepatocytes and endothelial sinusoidal-lining cells (with 

fenestrae into the sinusoidal lumen forming the sieve plate 

structure), the hepatocyte may be exposed directly to the PVP 

through the fenestrae. Thus, not only the sinusoidal endothelial 

cells, but also the hepatocytes, respond to PVP-induced shear 

stress [56]. The shear stress arising from alteration of the 

hemodynamic pattern of hepatic blood flow initiates signal 

cascades that trigger hepatic regeneration. The existence of 

shear stress-responsive cell surface modulators on the hepatocytes 

and sinusoidal endothelial cells, such as the calcium ionic 

channel, sodium ionic channel [57], and gap junctions [58], 

has been suggested. Electron microscopic observations showed 

widening of sinusoidal endothelial fenestrations and spaces of 

Disse, contributing to an increase in sinusoidal endothelial 

permeability to circulating hepatotrophic substances and en-

largement of the intercellular spaces. This in turn leads to 

extracellular matrix degradation, with subsequent induction of 

responsiveness of hepatocytes in the periportal area to 

circulating and liver-borne growth factors [59]. In addition, 

ATP, which enhances cell cycle progression and hepatocyte 

proliferation [60], is released from isolated rat hepatocytes and 

hepatectomized livers of rats and human living donors by 

mechanical stress [61,62]. The rapid loss of adenine 

nucleotides after partial hepatectomy also generates early stress 

signals to the remnant liver, contributing to the onset of 

hepatic regeneration [63].

Interestingly, portal hypertension does not induce hepatic 

regeneration in liver cirrhosis. As liver cirrhosis progresses, the 

sinusoidal endothelial cells become capillarized [64], thereby 

leading to disappearance of the sieve plate structure. The 

absence of the sieve plate structure hinders any direct 

influence of portal hypertension-induced shear stress on the 

hepatocytes, thereby preventing the initiation of hepatic 

regeneration. However, hepatocytes isolated from cirrhotic livers 

have the potential to proliferate [56].

Within the normal liver, sinusoidal endothelial cells express 

eNOS that produces NO, the amount of which is dependent on 

flow [65]. An increase in endothelial shear stress modulates 

the release of endothelial NO and prostaglandins [66,67] and 

increased PVP immediately after partial hepatectomy activates 

eNOS and upregulates iNOS [3]. In contrast to adenosine, 

which is dependent on hepatic blood flow, NO acts in 

response to vasoconstriction-induced shear stress [11]. Accordingly, 

NO produced in response to an increase in shear stress affects 

vascular accommodation following a partial hepatectomy [68] 

and provides the residual liver with permeability to growth 
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factors, contributing to triggering of the hepatic regeneration 

cascade [3,66,67]. In addition, NO downregulates the level of 

S-adenosylmethionine – the synthesis of which is essential for 

methionine metabolism – causing hepatocytes to respond to 

hepatocyte growth factor [69].

If the graft-to-recipient weight ratio (GRWR) is ＞ 0.8, 

which is known to be the minimum size of a liver graft to 

fulfill the metabolic demand of a recipient [70], in the absence 

of any occlusion of hepatic venous outflow, SFSS rarely 

develops. For liver grafts uncomplicated by SFSS, portal 

venous hemodynamics have a major impact on hepatic 

regeneration. The portal venous velocity and PVF increased 

considerably after the reperfusion of a liver graft and then 

returned to the baseline value, which was measured before 

hepatic parenchymal transection in donors, at 3 months after 

LDLT [71]. The size of the liver graft is restored to the 

standard liver volume of recipients in 2 weeks after LDLT [1]. 

Many previous studies have found correlations between PVP or 

PVF and the degree of graft regeneration, which were 

measured at different postoperative time points [1,72-74] (Table 

1). However, there is still no consensus about which portal 

venous hemodynamic parameter is of paramount importance in 

predicting the degree of graft regeneration.

