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Abstract: The gastric epithelium is continuously regenerated by gastric stem cells, which give rise to various kinds of daughter 
cells, including parietal cells, chief cells, surface mucous cells, mucous neck cells, and enteroendocrine cells. The self-renewal 
and differentiation of gastric stem cells need delicate regulation to maintain the normal physiology of the stomach. Recently, 
it was hypothesized that cancer stem cells drive the cancer growth and metastasis. In contrast to conventional clonal evolution 
hypothesis, only cancer stem cells can initiate tumor formation, self-renew, and differentiate into various kinds of daughter cells. 
Because gastric cancer can originate from gastric stem cells and their self-renewal mechanism can be used by gastric cancer 
stem cells, we review here how critical signaling pathways, including hedgehog, Wnt, Notch, epidermal growth factor, and bone 
morphogenetic protein signaling, may regulate the self-renewal and differentiation of gastric stem cells and gastric cancer stem 
cells. In addition, the precancerous change of the gastric epithelium and the status of isolating gastric cancer stem cells from 
patients are reviewed. 
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including endoscopy, the 5-year survival rate among gastric 
cancer patients is still less than 40%, and this low survival rate 
is mainly due to relapse and metastasis [5]. Gastric cancer has 
been classified into 2 histological types: intestinal and diffuse. 
The intestinal type is characterized by cohesive neoplastic 
cells that form gland-like tubular structures. The diffuse 
type is a poorly differentiated tumor in which individual 
cells infiltrate and thicken the gastric wall. Although the 
cell of origin in gastric cancer is not yet determined, gastric 
stem cells are considered a strong candidate because the 
differentiated daughter cells have a limited lifespan [6, 7]. 
Moreover, the self-renewal mechanism of gastric stem cells 
can be used by gastric cancer stem cells, and their diffe-
rentiation can be blocked during cancer progression. In 
this paper, we review the mechanisms underlying the self-
re ne wal and differentiation of gastric stem cells, as well as 
how abnormalities in these mechanisms contribute to the 
development of gastric cancer stem cells. 

Introduction

Recently, a cancer stem cell hypothesis was introduced to 
explain the heterogeneity of cancer cells [1-3]. In contrast to 
conventional stochastic theory, the cancer stem cell hypothesis 
suggests that only cancer stem cells can initiate tumor forma-
tion, self-renew, and differentiate. The differentiated daughter 
cells, however, can only proliferate transiently, indicating the 
presence of hierarchical organization among cancer cells. 
Cancer stem cells have been shown to drive the growth and 
metastasis of cancer cells. Moreover, cancer stem cells are 
chemoresistant and radioresistant compared with the diffe-
rentiated daughter cells. 

Gastric cancer is the second leading cause of cancer deaths 
worldwide [4]. Despite advances in various diagnostic tools, 



Gastric stem cells and gastric cancer stem cells

http://dx.doi.org/10.5115/acb.2013.46.1.8

Anat Cell Biol 2013;46:8-18 9

www.acbjournal.org

Gastric Stem Cells

The stomach is divided into 4 sections: the cardia, fundus, 
body, and pylorus. The pylorus is subdivided into the pyloric 
antrum and pyloric canal. Each of these sections has slightly 
different cells and functions. The gastric epithelium is a sim-
ple columnar epithelium that is composed of 2 parts: the gas-
tric pit and gastric gland. The gastric pit is lined by surface 
mucous cells. The gastric gland is composed of various kinds 
of cells, including mucous neck cells, parietal cells, chief cells, 
and enteroendocrine cells [8]. These cells are located within 
3 distinct regions of the gastric gland denoted by the isthmus, 
neck, and base. Parietal cells and chief cells are frequently 
found in gastric glands of the stomach body. However, ente-
r oendocrine cells and mucous cells are found mainly in 
the antral glands. Extensive studies showed the sequential 
generation of these gastric epithelial cells from gastric stem 
cells (Fig. 1). Surface mucous cells, which contain mucous 
granules and express mucin 5AC, gastrokine-1, trefoil factor 
family 1 (Tff1), and forkhead box Q1, are suggested to be 
generated from prepit cells derived from gastric stem cells [6-
8]. The generation of surface mucous cells, which takes 3 days, 
is regulated by Indian hedgehog (Ihh) and epidermal growth 
factor (EGF) [6, 7, 9, 10]. Mucous neck cells, which express 
Tff2, are generated from gastric stem cell-derived preneck 

