2. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021; 71:209–49. DOI:
10.3322/caac.21660. PMID:
33538338.
3. Joshi SS, Badgwell BD. Current treatment and recent progress in gastric cancer. CA Cancer J Clin. 2021; 71:264–79. DOI:
10.3322/caac.21657. PMID:
33592120.
4. Shi WJ, Gao JB. Molecular mechanisms of chemoresistance in gastric cancer. World J Gastrointest Oncol. 2016; 8:673–81. DOI:
10.4251/wjgo.v8.i9.673. PMID:
27672425.
5. Biagioni A, Staderini F, Peri S, et al. 5-Fluorouracil conversion pathway mutations in gastric cancer. Biology (Basel). 2020; 9:265. DOI:
10.3390/biology9090265. PMID:
32887417.
6. De Mattia E, Roncato R, Palazzari E, Toffoli G, Cecchin E. Germline and somatic pharmacogenomics to refine rectal cancer patients selection for neo-adjuvant chemoradiotherapy. Front Pharmacol. 2020; 11:897. DOI:
10.3389/fphar.2020.00897. PMID:
32625092.
7. Hernando-Cubero J, Matos-Garcia I, Alonso-Orduna V, Capdevila J. The role of fluoropirimidines in gastrointestinal tumours: from the bench to the bed. J Gastrointest Cancer. 2017; 48:135–47. DOI:
10.1007/s12029-017-9946-5. PMID:
28397102.
8. Castro-Rojas CA, Esparza-Mota AR, Hernandez-Cabrera F, et al. Thymidylate synthase gene variants as predictors of clinical response and toxicity to fluoropyrimidine-based chemotherapy for colorectal cancer. Drug Metab Pers Ther. 2017; 32:209–18. DOI:
10.1515/dmpt-2017-0028. PMID:
29257755.
9. De Mattia E, Roncato R, Dalle Fratte C, Ecca F, Toffoli G, Cecchin E. The use of pharmacogenetics to increase the safety of colorectal cancer patients treated with fluoropyrimidines. Cancer Drug Resist. 2019; 2:116–30. DOI:
10.20517/cdr.2019.04. PMID:
35582139.
10. Ab Mutalib NS, Md Yusof NF, Abdul SN, Jamal R. Pharmacogenomics DNA biomarkers in colorectal cancer: Current Update. Front Pharmacol. 2017; 8:736. DOI:
10.3389/fphar.2017.00736. PMID:
29075194.
11. Romiti A, Roberto M, D'Antonio C, et al. The TYMS-TSER polymorphism is associated with toxicity of low-dose capecitabine in patients with advanced gastrointestinal cancer. Anticancer Drugs. 2016; 27:1044–9. DOI:
10.1097/cad.0000000000000429. PMID:
27557140.
12. Vazquez C, Orlova M, Angriman F, et al. Prediction of severe toxicity in adult patients under treatment with 5-fluorouracil: a prospective cohort study. Anticancer Drugs. 2017; 28:1039–46. DOI:
10.1097/cad.0000000000000546. PMID:
28723867.
13. Matsusaka S, Lenz HJ. Pharmacogenomics of fluorouracil -based chemotherapy toxicity. Expert Opin Drug Metab Toxicol. 2015; 11:811–21. DOI:
10.1517/17425255.2015.1027684. PMID:
25800061.
14. Lima A, Azevedo R, Sousa H, Seabra V, Medeiros R. Current approaches for TYMS polymorphisms and their importance in molecular epidemiology and pharmacogenetics. Pharmacogenomics. 2013; 14:1337–51. DOI:
10.2217/pgs.13.118. PMID:
23930679.
15. Gallegos-Arreola MP, Zuniga-Gonzalez GM, Sanchez-Lopez JY, et al. TYMS 2R3R polymorphism and DPYD [IVS]14+1G>A gene mutation in Mexican colorectal cancer patients. Acta Biochim Pol. 2018; 65:227–34. DOI:
10.18388/abp.2017_2338. PMID:
29906295.
16. Meulendijks D, Rozeman EA, Cats A, et al. Pharmacogenetic variants associated with outcome in patients with advanced gastric cancer treated with fluoropyrimidine and platinum-based triplet combinations: a pooled analysis of three prospective studies. Pharmacogenomics J. 2017; 17:441–51. DOI:
10.1038/tpj.2016.81. PMID:
27995989.
17. Rosmarin D, Palles C, Pagnamenta A, et al. A candidate gene study of capecitabine-related toxicity in colorectal cancer identifies new toxicity variants at DPYD and a putative role for ENOSF1 rather than TYMS. Gut. 2015; 64:111–20. DOI:
10.1136/gutjnl-2013-306571. PMID:
24647007.
18. Liang P, Nair JR, Song L, McGuire JJ, Dolnick BJ. Comparative genomic analysis reveals a novel mitochondrial isoform of human rTS protein and unusual phylogenetic distribution of the rTS gene. BMC Genomics. 2005; 6:125. DOI:
10.1186/1471-2164-6-125. PMID:
16162288.
