1. Antonetti DA, Silva PS, Stitt AW. 2021; Current understanding of the molecular and cellular pathology of diabetic retinopathy. Nat Rev Endocrinol. 17:195–206. Erratum in:
Nat Rev Endocrinol. 2025;21:62. DOI:
10.1038/s41574-020-00451-4. PMID:
33469209. PMCID:
PMC9053333.

2. Kropp M, Golubnitschaja O, Mazurakova A, Koklesova L, Sargheini N, Vo TKS, de Clerck E, Polivka J Jr, Potuznik P, Polivka J, Stetkarova I, Kubatka P, Thumann G. 2023; Diabetic retinopathy as the leading cause of blindness and early predictor of cascading complications-risks and mitigation. EPMA J. 14:21–42. DOI:
10.1007/s13167-023-00314-8. PMID:
36866156. PMCID:
PMC9971534.

4. Lin KY, Hsih WH, Lin YB, Wen CY, Chang TJ. 2021; Update in the epidemiology, risk factors, screening, and treatment of diabetic retinopathy. J Diabetes Investig. 12:1322–1325. DOI:
10.1111/jdi.13480. PMID:
33316144. PMCID:
PMC8354492.

8. Wilkinson CP, Ferris FL 3rd, Klein RE, Lee PP, Agardh CD, Davis M, Dills D, Kampik A, Pararajasegaram R, Verdaguer JT. Global Diabetic Retinopathy Project Group. 2003; Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology. 110:1677–1682. DOI:
10.1016/S0161-6420(03)00475-5. PMID:
13129861.

9. Cheloni R, Gandolfi SA, Signorelli C, Odone A. 2019; Global prevalence of diabetic retinopathy: protocol for a systematic review and meta-analysis. BMJ Open. 9:e022188. DOI:
10.1136/bmjopen-2018-022188. PMID:
30833309. PMCID:
PMC6443069.

10. Perais J, Agarwal R, Evans JR, Loveman E, Colquitt JL, Owens D, Hogg RE, Lawrenson JG, Takwoingi Y, Lois N. 2023; Prognostic factors for the development and progression of proliferative diabetic retinopathy in people with diabetic retinopathy. Cochrane Database Syst Rev. 2:CD013775. DOI:
10.1002/14651858.CD013775.pub2. PMID:
36815723. PMCID:
PMC9943918.

11. Falavarjani KG, Nguyen QD. 2013; Adverse events and complications associated with intravitreal injection of anti-VEGF agents: a review of literature. Eye (Lond). 27:787–794. DOI:
10.1038/eye.2013.107. PMID:
23722722. PMCID:
PMC3709385.

12. American Diabetes Association Professional Practice Committee. 2022; 12. Retinopathy, neuropathy, and foot care: standards of medical care in diabetes-2022. Diabetes Care. 45(Suppl 1):S185–S194. DOI:
10.2337/dc22-S012. PMID:
34964887.
13. Hou X, Wang L, Zhu D, Guo L, Weng J, Zhang M, Zhou Z, Zou D, Ji Q, Guo X, Wu Q, Chen S, Yu R, Chen H, Huang Z, Zhang X, Wu J, Wu J, Jia W. China National Diabetic Chronic Complications (DiaChronic) Study Group. 2023; Prevalence of diabetic retinopathy and vision-threatening diabetic retinopathy in adults with diabetes in China. Nat Commun. 14:4296. DOI:
10.1038/s41467-023-39864-w. PMID:
37463878. PMCID:
PMC10354077.

14. Grading diabetic retinopathy from stereoscopic color fundus photographs--an extension of the modified Airlie House classification. 1991; ETDRS report number 10. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology. 98(5 Suppl):786–806. DOI:
10.1016/S0161-6420(13)38012-9. PMID:
2062513.
16. Inglesby DV, Turner GS, Schulenburg WE, Kohner EM. 1985; Photocoagulation for peripheral neovascularisation in diabetes. Br J Ophthalmol. 69:157–161. DOI:
10.1136/bjo.69.3.157. PMID:
2579672. PMCID:
PMC1040554.