cells. Interestingly, chief cells whose half-life is 194 days 
have been suggested to be derived by transdifferentiation of 
mucous neck cells, which takes 14 days [6, 7]. The generation 
and differentiation of chief cells are regulated by the basic 
helix-loop-helix transcription factor Mist1, and retinoic 
acid [11-13]. Parietal cells, generated from gastric stem cell-
derived preparietal cells, secrete acid and express various 
genes, including Arf1, Sod2, Cdhr5, Fads1, Calm2, Igfbp2, and 
Pthlh [8]; they are regulated by sonic hedgehog (Shh), gastrin, 
and bone morphogenetic protein (BMP) [14-16].

Gastric stem cells are assumed to be present in the isthmus 
region of the gastric gland because cellular proliferation and 
immature cells were observed in this region. Many previous 
studies have attempted to find a specific marker for gastric 
stem cells, the progress of which has been recently reviewed 
[17]. Although a clear molecular marker for gastric stem cells 
is not yet defined, most researchers agree on the existence of 
gastric stem cells [17]. 

Signaling Pathways for Self-renewal and 
Differentiation of Gastric Stem Cells

Hedgehog signaling 
In the adult stomach, parietal cells in the stomach body 

express the Shh protein and mRNA [18, 19]. Patched 1 (Ptch1), 

Fig. 1. Self-renewal and differentiation of gastric stem cells. Gastric stem cells have the capacity to self-renew and to differentiate into various kinds 
of daughter cells, including surface mucous cells, mucous neck cells, chief cells, and parietal cells. Critical signaling pathways for each differentiation 
route are indicated in blue. Characteristic genes for each of the differentiated cells are indicated in orange. Arf1, ADP-ribosylation factor 1; BMP, 
bone morphogenetic protein; Calm2, calmodulin 2; Cdhr5, cadherin-related family member5; EGF, epidermal growth factor; Fads1, fatty acid 
desaturase 1; FoxQ1, forkhead box Q1; Gif, gastric intrinsic factor; Gkn1, gastrokine-1; Ihh, Indian hedgehog; Igfbp2, insulin-like growth factor 
binding protein 2; Mist1, basic helix-loop-helix transcription factor; Muc5AC, mucin 5AC; Muc6, mucin 6; Notch, Notch signaling pathway; 
Pgc, pepsinogen C; Pthlh, parathyroid hormone-like hormone; RA, retinoic acid; Shh, sonic hedgehog; Sod2, superoxide dismutase 2; Tff1, trefoil 
factor family 1; Tff2, trefoil factor family 2; Wnt, Wnt signaling pathway.
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a receptor for hedgehog signaling, is expressed in gastric 
epithelial cells and mesenchymal cells [19, 20]. According 
to this expression pattern, hedgehog signaling regulated 
the expression of its target genes FoxA2, Isl-1, and H+/K+-
ATPase in parietal cells and BMP4 in mesenchymal cells 
[19]. These findings suggest that hedgehog signaling in the 
stomach works in both autocrine and paracrine fashions. Ihh 
is expressed in the surface mucous cells and may contribute 
to the differentiation and maintenance of this lineage [9, 21]. 
Gastrin, histamine, and EGF can increase the expression of 
Shh [14, 22]. However, interleukin (IL)-1β and tumor necrosis 
factor-alpha (TNF-α) can decrease the expression [23].

