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Abstract: The Bcl-2 interacting death suppressor (Bis) protein is known to be involved in a variety of pathophysiological 
conditions. We recently generated bis-deficient mice, which exhibited early lethality with typical nutritional deprivation status. 
To further investigate the molecular basis for the malnutrition phenotype of bis deficient mice, we explored Bis expression in 
the digestive system of normal mice. Western blot analysis and quantitative real time reverse transcription polymerase chain 
reaction analysis indicated that Bis expression is highest in the esophagus, followed by the stomach, colon, jejunum and ileum. 
Immunohistochemical data indicated that Bis expression is restricted to the stratified squamous epitheliums in the esophagus 
and forestomach, and was not notable in the columnar epitheliums in the stomach, small intestine and colon. In addition, strong 
Bis immunoreactivity was detected in the striated muscles surrounding the esophagus and smooth muscles at a lesser intensity 
throughout the gastrointestinal (GI) tract. Ganglionated plexuses, located in submucous layers, as well as intermuscular layers, 
were specifically immunoreactive for Bis. Immunofluorescence studies revealed that Bis is co-localized in glial fibrillary acidic 
protein-expressing enteric glial cells. Immunostaining with neuron specific esterase antibodies indicate that Bis is also present 
in the cell bodies of ganglions in the enteric nervous system (ENS). Our findings indicate that Bis plays a role in regulating GI 
functions, such as motility and absorption, through modulating signal transmission between the ENS and smooth muscles or 
the intestinal epitheliums. 
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as glioblastomas [3-9]. In addition, the suppression of Bis 
expression sensitizes cell death upon various stimuli [9-
11]. Bis is also known to have an anti-stress function, since 
its expression is up-regulated upon various stresses in vitro 
and in vivo, as well [4, 12-16]. Another recently reported 
function of Bis is that it participates in protein quality 
control via stimulating macroautophagy. The target proteins 
are aggregation-prone proteins, as evidenced by poly Q, 
or proteins found in aging brains, where oxidative stress is 
increased [17, 18]. It has been suggested that the molecular 
basis for its role in the selective autophagy of misfolded 
proteins is that it interacts with microtubule-motor dynein 
and subsequently directs heat shock protein 70 (Hsp70) 
substrates to aggresomes [19, 20]. Therefore, Bis is thought 
to play an important role in determining the fates of cells in 
various pathophysiological conditions. 

Introduction

Bis, also referred as Bag3, was originally identified as a Bcl-
2 binding protein that enhances the antiapoptotic activity 
of Bcl-2 in vitro [1, 2]. The prosurvival function of Bis has 
been supported by more recent reports showing that Bis is 
overexpressed in a variety of tumors, including leukemia, 
pancreas cancers, thyoid cancers, prostate cancers, as well 
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We, and separately by another group, have recently 
reported the development of bis-deficient mice, using a 
cre-loxP system targeting exon 4 and retroviral insertion, 
respectively. In both cases, the mice exhibit early lethality 
before weaning as a common phenotype [21, 22]. Muscle 
weakness and subsequent respiratory problems were proposed 
as the cause of the early lethality by another group, based on 
the presence of massive apoptotic figures in skeletal muscles. 
However, even though z-disk disruption was also observed 
in our model, massive apoptotic findings were not found. 
Instead, the bis-deficient mice developed by us revealed 
significant hypoglycemia, fatty livers, loss of peripheral fat 
reserves and increased glucocorticoid levels, all of which are 
typical adaptive response to malnutrition [22, 23]. Thus, a 
serious nutritional problem might be more closely connected 
with the early lethality of bis−/− mice, but the precise molecular 
basis for this are not understood. 