17. Yang Z, Tan TE, Shao Y, Wong TY, Li X. 2022; Classification of diabetic retinopathy: past, present and future. Front Endocrinol (Lausanne). 13:1079217. DOI:
10.3389/fendo.2022.1079217. PMID:
36589807. PMCID:
PMC9800497.

18. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG. 1991; Optical coherence tomography. Science. 254:1178–1181. DOI:
10.1126/science.1957169. PMID:
1957169. PMCID:
PMC4638169.

19. Choudhry N, Duker JS, Freund KB, Kiss S, Querques G, Rosen R, Sarraf D, Souied EH, Stanga PE, Staurenghi G, Sadda SR. 2019; Classification and guidelines for widefield imaging: recommendations from the International Widefield Imaging Study Group. Ophthalmol Retina. 3:843–849. DOI:
10.1016/j.oret.2019.05.007. PMID:
31302104.
20. Byberg S, Vistisen D, Diaz L, Charles MH, Hajari JN, Valerius M, Juul E, Jørgensen ME, Lund-Andersen H. 2019; Optos wide-field imaging versus conventional camera imaging in Danish patients with type 2 diabetes. Acta Ophthalmol. 97:815–820. DOI:
10.1111/aos.14118. PMID:
30985086.

22. Borrelli E, Sarraf D, Freund KB, Sadda SR. 2018; OCT angiography and evaluation of the choroid and choroidal vascular disorders. Prog Retin Eye Res. 67:30–55. DOI:
10.1016/j.preteyeres.2018.07.002. PMID:
30059755.

25. Canan H, Sizmaz S, Altan-Yaycioğlu R. 2013; Surgical results of combined pars plana vitrectomy and phacoemulsification for vitreous hemorrhage in PDR. Clin Ophthalmol. 7:1597–1601. DOI:
10.2147/OPTH.S47780. PMID:
23966765. PMCID:
PMC3745294.

26. Chew EY, Ferris FL 3rd, Csaky KG, Murphy RP, Agrón E, Thompson DJ, Reed GF, Schachat AP. 2003; The long-term effects of laser photocoagulation treatment in patients with diabetic retinopathy: the early treatment diabetic retinopathy follow-up study. Ophthalmology. 110:1683–1689. DOI:
10.1016/S0161-6420(03)00579-7. PMID:
13129862.

27. Early vitrectomy for severe vitreous hemorrhage in diabetic retinopathy. 1990; Four-year results of a randomized trial: Diabetic Retinopathy Vitrectomy Study Report 5. Arch Ophthalmol. 108:958–964. Erratum in:
Arch Ophthalmol. 1990;108:1452. DOI:
10.1001/archopht.1990.01070090060040. PMID:
2196036.
28. Fong DS, Girach A, Boney A. 2007; Visual side effects of successful scatter laser photocoagulation surgery for proliferative diabetic retinopathy: a literature review. Retina. 27:816–824. DOI:
10.1097/IAE.0b013e318042d32c. PMID:
17891003.

30. Figueroa MS, Contreras I, Noval S. 2009; Anti-angiogenic drugs as an adjunctive therapy in the surgical treatment of diabetic retinopathy. Curr Diabetes Rev. 5:52–56. DOI:
10.2174/157339909787314202. PMID:
19199899.

32. Ding H, Pan Q, Qian L, Hu C. 2022; Differentially expressed mRNAs and their upstream miR-491-5p in patients with coronary atherosclerosis as well as the function of miR-491-5p in vascular smooth muscle cells. Korean J Physiol Pharmacol. 26:183–193. DOI:
10.4196/kjpp.2022.26.3.183. PMID:
35477546. PMCID:
PMC9046892.

33. Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB. 2016; Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 44:2846–2858. DOI:
10.1093/nar/gkw027. PMID:
26861625. PMCID:
PMC4824104.

34. Geng HH, Li R, Su YM, Xiao J, Pan M, Cai XX, Ji XP. 2016; The circular RNA Cdr1as promotes myocardial infarction by mediating the regulation of miR-7a on its target genes expression. PLoS One. 11:e0151753. DOI:
10.1371/journal.pone.0151753. PMID:
26998750. PMCID:
PMC4801407.