19. Dolnick BJ, Angelino NJ, Dolnick R, Sufrin JR. A novel function for the rTS gene. Cancer Biol Ther. 2003; 2:364–9. DOI:
10.4161/cbt.2.4.424. PMID:
14508106.
20. Shi C, Berlin J, Branton P, et al. Protocol for the examination of specimens from patients with carcinoma of the stomach. Northfield: College of American Pathologists;2020.
21. Mandola MV, Stoehlmacher J, Muller-Weeks S, et al. A novel single nucleotide polymorphism within the 5' tandem repeat polymorphism of the thymidylate synthase gene abolishes USF-1 binding and alters transcriptional activity. Cancer Res. 2003; 63:2898–904. PMID:
12782596.
22. Jiang H, Li B, Wang F, Ma C, Hao T. Expression of ERCC1 and TYMS in colorectal cancer patients and the predictive value of chemotherapy efficacy. Oncol Lett. 2019; 18:1157–62. DOI:
10.3892/ol.2019.10395. PMID:
31423175.
23. Shitara K, Muro K, Ito S, et al. Folate intake along with genetic polymorphisms in methylenetetrahydrofolate reductase and thymidylate synthase in patients with advanced gastric cancer. Cancer Epidemiol Biomarkers Prev. 2010; 19:1311–9. DOI:
10.1158/1055-9965.epi-09-1257. PMID:
20447923.
24. Li SC, Ma R, Wu JZ, et al. Delineation of gastric cancer subtypes by co-regulated expression of receptor tyrosine kinases and chemosensitivity genes. Am J Transl Res. 2015; 7:1429–39. PMID:
26396673.
25. Meulendijks D, Jacobs BA, Aliev A, et al. Increased risk of severe fluoropyrimidine-associated toxicity in patients carrying a G to C substitution in the first 28-bp tandem repeat of the thymidylate synthase 2R allele. Int J Cancer. 2016; 138:245–53. DOI:
10.1002/ijc.29694. PMID:
26189437.
26. Smyth E, Zhang S, Cunningham D, et al. Pharmacogenetic analysis of the UK MRC (Medical Research Council) MAGIC Trial: association of polymorphisms with toxicity and survival in patients treated with perioperative epirubicin, cisplatin, and 5-fluorouracil (ECF) chemotherapy. Clin Cancer Res. 2017; 23:7543–9. DOI:
10.1158/1078-0432.ccr-16-3142. PMID:
28972045.
27. Wu J, Li S, Ma R, et al. Tumor profiling of co-regulated receptor tyrosine kinase and chemoresistant genes reveal different targeting options for lung and gastroesophageal cancers. Am J Transl Res. 2016; 8:5729–40. PMID:
28078044.
28. Garcia-Gonzalez X, Cortejoso L, Garcia MI, et al. Variants in CDA and ABCB1 are predictors of capecitabine-related adverse reactions in colorectal cancer. Oncotarget. 2015; 6:6422–30. DOI:
10.18632/oncotarget.3289. PMID:
25691056.
29. Garcia-Gonzalez X, Lopez-Fernandez LA. Using pharmacogenetics to prevent severe adverse reactions to capecitabine. Pharmacogenomics. 2017; 18:1199–213. DOI:
10.2217/pgs-2017-0102.
30. Kawakami K, Graziano F, Watanabe G, et al. Prognostic role of thymidylate synthase polymorphisms in gastric cancer patients treated with surgery and adjuvant chemotherapy. Clin Cancer Res. 2005; 11:3778–83. DOI:
10.1158/1078-0432.ccr-04-2428. PMID:
15897576.
31. Yang YC, Wu GC, Jin L, et al. Association of thymidylate synthase polymorphisms with the tumor response to preoperative chemoradiotherapy in rectal cancer: a systematic review and meta-analysis. Pharmacogenomics J. 2017; 17:265–73. DOI:
10.1038/tpj.2016.11. PMID:
27001118.
32. Lecomte T, Ferraz JM, Zinzindohoue F, et al. Thymidylate synthase gene polymorphism predicts toxicity in colorectal cancer patients receiving 5-fluorouracil-based chemotherapy. Clin Cancer Res. 2004; 10:5880–8. DOI:
10.1158/1078-0432.ccr-04-0169. PMID:
15355920.
33. Chen J, Ying X, Zhang L, Xiang X, Xiong J. Influence of TS and ABCB1 gene polymorphisms on survival outcomes of 5‑FU-based chemotherapy in a Chinese population of advanced gastric cancer patients. Wien Klin Wochenschr. 2017; 129:420–6. DOI:
10.1007/s00508-016-1147-x. PMID:
28074308.
34. Arevalo E, Castanon E, Lopez I, et al. Thymidylate synthase polymorphisms in genomic DNA as clinical outcome predictors in a European population of advanced non-small cell lung cancer patients receiving pemetrexed. J Transl Med. 2014; 12:98. DOI:
10.1186/1479-5876-12-98. PMID:
24726028.