Bis has been demonstrated to express ubiquitously and 
at high levels by skeletal muscles and the heart [1]. We 
previously investigated the expression profile of Bis in the 
developing brain, as well as the adult rat brain. The findings 
showed that Bis expression was observed transiently in a 
specific population of neurons in the cortex and hippocampus 
and midline glial cells in the brain stem and spinal cord, 
while Bis expression in the glial cells in the rostral migratory 
system are maintained in adults [24-26]. These results suggest 
that the expression of Bis in the glial cells is involved in the 
differentiation and migration of a specific population of 
neurons, which is supported by in vitro experiments, showing 
that the knockdown of Bis expression led to an impairment 
in glial differentiation, as well as disorganization of spreading 
of mature neurons and migrating neurons [27]. It is therefore 
possible that Bis is involved in the development or functional 
maturation of enteric nervous system (ENS), leading to 
the regulation of the physiology of the gastrointestinal (GI) 
system, but the localization of Bis in ENS has not yet been 
investigated. The malnutrition phenotype observed in bis-
deficient mice could be attributed a problem associated 
with the intake or absorption of milk, as well as in the 
motility of the intestine, which is mainly under the control 
of ENS. In this report, to investigate the possible role of Bis 
in the physiological function of the GI tract, we examined 
the expression of Bis in the GI tracts of mice, covering the 
esophagus, stomach, small intestine and colon. Particular 
attention was paid to the presence of Bis in the nerve plexus 
in the muscle layer and submucosal layer, which could be 

associated with the dysfunction of the GI tract of bis-deleted 
mice. 

Materials and Methods 

Animals 
Bis expression in GI tract was examined in wild C57BL/6 

mice at 14-16 days after birth since bis-deficient mice exhibit 
serious catabolic phenotypes at those ages [22]. All research 
procedures involving animals were performed in accordance 
with the Laboratory Animals Welfare Act, the Guide for the 
Care and Use of Laboratory Animals and the Guidelines and 
Policies for Rodent Experiment provided by the Institutional 
Animal Care and Use Committee (IACUC) at College of 
Medicine, the Catholic University of Korea.

Western blot analysis 
Tissues were lysed in RIPA buffer (150 mM NaCl, 50 mM 

Tris·HCl, pH 7.6, 0.1% sodium dodecyl sulfate, 1% NP-40, 
0.5% sodium deoxycholate) and sonicated three times on 
ice. An equal amount of proteins were separated by sodium 
dodecyl sulfate-polyacyrlamide gel electrophoresis under 
reducing conditions and transferred onto polyvinylidene 
difluoride membranes (Millipore, Billerica, MA, USA). The 
blots were incubated with anti-Bis serum raised in rabbit 
(1 : 10,000) or Hsp70 (1 : 1,000, BD Science, San Jose, CA, 
USA) [1], and subsequently with peroxidase-conjugated 
anti-rabbit IgG (1 : 2,000, Millipore). The visualization of Bis 
immunoreactive bands were performed with an enhanced 
chemiluminescence (Thermo Fisher Scientific, Waltham, 
MA, USA). Quantification for the intensities of each band 
was carried out on Multi Gauge 2.2 software (Fuji Photo Film, 
Tokyo, Japan). The ratios of the density of the Bis band to that 
of heat shock protein Hsp70 band were compared and the 
relative levels of Bis were determined between fractions from 
mouse GI tracts. 

Quantitative real-time reverse transcription polyme
rase chain reaction 

To verify bis mRNA expression in GI tract, total RNA 
was extracted with RNA-zol Bee (Tel-Test, Friendswood, 
TX, USA), and cDNA was synthesized using reverse tran
scriptase (RevertAid, Thermo Fisher Scientific). The rela
tive expression of bis mRNA was determined by quan
titative real-time PCR (ABI 7300, Life Technologies, 
Carlsbad, CA, USA) with SYBR Premix Ex Taq (Takara 
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Bio, Shiga, Japan) and specific primers for bis and β-actin: 
bis ,  5'-ACTCTAAGCCTGTTTCCCAGAAGT-3' and 
5 ' -AGACT TGTACT TGACCTGGGACAT-3 '  (NM_ 
013863.5); β-actin, 5'-TTCGTT GCCGGTCCACA-3' and 
5'-ACCAGCGCAGCGATATCG-3' (X03672.1). After norma
lized to β-actin mRNA levels, the relative expression of bis 
mRNA from each part of the GI tracts was represented as a 
relative value compared from that of the ileum, which was 
designated as 1.0.