35. Han D, Li J, Wang H, Su X, Hou J, Gu Y, Qian C, Lin Y, Liu X, Huang M, Li N, Zhou W, Yu Y, Cao X. 2017; Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology. 66:1151–1164. DOI:
10.1002/hep.29270. PMID:
28520103.

36. He Q, Zhao L, Liu Y, Liu X, Zheng J, Yu H, Cai H, Ma J, Liu L, Wang P, Li Z, Xue Y. 2018; circ-SHKBP1 regulates the angiogenesis of U87 glioma-exposed endothelial cells through miR-544a/FOXP1 and miR-379/FOXP2 pathways. Mol Ther Nucleic Acids. 10:331–348. DOI:
10.1016/j.omtn.2017.12.014. PMID:
29499945. PMCID:
PMC5862134.

37. Hsiao KY, Lin YC, Gupta SK, Chang N, Yen L, Sun HS, Tsai SJ. 2017; Noncoding effects of circular RNA CCDC66 promote colon cancer growth and metastasis. Cancer Res. 77:2339–2350. DOI:
10.1158/0008-5472.CAN-16-1883. PMID:
28249903. PMCID:
PMC5910173.

40. Zhang S, Sun P, Xiao X, Hu Y, Qian Y, Zhang Q. 2022; MicroRNA-21 promotes epithelial-mesenchymal transition and migration of human bronchial epithelial cells by targeting poly (ADP-ribose) polymerase-1 and activating PI3K/AKT signaling. Korean J Physiol Pharmacol. 26:239–253. DOI:
10.4196/kjpp.2022.26.4.239. PMID:
35766002. PMCID:
PMC9247709.

42. Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK. 1976; Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci U S A. 73:3852–3856. DOI:
10.1073/pnas.73.11.3852. PMID:
1069269. PMCID:
PMC431239.

43. Pandey PR, Rout PK, Das A, Gorospe M, Panda AC. 2019; RPAD (RNase R treatment, polyadenylation, and poly(A)+ RNA depletion) method to isolate highly pure circular RNA. Methods. 155:41–48. DOI:
10.1016/j.ymeth.2018.10.022. PMID:
30391514. PMCID:
PMC6387848.

44. Chen X, Jiang C, Sun R, Yang D, Liu Q. 2020; Circular noncoding RNA NR3C1 acts as a miR-382-5p sponge to protect RPE functions via regulating PTEN/AKT/mTOR signaling pathway. Mol Ther. 28:929–945. DOI:
10.1016/j.ymthe.2020.01.010. PMID:
32017889. PMCID:
PMC7054734.

46. Liu C, Ge HM, Liu BH, Dong R, Shan K, Chen X, Yao MD, Li XM, Yao J, Zhou RM, Zhang SJ, Jiang Q, Zhao C, Yan B. 2019; Targeting pericyte-endothelial cell crosstalk by circular RNA-cPWWP2A inhibition aggravates diabetes-induced microvascular dysfunction. Proc Natl Acad Sci U S A. 116:7455–7464. DOI:
10.1073/pnas.1814874116. PMID:
30914462. PMCID:
PMC6462073.

47. Wang JJ, Liu C, Shan K, Liu BH, Li XM, Zhang SJ, Zhou RM, Dong R, Yan B, Sun XH. 2018; Circular RNA-ZNF609 regulates retinal neurodegeneration by acting as miR-615 sponge. Theranostics. 8:3408–3415. DOI:
10.7150/thno.25156. PMID:
29930739. PMCID:
PMC6010990.

48. Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S. 2014; circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 56:55–66. DOI:
10.1016/j.molcel.2014.08.019. PMID:
25242144.

49. Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE. 2013; Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 19:141–157. Erratum in:
RNA. 2013;19:426. DOI:
10.1261/rna.035667.112. PMID:
23249747. PMCID:
PMC3543092.

50. Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L, Chen LL. 2013; Circular intronic long noncoding RNAs. Mol Cell. 51:792–806. DOI:
10.1016/j.molcel.2013.08.017. PMID:
24035497.