Many studies have suggested that hedgehog signaling in-
duces the differentiation of gastric stem cells in the adult 
stomach. In the isthmus region, which contains proli fera-
ting gastric stem cells, Ptch1 was not expressed [9]. Phar-
macological inhibition of hedgehog signaling in the mice 
increased epithelial proliferation by 60–70% [19]. Shh 
expression correlated with fundic gland differentiation of the 
stomach [18]. Treatment of primary parietal cells with Shh 
ligand increased H+/K+-ATPase expression [14]. Genetic or 
pharmacological blocking of hedgehog signaling decreased 
the differentiation of newly generated epithelial cells but 
increased their proliferation in the induced-gastric ulcer 
model [24, 25]. Hedgehog signaling increased epithelial 
cell differentiation through the induction of E-cadherin 
[26]. Finally, the specific knockout of hedgehog signaling 
in parietal cells decreased the number of mucous neck cells 
and chief cells [27]. In mice lacking Shh in parietal cells, 
the phenotypes such as decreased mucous neck cells and 
chief cells were reversed by treatment with the somatostatin 
analog, suggesting the effects of hedgehog signaling are 
indirect [27].

Wnt signaling
In the adult stomach, the expressions of Wnt ligands 

and their receptors are poorly characterized, although the 
ex pression of Wnt signaling in gastric stem cells has been 
suggested by the transcript analysis study by using laser 
capture microdissected gastric stem cells [28]. When Wnt 
signaling was overexpressed in gastric epithelial cells, gastric 
epithelial cell dedifferentiation and adenoma formation 
were observed [29]. In the Apc mutation, which leads to 
the activation of Wnt signaling, hyperplastic polyps were 
observed in the antrum of patients [30, 31]. 

Notch signaling
The expression of hairy and enhancer of split-1 (Hes1), a 

target gene of Notch signaling, was observed in the isthmus 
region of gastric glands [32]. Pharmacological inhibition 
of Notch signaling blocked proliferation in the isthmus 
region, but its overexpression in parietal cells increased pro-
liferation. Interestingly, Notch-overexpressing parietal cells 
dedifferentiated into multipotent stem cells, which gave rise to 
cells of all lineage of the gastric epithelium [32]. These results 
suggest that Notch signaling is critical for the maintenance 
of gastric stem cells. Another role of Notch signaling is the 
inhibition of enteroendocrine cell differentiation, possibly via 
neurogenin3 regulation. In mice lacking Hes1, the number of 
enteroendocrine cells was increased [33].

EGF signaling
EGF signaling is mediated by a typical receptor tyrosine 

kinase pathway. Seven vertebrate EGF ligands are synthesized 
as type 1 transmembrane protein, and soluble ligands are 
released after proteolytic cleavage by membrane protease 
[34]. In addition to salivary glands, parietal cells secrete 
several kinds of EGFs, including HB-EGF, amphiregulin, 
and transforming growth factor-alpha (TGF-α) [35]. Surface 
epithelial cells and enteroendocrine cells also secrete TGF-α 
[36]. Gastrin can increase the expression of these growth 
factors except TGF-α [37]. Four kinds of EGF receptors 
(ErbB1, ErbB2, ErbB3, and ErbB4) have been previously 
described [34]. Although receptors for EGFs are reported to 
be expressed in the surface epithelial cell layer, subtypes of 
those receptors in a specific region are poorly characterized. 
Studies using TGF-α-transgenic mice, where foveolar hyper-
plasia occurs at the expense of parietal and chief cells, have 
suggested roles of EGF signaling in gastric progenitor cell 
differentiation [10]. A similar phenomenon was reported 
in Menetrier’s disease, in which EGF signaling is increased 
[10, 38]. In waved-2 mice, which harbor a hypomorphic 
mutation of the EGF receptor, the development of spasmo-
lytic polypeptide-expressing metaplasia (SPEM) was accele-
rated [39]. Similarly, loss of amphiregulin in parietal cells 
also showed SPEM, although the loss of TGF-α did not 
[40]. However, during the course of SPEM in amphiregulin 
knockout mice, an inflammatory response was observed, 
which may have been a contributing factor.