Immunohistochemistry 
The tissues were fixed in 10% neutral buffered-formalin 

and embedded in paraffin. Paraffin sections were cut in 4 
μm, deparaffinized and dehydrated. Endogenous peroxidase 
activity was blocked for 30 minutes by treatment with hyd
rogen peroxide block (Thermo Fisher Scientific). To reduce 
nonspecific staining, sections were blocked with 10% 
normal goat serum (GBI, Mukilteo, WA, USA) and then 
incubated with primary antibody against Bis (1 : 2,000) or 
against neuron specific esterase (NSE; 1 : 100, Chemicon, 
Temecula, CA, USA) at 4°C overnight. After washing with 
0.01 M phosphate-buffered saline (PBS; pH 7.4), the sections 
were incubated with horseradish peroxidase-conjugated 
goat anti-rabbit IgG (1 : 400, Novus Biologicals, Littleton, 
CO, USA) and then rinsed in 0.01 M PBS. Sections were 
placed in 3,3'-diaminobenzidine tetrahydrochloride (DAB 
plus substrate System, Thermo Fisher Scientific). After 1-2 
minutes, the reaction was stopped by several washes with 
distilled water.

Immunofluorescence 
The tissues were embedded in Optimal Cutting Tempera

ture compound (OCT; Tissue-Tek, Torrance, CA, USA). The 
sections were cut in 6 μm. The sections were dried for 30 
minutes at room temperature, fixed in acetone for 10 minutes 
at -20°C, and blocked by treatment with 10% normal goat 
serum (GBI) for 30 minutes. For double-fluorescence staining, 
these sections were incubated with primary antibody against 
Bis (1 : 4,000) and antibody against glial fibrillary acidic 
protein (GFAP; 1:700, Millipore) overnight at 4°C. After 
washing in PBS, sections were incubated with Cy3-conjugated 
goat anti-rabbit IgG (1 : 2,000, Jackson, West Grove, PA, 
USA) and Alexa Fluor 488-conjugated goat anti-mouse IgG 
(1 : 300, Invitrogen, Carlsbad, CA, USA) for 40 minutes at 
room temperature. Counter-staining was performed with 
4',6-diamidino-2-phenylindole (DAPI; 1 : 2,000, Roche 

Diagnostics GmbH, Mannheim, Germany) for 5 minutes 
at room temperature. Slides were viewed using a confocal 
microscope (LSM 510 Meta, Carl Zeiss Microimaging GmbH, 
Jena, Germany). Images were converted to TIFF format, and 
contrast levels were adjusted by Adobe Photoshop ver. 7.0 
(Adobe Systems, San Jose, CA, USA).

Statistical analysis 
Data were expressed as the means±standard errors (SE). 

Differences between the two groups were examined for statis
tical significance, using a two-tailed Student’s t-test. A P-value 
of less than 0.05 was considered significant.

Results 

Tissue fractions were isolated from each part of the GI 
tract of mice at postnatal 14-16 days, and prepared for 
western analysis, quantitative real time analysis and immuno
histochemistry. Western analysis, using specific Bis antibody, 
demonstrated that the degree for Bis expression varied 
throughout the GI tract, although the expression levels were 
lower than those of the skeletal muscles (Fig. 1A). Among the 
GI tract, the highest expression of Bis was by the esophagus, 
while only traces were found for the jejunum and ileum. The 
quantitative determination of band intensities indicated that 
Bis expression in the esophagus was 77 fold higher than that 
for the ileum (Fig. 1B). The relative  mRNA levels were 
the highest in the esophagus, 38 fold higher than that for the 
jejunum or ileum, which is correlated with the Bis protein 
expression pattern in a Western assay (Fig. 1C). 

To identify the Bis expressing cells in the GI tract, we 
performed immunohistochemistry with tissue sections from 
each part of the mouse GI tract. An intense immunostaining 
for Bis was observed in the stratified squamous epithelium 
lining in the esophagus (Fig. 2A). In the stomach, Bis 
immunoreactivity was also prominently observed in the 
squamous epithelium of the forestomach, but this abruptly 
disappeared at the junction of the forestomach and glandular 
stomach, where the stratified squamous epithelium of the 
esophagus changes abruptly to the simple columnar epithe
lium of the stomach (Fig. 2B, C). Bis expression was also 
very low in the columnar epitheliums of the jejunum, ilum 
and colon (Fig. 3 and data not shown). Thus, Bis expression 
appears to be limited to the squamous epithelium and does 
not occur in the columnar epithelium in the GI tract. Bis 
has been reported to be strongly expressed in the skeletal 
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and cardiac muscles [1]. In the GI tract, the striated muscles 
surrounding the esophagus also exhibit intense immuno

staining for Bis (Fig. 2A). Although the intensity is weaker 
than in the striated muscles, Bis immunoreactivity was 
detected in the smooth muscles throughout the entire 
GI tract, from the esophagus to the colon, including the 
inner circular and outer longitudinal layers (Fig. 2B, D, 3). 
Therefore, the highest expression of Bis in the esophagus 
found in the western assay is likely due to a significant level 
of Bis expression in the squamous epitheliums and in the 
striated muscles.