PORTAL HYPERPERFUSION INJURY AND 

SMALL-FOR-SIZE SYNDROME

SFSS has emerged as a new challenge with the increasing 

practice of LDLT [75]. It is manifested as graft function 

impairment, characterized by portal hypertension, refractory 

ascites, encephalopathy, prolonged cholestasis with hyperbili-

rubinemia, and coagulopathy during the 1st postoperative week 

in the absence of technical problems such as hepatic venous 

outflow obstruction [76,77]. In severe cases, the syndrome 

progresses to acidosis, hypoglycemia, renal failure, and septic 

shock unless prompt retransplantation is performed [78]. The 

histopathological examination of grafts complicated by SFSS in 

a porcine model showed evidence of hepatic artery vasospasm 

and resulting cholestasis, centrilobular necrosis, and biliary 

ischemia [79]. In the early era of LDLT, SFSS was known to 

develop in liver grafts with a GRWR ＜ 0.8%, or a graft 

weight to standard liver volume ＜ 35% [80], which might 

indicate a relative shortage of hepatic parenchymal volume for 

life maintenance. However, several definitions of SFSS have 

been proposed without a single accepted definition [76,81-83] 

(Table 2) and the size of the liver graft is no longer an 

absolute determinant of the development of SFSS. Hepatic 

hemodynamic derangement, particularly portal hyperperfusion 

producing high intravascular shear stress, might also have an 

influence on its development [84]. Recently, it was suggested 

that high portal blood inflow to a partial graft, transplanted in 

a recipient with a persistent hyperdynamic splanchnic circulation, 

caused hepatic dysfunction and impairment of hepatic 

regeneration [85-87]. The generated shear stress also leads to 

an imbalance in endothelin-1 and NO, which contributes to 

graft injury [88]. Accordingly, improvements in surgical 

techniques for modulating PVF led to a reduction in the lower 

limit of GRWR to 0.6 [89].

Portal hyperperfusion activates HABR, which causes hepatic 

arterial hypoperfusion in the partial liver graft. In patients 

undergoing LDLT, an increase in PVF to the grafts is by 

more than two-fold [19]. In the absence of HABR, the HAF 

would increase in line with the increase in the PVF. However, 

a considerable decrease in the HAF was observed in patients 

receiving right-lobe grafts [90], indicating that HABR operates 

in response to an increase in the PVF to maintain the total 

hepatic blood flow within a physiological range [91]. The 

mean PVF of recipients transplanted with small-sized liver 

grafts (GRWR ＜ 0.8) was at least three times higher than 

that of donors [92]. In contrast, the hepatic arterial contribution 

to total hepatic blood flow was decreased from 30% in donors 

to 6% in recipients, due to a substantial reduction in the HAF 

[92]. SFSS developed in 3 of 11 (27%) patients who did not 

undergo graft inflow modulation and a PVF of 250 ml/min per 

100 g of liver weight predicted the development of SFSS [92]. 

In a porcine model transplanted with a small-for-size graft, the 

portal-to-hepatic flow ratio, which was poorly tolerated by the 

liver graft, remained increased until the 5th postoperative day 

[93].

Graft inflow modulation

Because a recipient transplanted with a liver graft, the 

GRWR of which was 0.61%, survived following a mesocaval 

shunt that reduced PVP [94], several techniques to divert the 

PVF to the systemic circulation – or to decrease the portal 

inflow by modifying the splenic blood flow – have been 

developed, such as hemiportocaval shunt [95,96], mesorenal 

shunt [97,98], delayed ligation of spontaneous portosystemic 

shunts [99], splenectomy [100], splenic artery ligation and 

embolization [101,102].

A hemiportocaval shunt between the right portal vein and 

inferior vena cava reduced the HVPG from 18 to 5 mmHg in 
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Table 2. Various Definitions of Small-for-size Syndrome

Reference Definition

Dahm et al. [76] Small-for-size dysfunction
Dysfunction* of a ‘small’ partial liver graft (graft-versus-recipient weight ratio ＜ 0.8%) during the 1st postoperative week 

after the exclusion of other causes†

Small-for-size non-function
Failure‡ of a ‘small’ partial liver graft (graft-versus-recipient weight ratio ＜ 0.8%) during the 1st postoperative week after 

the exclusion of other causes
Soejima et al. [81] Small-for-size syndrome

Prolonged cholestasis (total serum bilirubin ＞ 10 mg/dl on the 14th postoperative day without any other definitive causes 
of cholestasis) and intractable ascites (daily production of ascites of ＞ 1 L on the 14th postoperative day or ＞ 500 
ml on the 28th postoperative day

Hill et al. [82] Small-for-size syndrome
The presence of significant cholestasis with serum bilirubin ＞ 10 mg/dl (and continuing to increase) after the 7th

postoperative day, coagulopathy with an international normalized ratio ＞ 1.5, and ascites with drain out ＞ 2 L/day in 
the absence of an obvious technical problem such as biliary leak, vascular thrombosis, or stenosis.