BMP signaling
Receptors and ligands of BMP signaling are expressed in 
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both epithelial and mesenchymal cells of the stomach [18, 
19, 41-43]. When BMPr1a was removed from the endoderm 
during the early developmental period, the number of parietal 
cells decreased, whereas the number of enteroendocrine cells 
increased, suggesting BMP signaling regulates proliferation 
and commitment of enteroendocrine precursor cells [44]. When 
Noggin, an antagonist of BMP signaling, was overexpressed 
in parietal cells, the number of parietal cells decreased and 
Tff2-expressing cells were expanded [15]. In these mice, the 
acidity of the gastric fluid was decreased and secretion of 
gastrin, amphiregulin, and TGF-α was increased. These in 
vivo data suggest that BMP signaling is required for parietal 
cell differentiation. In accordance with these data, BMP4 
treatment in cultured parietal cells increased the H+/K+-
ATPase expression [42]. 

Gastric Cancer Stem Cell

Precancerous change
The intestinal type of gastric cancer develops through a 

multistep process composed of atrophic gastritis, metaplasia, 
dysplasia, and cancer. Two types of metaplasia have been 
reported, including intestinal metaplasia and SPEM [45]. In 
intestinal metaplasia, the gastric epithelium is transformed 
into the intestinal epithelium, with the typical pathological 

finding being the appearance of goblet cells. CDX2 plays 
a key role in this reprogramming of intestinal dysplasia. 
When CDX2 was induced in the stomach of mice, intestinal 
metaplasia was induced [46, 47]. A recent study showed that 
CDX1 can reprogram gastric epithelial cells into intestinal 
epithelial cells through the induction of SALL4 and KLF5 
[48]. In SPEM, parietal and chief cells disappear and Tff2-
expressing cells expand, indicating antralization of the fundic 
mucosa. A study using Mist1-cre knockin mice showed 
that chief cells transdifferentiated into Tff2-expressing cells 
[49]. More studies are needed to determine whether these 
metaplastic cells are derived directly from gastric stem cells or 
from transdifferentiation of differentiated cells.

Table 1. Isolation of cancer stem cells from gastric cancer patients*
Surface marker Source Xenograft Reference

EpCAM/CD44 Primary gastric cancer Nude mice [50]
CD44/CD54 Primary gastric cancer/

  peripheral blood
Nude/scid mice [51]

CD90 Primary gastric cancer Nude mice [52]
CD44/CD24 Primary gastric cancer NOD/SCID [53]
NOD, non-obese diabetic; SCID, severe combined immunodeficiency.
*The isolation of cancer stem cells from cell lines was not considered. 

Fig. 2. (A–D) Electron microscope ima-
ges of gastric cancer stem cells. Seven 
days after the single-cell culture, images 
were taken using a scanning electron 
microscope (Hitachi S3500N). Note 
the cavities inside the cancer spheres (A, 
×180; B–D, ×1,500). Scale bars=200 
µm (A), 30 µm (B–D).
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Isolation of gastric cancer stem cell from patients
After the demonstration of cancer stem cells in leukemia 

by John Dick’s group, cancer stem cells were successfully 
isolated from numerous solid cancers, including brain cancer, 
breast cancer, and pancreatic cancer [2, 3]. Several groups 
have attempted to isolate cancer stem cells from gastric cancer 
patients (Table 1). Both EpCAM and CD44 surface markers 
were used in the first such attempt, in which the xenograft 
showed a similar heterogenous phenotype of original patients 
[50, 54]. Moreover, the single-cell-originated cancer spheres 
showed various kinds of daughter cells. Interestingly, electron 
microscopic images of cancer spheres showed various shapes 
of cavities inside the spheres (Fig. 2), which were also re-
ported by another study [55]. In the subsequent study using 
CD44 and CD54, gastric cancer stem cells were successfully 
isolated from the blood of gastric cancer patients [51]. In a 
recent study, the CD90 marker was used [52]. Interestingly, 
CD90-positive gastric cancer stem cells overexpressed 
ErbB2, suggesting that the anti-ErbB2 antibody can be used 
to eradicate gastric cancer stem cells. The CD44 and CD24 
combination has also been used for the isolation attempts [53].