In addition to the squamous epitheliums and smooth 
muscles, Bis immunoreactivity was specifically detected in the 

Fig. 2. Immunohistochemical analysis of Bis in the esophagus (A) and 
stomach (B-D). Intense Bis immunoreactivity was observed in the 
stratified squamous epithelium and striated muscles (marked as white 
or black asterisk, respectively) in the esophagus (A). In epithelia of the 
grandular stomach, only trace levels of Bis expression were detected 
(B, C) and weak immunostaining for Bis was detected in the smooth 
muscles of the stomach, while specific localization of Bis was detected 
in myenteric plexus (arrows) (B, D). Higher magnifications of the 
boxed areas in B are shown in C and D. Scale bars=50 μm (A-D).

Fig. 1. Expression of Bis in the mouse gastrointestinal (GI) tract. (A) 
Western blot analysis for Bis in the each part of GI tracts from 14-day-
old mice. A representative result was provided with heat shock protein 
70 (Hsp70) as a loading control. (B) A quantitative determination of 
Bis expression using densitometric analysis after normalizing to Hsp70 
(mean±SE, n=3). The relative density of the Bis bands to that of Hsp70 
from ileum was designated as 1.0. (C) Determination of the relative 
expression of bis mRNA in the mouse GI tract by quantitative real 
time polymerase chain reaction analysis. Data are normalized relative 
to β-actin mRNA in the same samples, and the value for the ileum 
was arbitrarily set as 1.0 (mean±SE, n=3). S.M., skeletal muscle; ESO, 
esophagus; STO, stomach; JEJ, jejunum; ILE, ileum; COL, colon. 
*P<0.05, **P<0.01 and ***P<0.005 compared with the value from 
ileum.
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myenteric nerve plexus, also called Auerbach’s plexus [28], 
which is located between inner and outer smooth muscles that 
cover the esophagus, stomach and intestines (Figs. 2D, 3B, 
5A). Another enteric nerve plexus, which is mainly present 
in the submucosa of the small intestine, called Meissner’s 
plexus, also showed Bis immunoreactivy, the level of which 
were comparable to that in Auerbach’s plexus (Figs. 3A, 5A). 
The enteric nerve plexus is composed by several types of cell 
populations, including neurons, glia, and interstitial cells of 
Cajal, and mesenchymal fibroblasts [28, 29]. An examination 
at higher magnification indicates that Bis immunoreactivity 
is localized in two populations in the enteric nerve plexus. 
Bis expresses in the cytoplasm of cell bodies in a population 
with a large nucleus and obvious nucleoli representing 
neurons (Fig. 3A, C). Bis expression was also detected in the 
cytoplasm and the extending process of the cells, which have 
a smaller nucleus than smooth muscle cells, indicating enteric 
glial cells (Fig. 3B, D). To identify the Bis-immunoreactive 
cells in the enteric nerve plexus, double immunofluorescence 
labeling was conducted, using a Bis antibody and gial GFAP 
antibody as a marker of enteric glial cells. Fig. 4 shows 
that nearly all of the GFAP expressing enteric glial cells are 
also immunoreactive for Bis, corresponding to a fraction 
of the Bis-expressing cells. We also performed immuno

histochemistry with an antibody for NSE, using serial 
sections next to the Bis-stained sections, to compare with 
the distribution and density of those immunoreactive cells. 
As shown in Fig. 5B and D, NSE immunoreactive cells in the 
submucosal layer, as well as in myenteric plexuses have large 
immunostained cell bodies with granular cytoplasmic stained 
patterns and Bis immunoreactivity was also observed in the 
cell bodies in the same cells in subsequent sections (Fig. 5A, 
C). Therefore, Bis is expressed in the cell bodies of neurons in 
the ENS. The pattern for the expression profile of Bis in the 
colon was similar to that for the small intestine, showing the 
immunostaining in the ENS and smooth muscles (data not 
shown). The relatively thicker smooth muscle layers in the 
colon appear to be the source of the higher Bis expression in 
the colon, rather than in the jejunum or ileum, as found in a 
Western assay (Fig. 1A). 