35. Gao J, He Q, Hua D, Mao Y, Li Y, Shen L. Polymorphism of TS 3'-UTR predicts survival of Chinese advanced gastric cancer patients receiving first-line capecitabine plus paclitaxel. Clin Transl Oncol. 2013; 15:619–25. DOI:
10.1007/s12094-012-0979-8. PMID:
23263912.
36. Gusella M, Frigo AC, Bolzonella C, et al. Predictors of survival and toxicity in patients on adjuvant therapy with 5-fluorouracil for colorectal cancer. Br J Cancer. 2009; 100:1549–57. DOI:
10.1038/sj.bjc.6605052. PMID:
19384296.
37. Martinez-Balibrea E, Abad A, Martinez-Cardus A, et al. UGT1A and TYMS genetic variants predict toxicity and response of colorectal cancer patients treated with first-line irinotecan and fluorouracil combination therapy. Br J Cancer. 2010; 103:581–9. DOI:
10.1038/sj.bjc.6605776. PMID:
20628391.
38. Seo BG, Kwon HC, Oh SY, et al. Comprehensive analysis of excision repair complementation group 1, glutathione S-transferase, thymidylate synthase and uridine diphosphate glucuronosyl transferase 1A1 polymorphisms predictive for treatment outcome in patients with advanced gastric cancer treated with FOLFOX or FOLFIRI. Oncol Rep. 2009; 22:127–36. DOI:
10.3892/or_00000415. PMID:
19513514.
39. Pullarkat ST, Stoehlmacher J, Ghaderi V, et al. Thymidylate synthase gene polymorphism determines response and toxicity of 5-FU chemotherapy. Pharmacogenomics J. 2001; 1:65–70. DOI:
10.1038/sj.tpj.6500012. PMID:
11913730.
40. Shintani Y, Ohta M, Hirabayashi H, et al. New prognostic indicator for non-small-cell lung cancer, quantitation of thymidylate synthase by real-time reverse transcription polymerase chain reaction. Int J Cancer. 2003; 104:790–5. DOI:
10.1002/ijc.11014. PMID:
12640689.
41. Lima A, Seabra V, Martins S, Coelho A, Araujo A, Medeiros R. Thymidylate synthase polymorphisms are associated to therapeutic outcome of advanced non-small cell lung cancer patients treated with platinum-based chemotherapy. Mol Biol Rep. 2014; 41:3349–57. DOI:
10.1007/s11033-014-3197-3. PMID:
24554028.
42. Taddia L, D'Arca D, Ferrari S, et al. Inside the biochemical pathways of thymidylate synthase perturbed by anticancer drugs: novel strategies to overcome cancer chemoresistance. Drug Resist Updat. 2015; 23:20–54. DOI:
10.1016/j.drup.2015.10.003. PMID:
26690339.
43. Lam SW, Guchelaar HJ, Boven E. The role of pharmacogenetics in capecitabine efficacy and toxicity. Cancer Treat Rev. 2016; 50:9–22. DOI:
10.1016/j.ctrv.2016.08.001. PMID:
27569869.
44. Hamzic S, Kummer D, Froehlich TK, et al. Evaluating the role of ENOSF1 and TYMS variants as predictors in fluoropyrimidine-related toxicities: an IPD meta-analysis. Pharmacol Res. 2020; 152:104594. DOI:
10.1016/j.phrs.2019.104594. PMID:
31838077.
45. Palles C, Fotheringham S, Chegwidden L, et al. An evaluation of the diagnostic accuracy of a panel of variants in DPYD and a single variant in ENOSF1 for predicting common capecitabine related toxicities. Cancers (Basel). 2021; 13:1497. DOI:
10.3390/cancers13071497. PMID:
33805100.
46. He QY, Cheung YH, Leung SY, Yuen ST, Chu KM, Chiu JF. Diverse proteomic alterations in gastric adenocarcinoma. Proteomics. 2004; 4:3276–87. DOI:
10.1002/pmic.200300916. PMID:
15378696.
47. Yang J, Xiong X, Wang X, Guo B, He K, Huang C. Identification of peptide regions of SERPINA1 and ENOSF1 and their protein expression as potential serum biomarkers for gastric cancer. Tumour Biol. 2015; 36:5109–18. DOI:
10.1007/s13277-015-3163-2. PMID:
25677901.
48. Dolnick BJ. The rTS signaling pathway as a target for drug development. Clin Colorectal Cancer. 2005; 5:57–60. DOI:
10.3816/ccc.2005.n.017. PMID:
15929807.
49. Chu E, Koeller DM, Casey JL, et al. Autoregulation of human thymidylate synthase messenger RNA translation by thymidylate synthase. Proc Natl Acad Sci U S A. 1991; 88:8977–81. DOI:
10.1073/pnas.88.20.8977. PMID:
1924359.