51. Zhong Y, Yang Y, Wang X, Ren B, Wang X, Shan G, Chen L. 2024; Systematic identification and characterization of exon-intron circRNAs. Genome Res. 34:376–393. DOI:
10.1101/gr.278590.123. PMID:
38609186. PMCID:
PMC11067877.

52. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J. 2013; Natural RNA circles function as efficient microRNA sponges. Nature. 495:384–388. DOI:
10.1038/nature11993. PMID:
23446346.

53. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N. 2013; Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495:333–338. DOI:
10.1038/nature11928. PMID:
23446348.

54. Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, Roslan S, Schreiber AW, Gregory PA, Goodall GJ. 2015; The RNA binding protein quaking regulates formation of circRNAs. Cell. 160:1125–1134. DOI:
10.1016/j.cell.2015.02.014. PMID:
25768908.

55. Yang ZG, Awan FM, Du WW, Zeng Y, Lyu J, Wu D, Gupta S, Yang W, Yang BB. 2017; The circular RNA interacts with STAT3, increasing its nuclear translocation and wound repair by modulating Dnmt3a and miR-17 function. Mol Ther. 25:2062–2074. DOI:
10.1016/j.ymthe.2017.05.022. PMID:
28676341. PMCID:
PMC5589065.

56. Yang Q, Du WW, Wu N, Yang W, Awan FM, Fang L, Ma J, Li X, Zeng Y, Yang Z, Dong J, Khorshidi A, Yang BB. 2017; A circular RNA promotes tumorigenesis by inducing c-myc nuclear translocation. Cell Death Differ. 24:1609–1620. DOI:
10.1038/cdd.2017.86. PMID:
28622299. PMCID:
PMC5563992.

57. Zeng Y, Du WW, Wu Y, Yang Z, Awan FM, Li X, Yang W, Zhang C, Yang Q, Yee A, Chen Y, Yang F, Sun H, Huang R, Yee AJ, Li RK, Wu Z, Backx PH, Yang BB. 2017; A circular RNA binds to and activates AKT phosphorylation and nuclear localization reducing apoptosis and enhancing cardiac repair. Theranostics. 7:3842–3855. DOI:
10.7150/thno.19764. PMID:
29109781. PMCID:
PMC5667408.

58. Chen N, Zhao G, Yan X, Lv Z, Yin H, Zhang S, Song W, Li X, Li L, Du Z, Jia L, Zhou L, Li W, Hoffman AR, Hu JF, Cui J. 2018; A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1. Genome Biol. 19:218. DOI:
10.1186/s13059-018-1594-y. PMID:
30537986. PMCID:
PMC6290540.

59. Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, Zhu P, Chang Z, Wu Q, Zhao Y, Jia Y, Xu P, Liu H, Shan G. 2015; Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 22:256–264. Erratum in:
Nat Struct Mol Biol. 2017;24:194. DOI:
10.1038/nsmb.2959. PMID:
25664725.

60. Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M, Laneve P, Rajewsky N, Bozzoni I. 2017; Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell. 66:22–37.e9. DOI:
10.1016/j.molcel.2017.02.017. PMID:
28344082. PMCID:
PMC5387670.

61. Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Yang Y, Chen LL, Wang Y, Wong CC, Xiao X, Wang Z. 2017; Extensive translation of circular RNAs driven by N
6-methyladenosine. Cell Res. 27:626–641. DOI:
10.1038/cr.2017.31. PMID:
28281539. PMCID:
PMC5520850.

62. Shao J, Gu W, Ye L, Xin Y. 2023; The hsa_circ_0004805/hsa_miR-149-5p/TGFB2 axis plays critical roles in the pathophysiology of diabetic retinopathy in vitro and in vivo. Mol Cell Endocrinol. 576:112042. DOI:
10.1016/j.mce.2023.112042. PMID:
37567360.

63. Zou J, Liu KC, Wang WP, Xu Y. 2020; Circular RNA COL1A2 promotes angiogenesis via regulating miR-29b/VEGF axis in diabetic retinopathy. Life Sci. 256:117888. DOI:
10.1016/j.lfs.2020.117888. PMID:
32497630.