Signaling Pathways for Self-renewal and 
Differentiation of Gastric Cancer Stem Cells

Hedgehog signaling 
After long-term inflammation, gastric epithelial cells are 

transformed into neoplastic cells. During the progression of 
gastritis, a frequent loss of Shh expression was observed [56]. 
This disappearance is consistent with that of parietal cells. 
Moreover, inflammatory cytokines such as IL-1 and TNF-α 
can reduce Shh expression [23]. The disappearance of Shh 
may promote the transformational process of gastric epithelial 
cells because its main role in gastric stem cells is to induce 
gastric differentiation, as discussed above. However, in more 
than two-thirds of primary gastric cancers, an enhancement 
of hedgehog signaling was reported, which was indicated 
by overexpression of hedgehog target genes Ptch1 and Gli1 
[9, 57]. Overexpression of hedgehog signaling promoted 
the proliferation and survival of gastric cancer cells and was 
positively correlated with poorly differentiated and aggressive 
gastric cancer [20, 58, 59]. Moreover, hedgehog signaling 
enhanced the metastasis of gastric cancer cells through the 
activation of TGF-β signaling [60]. However, the differences 
in roles of hedgehog signaling between gastric stem cells 
and cancer cells are not clear. A recent study showed that 

Shh was derived from bone-marrow-derived mesenchymal 
stem cells that were recruited to the stomach during chronic 
inflammation [61]. The recruitment and potential role of 
bone-marrow-derived mesenchymal stem cells in gastric 
tumorigenesis was reported by Houghton et al. [62]. 

The roles of hedgehog signaling in cancer stem cells have 
been described in many cancers, including multiple myeloma, 
glioblastoma, colon cancer, and pancreatic cancer [63]. A 
recent study showed that hedgehog signaling is essential 
for the maintenance of cancer stem cell-like cells in gastric 
cancer [64]. They found that the overexpression of hedgehog 
signaling in tumorsphere cells and interruption of hedgehog 
signaling by cyclopamine or 5E1 antibody reduced the self-
renewing capacity. Another study showed that CD44+CD24+ 
cells isolated from a gastric cancer cell line had the capacity to 
self-renew and produce differentiated progeny, and showed 
increased expression of hedgehog signaling molecules, 
including Shh, Ptch1, and Gli3, compared with CD44-CD24–
cells [53].

Wnt signaling
The importance of the Wnt signaling pathway in self-

renewal of cancer stem cells was reported in colorectal cancer, 
breast cancer, and myeloid leukemia [65]. It has also been 
suggested to regulate self-renewal of gastric cancer stem-
like cells [66]. In that study, blocking of Wnt signaling by the 
Dickkopf homolog 1 protein caused a reduction in the self-
renewing capacity of MKN45 tumorsphere cells. Moreover, 
nuclear localization of β-catenin, indicating activation of Wnt 
signaling, was found in approximately 30% of gastric cancers 
[67, 68]. Mutation or loss of heterozygosity in the Apc gene 
was found in 18% or 21% of gastric cancers, respectively [69]. 
Although the incidence is variable depending on research 
group, β-catenin mutation was detected in gastric cancer 
[68, 70, 71]. Animal studies also support that Wnt signaling 
increases gastric cancer development. K19-Wnt1 transgenic 
mice expressing Wnt1 in the gastric mucosa, using the keratin 
19 promoter, showed a significant suppression of epithelial 
differentiation with small preneoplastic lesions [72]. When 
these mice were crossed with K19-C2mE transgenic mice 
expressing cyclooxygenase-2 (Cox-2) and microsomal pro-
staglandin E synthase-1 (mPGES-1) in the stomach, mucous 
cell metaplasia and dysplastic gastric tumors were observed.