Ikegami et al. [83] Delayed functional hyperbilirubinemia (yields the highest area under the receiver operating characteristic curve (0.977), 
representing a sensitivity of 100% and specificity of 95.4% for detecting early graft loss compared with the three 
definitions above.)

Total serum bilirubin ＞ 20 mg/dl for ＞ 7 consecutive days occurring after the 7th postoperative day, excluding 
technical, immunological, and hepatitis factors.

*The presence of two of the following on 3 consecutive days: serum bilirubin ＞ 100 mol/L, international normalized ratio ＞ 2, and 
encephalopathy grade 3 or 4. †Technical (e.g., arterial or portal occlusion, outflow congestion, biliary leak), immunological (e.g., rejection), and 
infection (e.g., cholangitis, sepsis) problems. ‡Clinical conditions that necessitate retransplantation, or are otherwise followed by death of a 
recipient.

16 patients with a median GRWR of 0.67, among whom only 

one patient required retransplantation due to the development 

of SFSS [96]. Given the complications associated with the 

procedure (e.g., encephalopathy due to systemic shunting of the 

PVF with subsequent hyperammonemia [96], and graft atrophy 

due to insufficient portal inflow caused by the systemic 

shunting), the shunt was closed postoperatively to restore the 

PVF back to the liver by deploying an aortic covered 

endograft [103] or by tightening of the endo-loop left around 

the shunt at the time of transplantation [104]. As an 

alternative, a mesorenal shunt between the inferior mesenteric 

vein to the left renal vein is easy to perform and prevents 

excessive portosystemic shunting while also decreasing the PVP 

[97,98].

Occlusion of the splenic circulation (splenectomy, splenic 

artery ligation or embolization), which contributes considerably 

to the portal inflow, not only decreases the PVF [92] and 

PVP [85,87], but also increases the HAF [92] with a 

subsequent increase in oxygen supply [105] via HABR [106]. 

Although splenectomy, which abolishes both arterial and 

venous blood flow to the portal vein, is more effective in 

decreasing the PVF than splenic artery ligation or embolization, 

it increases the length of the operation [107] and the risks of 

bleeding, infection [107], and portal vein thrombosis [108] in 

cirrhotic patients exhibiting a hyperdynamic state with collateral 

circulation around the splenic artery (such as a gastric 

coronary vein and spleno-renal shunt) [109]. However, despite 

the absence of complications associated with splenectomy, a 

splenic abscess resulting from a splenic infarction may occur 

following splenic artery ligation in patients with an enlarged 

spleen due to portal hypertension [110]. The effect of splenic 

artery embolization is comparable to that of splenic artery 

ligation [101].

The criteria of the hepatic hemodynamic parameters for graft 

inflow modulation are still debated. An elevated mean PVP of 

more than 20 mmHg early in the first week after LDLT was 

found to be associated with an increased incidence of 

bacteremia in the first 3 months and worse graft survival at 

the 6th postoperative month [87]. Patients with a final PVP 

less than 15 mmHg had better 2-year survival and recovery 

from hyperbilirubinemia and coagulopathy after LDLT than 

those with a PVP more than 15 mmHg [100]. Thereafter, a 

PVP less than 15 mmHg was suggested as a surgical strategy 

for small-for-size grafts in the subsequent study in which 

intentional PVP modulation was performed to achieve a target 

PVP of less than 20 mmHg [111].
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The PVF is another hepatic hemodynamic parameter used to 

determine whether to perform graft inflow modulation. In 

full-size liver transplantation, four times the PVF of healthy 

donors (360 ml/min per 100 g of liver weight) was shown to 

be a risk factor for graft failure; a flow rate below 180 

ml/min per 100 g of liver weight was also associated with 

lower survival rates [112]. These results were confirmed in an 

experimental study that used small-for-size grafts [113]. In 

addition, the results of other studies showed a PVF less than 

260 ml/min 100 g of liver weight for preventing allograft 

dysfunction [114]. Similarly, a PVF of 250 ml/min per 100 g 

of liver weight predicted the development of SFSS [92]. By 

incorporating several criteria, including PVF, PVP, or HVPG, 

many flowcharts for graft inflow modulation have been 

proposed [84,112,115]. However, a detailed discussion of these 

flowcharts is beyond the scope of this review. 