Discussion 

In the present study, we examined the expression profile of 
Bis in the mouse GI tract, using Western assay, quantitative 
determination of bis mRNA, and immunohistochemistry. Our 
results showed that Bis is expressed in the striated smooth 
muscles of the esophagus, as well as the smooth muscles 
through the entire intestinal wall. In addition, Bis expression 
is specifically detected in the stratified squamous epithelium, 
rarely in the columnar epithelium. Finally, Bis is strongly 
detected in the enteric ganglion cells and enteric glial cells. 
Therefore, the expression profile of Bis in GI tract, showing 
the specific localization in the cells of less self-renewing 
capacity, suggest the possible role for Bis in the maintenance 
of cell survival probably by suppressing cell death. The 
death suppressor function of Bis has been demonstrated 
by previous experiments performed in vitro, as well as in 
vivo data, showing higher expression of Bis in the various 
kinds of cancers [1, 2, 9-11]. Thus, our results presenting the 
expression of Bis in the normal cells lacking proliferation 
potential, but with long life span, support the pro-survival 
role of Bis in the physiological condition, in addition to a 
pathological condition. 

ENS is organized in a series of several plexus that modu
lates a variety of physiological functions of the GI sys
tem, including motility, secretion, microcirculation, and 
inflammation [28]. Two ganglionated plexuses, the sub
mucosal and myenteric plexus, are representative plexuses 

Fig. 3. Bis immunoreactivity in the small intestine. Bis immunoreactivity 
was clearly localized in the ganglionated networks of the submucous 
plexus (arrow) and myenteric plexus (arrowhead) in jejunum (A, C) 
and ileum (B, D). Higher magnifications of the boxed areas in A and B 
are shown in C and D, respectively. Scale bars=50 μm (A, B), 20 μm (C, 
D).
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in the ENS, and are composed of neurons and enteric glial 
cells in a ratio of 1 : 4 [29]. Myenteric ganglia, located in the 
septum between the circular and longitudinal smooth muscle 
layers, are mainly involved in regulating the motility of the GI 
tract, such as mixing movement and peristalsis [30, 31], and 
the submucosal plexus, also referred to as Meissner’s plexus, 
is known to regulate blood flow and electrolyte transport 
through the intestinal epithelium [32, 33]. The interstitial 
cells of Cajal are also known to coordinate information 
between two plexus through interconnecting fibers. Our 
results show that Bis expression was specifically detected in 
two major enteric nerve plexus areas, the submucosal and 
myenteric plexus, from the esophagus to the colon in the 
mouse GI system (Fig. 2, 3). As evidenced by colocalization 
with GFAP immunoreactivities, Bis was shown to be present 
in GFAP-positive enteric glial cells (Fig. 4). Furthermore, 
immunostaining of serial sections with NSE and Bis anti
bodies reveal that Bis is also expressed in the cytoplasm of 
NSE-expressing ganglion cells in small intestines (Fig. 5). The 
specific expressions of the Bis protein in the ENS, therefore, 
suggest that Bis might play an important role in the neural 
activity of the ENS to modulate absorption or motility pro
cesses of GI tract. 

On the other hand, another prominent finding of our 
studies is that Bis immunoreactivity is strictly confined to the 
squamous epitheliums of the esophagus and forestomach, 
while immunoreactivity of Bis was rarely detected in the 
columnar epitheliums in the stomach, jejunum, ileum and 
colon, which mediate the transport of nutrients or electrolytes 
(Figs. 2, 3). Thus, it is not likely that Bis is directly involved in 
the digestion, secretion or absorption processes. Moreover, 
our findings showing that Bis is expressed by smooth muscles 
throughout the intestinal wall, as well as the striated muscles 
in the esophagus indicate that Bis is related to motility, rather 
than digestion or absorption. In a previous study, Bis was 
shown to be strongly expressed in skeletal and cardiac muscles 
and bis deleted mice exhibited z-disc disruption [1, 22]. 
Several cases of patients with myofirillar myopathy (MFM) 
showed a heterozygous p.Pro209Leu (c.626C>T) mutation 
in exon 3 of the bis gene, without a mutation in any other 
genes causing MFM. These patients suffer from axial muscle 
weakness, cardiomyopathy and respiratory insufficiency [34, 
35]. In addition to typical microscopic findings of myofibrillar 
myopathy in a muscle biopsy, recent studies reported that 
bis gene-mutation caused myofibrillar myopathy patients 
to present features of significant axonal neuropathy with 

the presence of giant axons, which is associated with the 
accumulation of neurofillaments, in a nerve biopsy [36-
38]. These results suggest that Bis might be involved in the 
maintenance of the integrity of the cytoskeleton in neurons, as 
well as in muscle fibers. Likewise, the presence of Bis in ENS 
and smooth muscles in the GI tract imply a regulatory role for 
Bis in the transfer of intrinsic regulatory signals from the ENS 
and the motility of the GI tract. 