64. Liu C, Yao MD, Li CP, Shan K, Yang H, Wang JJ, Liu B, Li XM, Yao J, Jiang Q, Yan B. 2017; Silencing of circular RNA-ZNF609 ameliorates vascular endothelial dysfunction. Theranostics. 7:2863–2877. DOI:
10.7150/thno.19353. PMID:
28824721. PMCID:
PMC5562221.

65. Zhu K, Hu X, Chen H, Li F, Yin N, Liu AL, Shan K, Qin YW, Huang X, Chang Q, Xu GZ, Wang Z. 2019; Downregulation of circRNA DMNT3B contributes to diabetic retinal vascular dysfunction through targeting miR-20b-5p and BAMBI. EBioMedicine. 49:341–353. DOI:
10.1016/j.ebiom.2019.10.004. PMID:
31636010. PMCID:
PMC6945224.

66. Wang Y, Zhang Y, Qu Y, Li S, Xi W, Liu B, Ye L. 2024; eIF4A3-mediated circEHMT1 regulation in retinal microvascular endothelial dysfunction in diabetic retinopathy. Microvasc Res. 151:104612. DOI:
10.1016/j.mvr.2023.104612. PMID:
37839527.

67. Ma C, Shi ZH, Han XY, Liu C, Yan B, Du JL. 2022; Targeting circRNA-MAP4K2 for the treatment of diabetes-induced retinal vascular dysfunction. Aging (Albany NY). 14:6255–6268. DOI:
10.18632/aging.204215. PMID:
35963645. PMCID:
PMC9417218.

68. Jiang Q, Liu C, Li CP, Xu SS, Yao MD, Ge HM, Sun YN, Li XM, Zhang SJ, Shan K, Liu BH, Yao J, Zhao C, Yan B. 2020; Circular RNA-ZNF532 regulates diabetes-induced retinal pericyte degeneration and vascular dysfunction. J Clin Invest. 130:3833–3847. DOI:
10.1172/JCI123353. PMID:
32343678. PMCID:
PMC7324174.

70. Jiewei Y, Jingjing Z, Jingjing X, Guilan Z. 2021; Downregulation of circ-UBAP2 ameliorates oxidative stress and dysfunctions of human retinal microvascular endothelial cells (hRMECs) via miR-589-5p/EGR1 axis. Bioengineered. 12:7508–7518. DOI:
10.1080/21655979.2021.1979440. PMID:
34608841. PMCID:
PMC8806621.

71. Yang J, Tan C, Wang Y, Zong T, Xie T, Yang Q, Wu M, Liu Y, Mu T, Wang X, Yao Y. 2023; The circRNA MKLN1 regulates autophagy in the development of diabetic retinopathy. Biochim Biophys Acta Mol Basis Dis. 1869:166839. DOI:
10.1016/j.bbadis.2023.166839. PMID:
37549719.

72. Liu Q, Liu C, Dong Y, Li H, Ren J. 2022; Circ_NNT suppresses the apoptosis and inflammation in glucose-induced human retinal pigment epithelium by regulating miR-320b/TIMP3 axis in diabetic retinopathy. Clin Immunol. 238:109023. DOI:
10.1016/j.clim.2022.109023. PMID:
35477026.

73. Zhu Z, Duan P, Song H, Zhou R, Chen T. 2021; Downregulation of Circular RNA PSEN1 ameliorates ferroptosis of the high glucose treated retinal pigment epithelial cells via miR-200b-3p/cofilin-2 axis. Bioengineered. 12:12555–12567. DOI:
10.1080/21655979.2021.2010369. PMID:
34903141. PMCID:
PMC8809929.

74. Kwiterovich KA, Maguire MG, Murphy RP, Schachat AP, Bressler NM, Bressler SB, Fine SL. 1991; Frequency of adverse systemic reactions after fluorescein angiography. Results of a prospective study. Ophthalmology. 98:1139–1142. DOI:
10.1016/S0161-6420(91)32165-1. PMID:
1891225.

75. Savastano MC, Rispoli M, Lumbroso B, Di Antonio L, Mastropasqua L, Virgili G, Savastano A, Bacherini D, Rizzo S. 2021; Fluorescein angiography versus optical coherence tomography angiography: FA vs OCTA Italian Study. Eur J Ophthalmol. 31:514–520. DOI:
10.1177/1120672120909769. PMID:
32228026.