Notch signaling
Notch signaling is implicated in the self-renewal of various 
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cancer stem cells, including breast cancer, medulloblastoma, 
and pancreatic cancer [73]. Although there is no direct evi-
dence supporting the roles of Notch signaling in gastric 
cancer stem cells, abnormal activation of Notch signaling was 
observed in gastric cancer. Approximately 75% of primary 
gastric cancers expressed the Notch ligand Jag1, with the 
expression status correlating with cancer aggressiveness 
and patient survival rate [74]. Interestingly, Notch signaling 
promoted colony formation, migration, and invasion of 
gas tric cancer cells partially through Cox-2 [74]. Another 
study showed that Notch signaling promoted gastric cancer 
progression through Twist expression and phosphorylation of 
the signal transducer and activator of transcription 3 [75]. 

EGF signaling
Roles of EGF signaling in cancer stem cells were suggested 

in breast cancer [76] and glioblastoma [77]. Although the 
roles were not examined in gastric cancer stem cells, abnormal 
activation of EGF signaling has been reported, where ampli-
fication of ErbB2 was observed in up to 27% of gastric can-
cers [78]. K-ras mutation was detected in the intestinal type 
of gastric cancer [79, 80]. EGF receptor overexpression is 
associated with a poor prognosis in gastric cancer [81, 82].

TGF-β and BMP signaling
Previous studies showed TGF-β signaling has dual roles 

in cancer progression [83, 84]. In the early stages of cancer, 
TGF-β signaling acts as a tumor suppressor by inhibiting 
cellular proliferation or by promoting cellular differentiation 
and apoptosis. However, in the later stages, TGF-β signaling 
enhances cancer cells invasion and metastasis. Runx3, a 
target gene of TGF-β signaling, can suppress the progression 
of gastric cancer by inducing claudin-1 [85]. Moreover, 
Runx3 works as an antagonist for Wnt signaling, which is a 
critical signaling pathway for maintenance of stem cells, and 
antagonizes the epithelial-mesenchymal-transition of gastric 
epithelial cells [86]. Helicobacter pylori can methylate the 
promoter and induce loss of Runx3 in gastric epithelial cells 
[87].

BMP signaling in the stomach is up-regulated during in-
flam mation and down-regulated during cancer progression 
[67, 88]. BMP signaling activity was mostly detected in the 
differentiated surface cells and gland cells in healthy mucosa 
[88]. In gastric cancer tissues, the expression of BMP2 was 
epigenetically down-regulated [89]. Moreover, BMP2 and 
BMP4 suppressed gastric cancer cell proliferation [90, 91]. 

However, other studies showed that BMP2 promoted gastric 
cancer cell migration and invasion, and its overexpression 
positively correlated with the tumor progression and meta-
stasis [92-95]. Although the role of BMP signaling were not 
examined in gastric cancer stem cells, its roles were suggested 
in breast cancer [96] and prostate cancer [97]. 

Nuclear factor κ-light-chain-enhancer of activated B 
cells (NF-κB) signaling

Most gastric cancers evolve from chronic gastritis. There-
fore, major signaling pathways that are critical for chronic 
inflammation affect cancer progression. One of those inflam-
matory signaling pathways is NF-κB, a family of bipartite 
transcription factors that include NF-κB1, NF-κB2, c-Rel, 
RelA, and RelB [98]. The dimerized transcription factors are 
normally bound by IκB, an inhibitor of NF-κB, and thereby 
restricted to the cytoplasm. When inflammatory cytokines or 
bacterial components activate the cells, IκB is phosphorylated 
by an IκB kinase complex and subject to proteasomal 
degradation, which releases NF-κB that translocates into the 
nucleus and activates the target genes [98].