Pharmacological intervention

Adenovirally overexpressed redox factor-1 in a partial liver 

graft [116], an endothelin A receptor antagonist that maintains 

a balance between endothelin-1 and NO [88], low-dose 

somatostatin (which attenuates acute-phase shear stress due to 

transient portal hypertension) [117], a preservation solution 

containing activated protein C (which has cytoprotective 

properties due to its anti-inflammatory and anti-apoptotic 

effects) [118], venous systemic oxygen persufflation with NO 

gas [119], and a newly developed low-viscosity preservation 

solution (POLYSOL) [120] reduced graft injury after 

reduced-size rat liver transplantation. Subcutaneous injection of 

granulocyte colony-stimulating factor [121] and hyperbaric 

oxygen treatment [122] also reduced liver damage in rats 

undergoing massive partial hepatectomy. Intraportal infusion of 

nafamostat mesilate (protease inhibitor), prostaglandin E1, and 

thromboxane A2 synthetase inhibitor for 7 days prevented 

SFSS in patients undergoing LDLT [123].

Anesthetic considerations for portal hyperperfusion

The role of anesthesiologists in liver transplantation is to 

maintain multiple systemic hemodynamic parameters (e.g., 

radial, femoral, and pulmonary arterial pressure, central venous 

pressure [measured from the internal jugular or subclavian 

vein, and femoral vein], cardiac index, stroke volume index, 

stroke volume variation, and systemic vascular resistance index) 

within normal ranges for patient protection against the 

physiological derangements caused by the surgical procedure. 

Among these parameters, central venous pressure measured 

from the internal or subclavian vein (into which a catheter is 

inserted with its tip located within the lower third of the 

superior vena cava close to the junction of the superior vena 

cava and right atrium) [124] is comparable to hepatic vein 

pressure [125] which might influence the portal hemodynamic 

parameters. Accordingly, PVP has been reported to be 

modulated by central venous pressure [112,126,127]. An 

increase in central venous pressure by 58% was found to be 

transmitted to the PVP in patients receiving liver 

transplantation [112] and 60% [126] and 90% [127] of inferior 

vena cava pressure contributed to PVP in experimental studies. 

Recently, maintenance of central venous pressure between 5 

and 10 mmHg during the neohepatic phase was recommended 

to prevent portal hyperperfusion of a liver graft. This 

recommendation was derived from a predictive model built 

with percent change in peak portal vein flow velocity (which 

was measured by spectral Doppler ultrasonography after 

reconstruction of the hepatic artery and bile duct as well as on 

the 1st postoperative day), and the central venous pressure 

measured from the right internal jugular vein (which was 

averaged for 5 min after the measurement using spectral 

Doppler ultrasonography during the neohepatic phase) [128].

CONCLUSIONS

In accordance with the clinical conditions that liver grafts 

encounters, the graft either regenerates or fails to accommodate 

portal hyperperfusion. Although GRWR ＜ 0.8, standard liver 

volume ＜ 35%, or excessive portal blood inflow to a partial 

graft in the presence of hyperdynamic splanchnic circulation 

were found to contribute to hyperperfusion injury, they are not 

yet used as absolute determinants of hyperperfusion injury and 

still have to be confirmed in further investigations. Furthermore, 

clinical strategies and modalities to maintain the viability of 

grafts showing reduced direct control of enhanced PVF have 

not been standardized. It is hoped that anesthesiologists will 

contribute to the prevention of hyperperfusion injury of liver 

grafts by maintaining optimal systemic hemodynamic stability, 

and by conducting systemic pharmacological interventions in 

collaboration with transplantation surgeons based on a com-

prehensive understanding of the clinical implications of portal 

hyperperfusion caused by the underlying hyperdynamic splanchnic 

circulation resulting from portal hypertension.
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