76. Bodaghi A, Fattahi N, Ramazani A. 2023; Biomarkers: promising and valuable tools towards diagnosis, prognosis and treatment of Covid-19 and other diseases. Heliyon. 9:e13323. DOI:
10.1016/j.heliyon.2023.e13323. PMID:
36744065. PMCID:
PMC9884646.

77. Xi X, Li T, Huang Y, Sun J, Zhu Y, Yang Y, Lu ZJ. 2017; RNA biomarkers: frontier of precision medicine for cancer. Noncoding RNA. 3:9. DOI:
10.3390/ncrna3010009. PMID:
29657281. PMCID:
PMC5832009.

78. Barutta F, Corbetta B, Bellini S, Guarrera S, Matullo G, Scandella M, Schalkwijk C, Stehouwer CD, Chaturvedi N, Soedamah-Muthu SS, Durazzo M, Gruden G. 2021; MicroRNA 146a is associated with diabetic complications in type 1 diabetic patients from the EURODIAB PCS. J Transl Med. 19:475. DOI:
10.1186/s12967-021-03142-4. PMID:
34823560. PMCID:
PMC8614036.

79. Surasmiati NMA, Suryathi NMA, Andayani A. 2023; Serum microRNA-126 expression as a biomarker of diabetic retinopathy. Universa Medicina. 42:121–127. DOI:
10.18051/UnivMed.2023.v42.121-127.

80. Yan B, Tao ZF, Li XM, Zhang H, Yao J, Jiang Q. 2014; Aberrant expression of long noncoding RNAs in early diabetic retinopathy. Invest Ophthalmol Vis Sci. 55:941–951. DOI:
10.1167/iovs.13-13221. PMID:
24436191.

81. Yao MD, Jiang Q, Ma Y, Zhu Y, Zhang QY, Shi ZH, Zhao C, Yan B. 2022; Targeting circular RNA-MET for anti-angiogenesis treatment via inhibiting endothelial tip cell specialization. Mol Ther. 30:1252–1264. DOI:
10.1016/j.ymthe.2022.01.012. PMID:
34999209. PMCID:
PMC8899597.

82. Gupta A, Kafetzis KN, Tagalakis AD, Yu-Wai-Man C. 2021; RNA therapeutics in ophthalmology - translation to clinical trials. Exp Eye Res. 205:108482. DOI:
10.1016/j.exer.2021.108482. PMID:
33548256.

83. Jiang J, Zhang X, Tang Y, Li S, Chen J. 2021; Progress on ocular siRNA gene-silencing therapy and drug delivery systems. Fundam Clin Pharmacol. 35:4–24. DOI:
10.1111/fcp.12561. PMID:
32298491.

84. Hosoya K, Tachikawa M. 2009; Inner blood-retinal barrier transporters: role of retinal drug delivery. Pharm Res. 26:2055–2065. DOI:
10.1007/s11095-009-9930-2. PMID:
19568694.

86. Gao ML, Wu KC, Deng WL, Lei XL, Xiang L, Zhou GH, Feng CY, Cheng XW, Zhang CJ, Gu F, Wu RH, Jin ZB. 2017; Toll-like receptor 3 activation initiates photoreceptor cell death in vivo and in vitro. Invest Ophthalmol Vis Sci. 58:801–811. DOI:
10.1167/iovs.16-20692. PMID:
28152141.

89. Huang X, Chau Y. 2021; Enhanced delivery of siRNA to retinal ganglion cells by intravitreal lipid nanoparticles of positive charge. Mol Pharm. 18:377–385. DOI:
10.1021/acs.molpharmaceut.0c00992. PMID:
33295773.

90. Dey AK, Nougarède A, Clément F, Fournier C, Jouvin-Marche E, Escudé M, Jary D, Navarro FP, Marche PN. 2021; Tuning the immunostimulation properties of cationic lipid nanocarriers for nucleic acid delivery. Front Immunol. 12:722411. DOI:
10.3389/fimmu.2021.722411. PMID:
34497612. PMCID:
PMC8419413.

92. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. 2011; Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 29:341–345. DOI:
10.1038/nbt.1807. PMID:
21423189.