NF-κB activity in self-renewal of cancer stem cells have 
been reported in breast cancer [99], prostate cancer [100], 
and glioblastoma [101]. A number of cytokines, including 
IL-6 and IL-8, can activate NF-κB, and a positive feedback 
loop between the expression of cytokines and the activity of 
NF-κB can be formed to maintain a chronic inflammatory 
state [102]. Although there is no direct evidence for the roles 
of NF-κB signaling in gastric cancer stem cells, aberrant 
activation of NF-κB in gastric cancer contributes to increased 
proliferation, evasion of apoptosis, genomic instability, and 
drug resistance [67, 103, 104]. Moreover, H. pylori induces 
various inflammatory cytokines through activation of the NF-
κB pathway [67, 105-107]. 

Cox-2
Cox-2 is a critical enzyme for the conversion of arachidonic 

acid to prostaglandins (PGs), among which prostaglandin 
E2 (PGE2) plays a key role in the Cox-2-induced promotion 
of gastric cancer [108]. H. pylori infection can induce the 
expression of Cox-2 and mPGES-1 in the gastric mucosa 
[109]. Cox-2 and PG can induce angiogenesis and heavy 
infiltration of macrophages [110, 111]. Although there is no 
direct evidence that Cox-2 and PG contribute to self-renewal 
of gastric cancer stem cells, there is a possibility that these 
mole cules reconstruct the inflammatory microenvironment 
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of cancer stem cells, which finally affects their self-renewal. 
A recent study in colorectal cancer cells showed that PGE2 
released from mesenchymal stem cells enhanced the forma-
tion of cancer stem cells and other cytokines [112]. The 
additional expression of Cox-2 and mPGES-1 converted 
the preneoplastic lesions into dysplastic tumors in mice 
overexpressing Wnt1 in gastric epithelial cells [72]. 

Conclusion and Future Directions

Despite many laboratory efforts, there is no highly specific 
marker for gastric stem cells. This slows down any attempt 
to elucidate the regulatory mechanisms underlying the self-
renewal and differentiation of gastric stem cells. Moreover, the 
chronic inflammatory process can change the characteristics 
and regulatory mechanisms of gastric stem cells, which makes 
it more difficult to determine the origin of gastric cancer. A 
better understanding about the regulatory mechanisms of 
gastric stem cells can be applied to develop therapeutics for 
not only gastric cancer but also gastric ulcer. To achieve these 
goals, the identification of a specific marker is imperative. 

In addition, the importance of the microenvironment for 
cancer stem cells cannot be underestimated. For example, 
hepatocyte growth factor secreted by cancer-associated fi-
bro blasts increased the self-renewal of colon cancer stem 
cells through activation of the Wnt signaling pathway [113]. 
Notably, chronic gastritis can recruit bone marrow-derived 
mesenchymal stem cells, and they differentiate into cancer-
associated fibroblasts that sustain cancer progression in a 
TGF-β and stroma-derived factor-1α−dependent manner [54, 
61]. Moreover, many inflammatory cells, including macro-
phages, can affect the self-renewal of cancer stem cells [102]. 
Thus, the interactions between inflammatory cells and gastric 
cancer stem cells need to be examined because most gastric 
cancers evolve from chronic gastritis.

One of the critical problems in the treatment for cancer is 
the heterogeneity of cancer cells, rendering treatment for a 
specific target unpromising. The heterogeneity of cancer cells 
can be explained by the different origins of cancer cells and 
cancer stem cells. Although cancer stem cells generate various 
kinds of daughter cells and contribute to the heterogeneity, 
cancer stem cells themselves are genetically evolving. 
Therefore, the evolutionary process of cancer stem cells also 
needs to be examined for the development of new therapeutic 
drugs for gastric cancer.
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