The targeted deletion of the bis gene results in the deterio
ration of nutritional status and subsequent early lethality 
before weaning [22, 23]. Considering that the intrinsic 
motor function of the GI tract is peristaltic movement or 
mixing for solid food, an impairment in GI motility is likely 
not the only cause of the malnutrition phenotype of bis-
deficient mice provided by milk from the mother. The nerve 
terminals in the ENS could sense luminal contents, including 

Fig. 4. Immunofluorescence staining of Bis and glial fibrillary acidic 
protein (GFAP) in Jejunum. Confocal laser microscopic imaging of 
immunofluorescence for Bis (B), GFAP (C) and overlay (A, D) in 
the myenteric plexus of jejunum. Note that Bis immunoreactvity was 
observed in GFAP-expressing the enteric glial cells (marked as arrows).
The higher magnification views of the boxed area in A are shown in 
B-D. Scale bars=50 μm (A), 10 μm (B-D).
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nutrients via afferent fibers from mucosal cells, which 
contain specific chemoreceptors and initiate appropriate 
reactions, such as absorption, secretion and peristalsis [39, 
40]. Moreover, the presence of receptors for small molecules, 
such as cholecystokinin, vasoactive intestinal peptide or nitric 
oxide, and receptors for peptide neurotransmitters, such as 
adregergic, cholinergic or dopaminergic receptors, have been 
demonstrated in the enteric epitheliums [41-45]. Finally, 
luminal perfusion studies with agonists and antagonists for 
adrengergic receptors indicate that the transport of glucose, 
amino acids or oligopeptide to enteric epithelial cells is, at 
least in part, under the neural control of intrinsic ENS [46-
48]. Therefore, the possibility for the involvement of Bis in the 
absorption of nutrients in the GI tract should not be excluded 
by a lack of expression of Bis in the columnar epithelium in 
the GI tract. 

With more recent information, the role of enteric glial cells 
in the GI system has changed from the simple mechanical 
support for enteric neurons to the active modulators for 
GI functions, such as enteric neurotransmission, inflam
matory events, as well as GI motor function [49, 50]. In 
mouse models, the loss of enteric glia results in neuronal 
degeneration [51]. Genetically modulated mice, in which the 
glial cell line-derived neurotropic factor is deleted, exhibited 
a complete failure to develop ENS [52]. In addition, enteric 
glial ablation was found to cause a marked change in the 
neurochemical coding of enteric neurons: a reduction in 
the vasoactive intestinal peptide, substance P, and nitric 
oxide synthase immnoreactive neurons and an increase 

choline acetyl transferase expressing neurons in ENS 
[53]. In rats, the selective ablation of the enteric glial cells 
via the administration of a gliotoxin caused a decrease in 
small intestinal motility and transit [54]. Evidence for the 
involvement of enteric glial cells in abnormal GI motility 
in humans is evidenced by several pathological conditions, 
showing a significant decrease in the enteric glial cells and 
interstitial cells of Cajal in patients with colonic diverticular 
diseases or idiopathic severe slow-transit constipation [55-57]. 
Overall, these findings suggest that the enteric glial cells are 
closely linked to the development or functional maturation 
of the enteric neurons. We previously demonstrated that Bis 
expression is increased time dependently during the in vitro 
differentiation of the P19 embryonic carcinoma cells and 
the knockdown of Bis expression led to impairment in glial 
differentiation, as well as the disorganization of spreading 
of mature neurons and migrating neurons [27]. Therefore, 
it is possible that Bis may play an important role in the 
relationship between glial cells and neurons in the ENS, as 
well the central nervous system, affecting the structural and 
functional maturation of neurons. This possibility should 
be examined in further studies using mice carrying the glia-
specific ablation of the bis gene.
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