93. Shigemoto-Kuroda T, Oh JY, Kim DK, Jeong HJ, Park SY, Lee HJ, Park JW, Kim TW, An SY, Prockop DJ, Lee RH. 2017; MSC-derived extracellular vesicles attenuate immune responses in two autoimmune murine models: type 1 diabetes and uveoretinitis. Stem Cell Reports. 8:1214–1225. DOI:
10.1016/j.stemcr.2017.04.008. PMID:
28494937. PMCID:
PMC5425726.

94. Seyedrazizadeh SZ, Poosti S, Nazari A, Alikhani M, Shekari F, Pakdel F, Shahpasand K, Satarian L, Baharvand H. 2020; Extracellular vesicles derived from human ES-MSCs protect retinal ganglion cells and preserve retinal function in a rodent model of optic nerve injury. Stem Cell Res Ther. 11:203. DOI:
10.1186/s13287-020-01702-x. PMID:
32460894. PMCID:
PMC7251703.

96. Fonseca C, Moreira JN, Ciudad CJ, Pedroso de Lima MC, Simões S. 2005; Targeting of sterically stabilised pH-sensitive liposomes to human T-leukaemia cells. Eur J Pharm Biopharm. 59:359–366. DOI:
10.1016/j.ejpb.2004.08.012. PMID:
15661509.

97. Chen Z, Xiong M, Tian J, Song D, Duan S, Zhang L. 2024; Encapsulation and assessment of therapeutic cargo in engineered exosomes: a systematic review. J Nanobiotechnology. 22:18. DOI:
10.1186/s12951-023-02259-6. PMID:
38172932. PMCID:
PMC10765779.

98. Lajunen T, Hisazumi K, Kanazawa T, Okada H, Seta Y, Yliperttula M, Urtti A, Takashima Y. 2014; Topical drug delivery to retinal pigment epithelium with microfluidizer produced small liposomes. Eur J Pharm Sci. 62:23–32. DOI:
10.1016/j.ejps.2014.04.018. PMID:
24810393.

99. Judge DP, Kristen AV, Grogan M, Maurer MS, Falk RH, Hanna M, Gillmore J, Garg P, Vaishnaw AK, Harrop J, Powell C, Karsten V, Zhang X, Sweetser MT, Vest J, Hawkins PN. 2020; Phase 3 multicenter study of revusiran in patients with hereditary transthyretin-mediated (hATTR) amyloidosis with cardiomyopathy (ENDEAVOUR). Cardiovasc Drugs Ther. 34:357–370. Erratum in:
Cardiovasc Drugs Ther. 2020;34:889. DOI:
10.1007/s10557-019-06919-4. PMID:
32062791. PMCID:
PMC7242280.

100. Yamamoto T, Mukai Y, Wada F, Terada C, Kayaba Y, Oh K, Yamayoshi A, Obika S, Harada-Shiba M. 2021; Highly potent GalNAc-conjugated tiny LNA anti-miRNA-122 antisense oligonucleotides. Pharmaceutics. 13:817. DOI:
10.3390/pharmaceutics13060817. PMID:
34072682. PMCID:
PMC8228246.

102. Catuogno S, Rienzo A, Di Vito A, Esposito CL, de Franciscis V. 2015; Selective delivery of therapeutic single strand antimiRs by aptamer-based conjugates. J Control Release. 210:147–159. DOI:
10.1016/j.jconrel.2015.05.276. PMID:
25998051.

103. Gragoudas ES, Adamis AP, Cunningham ET Jr, Feinsod M. Guyer DR; VEGF Inhibition Study in Ocular Neovascularization Clinical Trial Group. 2004; Pegaptanib for neovascular age-related macular degeneration. N Engl J Med. 351:2805–2816. DOI:
10.1056/NEJMoa042760. PMID:
15625332.

104. Xie S, Sun W, Fu T, Liu X, Chen P, Qiu L, Qu F, Tan W. 2023; Aptamer-based targeted delivery of functional nucleic acids. J Am Chem Soc. 145:7677–7691. DOI:
10.1021/jacs.3c00841. PMID:
36987838.
